

PY THON / WEB DEVELOPMENT

Test-Driven Development with Python

ISBN: 978-1-449-36482-3

US $44.99 CAN $47.99

“ Testing is essential for
developer sanity. Harry
does a fantastic job of
holding our attention
whilst exploring real
world testing practices.”

—Michael Foord
Python Core Developer
& Maintainer of unittest

“ This book is far more than
an introduction to Test
Driven Development—it’s
a complete best-practices
crash course, from start to
finish, into modern web
application development
with Python.”

—Kenneth Reitz
 Fellow at Python Software Foundation

“ Harry’s book is what we
wish existed when we
were learning Django. At
a pace that’s achievable
and yet delightfully
challenging, it provides
excellent instruction for
Django and various test
practices.”

—Daniel and Audrey Roy Greenfeld
authors of Two Scoops of Django

(Two Scoops Press)

Twitter: @oreillymedia
facebook.com/oreilly

By taking you through the development of a real web application from
beginning to end, this hands-on guide demonstrates the practical advantages
of test-driven development (TDD) with Python. You’ll learn how to write and
run tests before building each part of your app, and then develop the minimum
amount of code required to pass those tests. The result? Clean code that works.

In the process, you’ll learn the basics of Django, Selenium, git, jQuery, and
Mock, along with current web development techniques. If you’re ready to
take your Python skills to the next level, this book clearly demonstrates
how TDD encourages simple designs and inspires confidence.

 ■ Dive into the TDD workflow, including the unit test/code cycle
and refactoring

 ■ Use unit tests for classes and functions, and functional tests for
user interactions within the browser

 ■ Learn when and how to use mock objects, and the pros and
cons of isolated vs. integrated tests

 ■ Test and automate your deployments with a staging server
 ■ Apply tests to the third-party plugins you integrate into your site
 ■ Use a Continuous Integration environment to run your tests

automatically

Harry J.W. Percival works at PythonAnywhere LLP and spreads the gospel of
TDD worldwide at talks, workshops, and conferences, with all the passion and
enthusiasm of a recent convert. He holds an MSc in Computer Science from
Liverpool, and an MA in Philosophy from Cambridge University.

Test-D
riven D

evelopm
ent w

ith Python
Percival

Harry J.W. Percival

Test-Driven
Development
with Python
OBEY THE TESTING GOAT: USING
DJANGO, SELENIUM, AND JAVASCRIPT

Fewer Bugs and Less Stress with Selenium,
Django, and JavaScript

Take your learning further with the Test-Driven
Development video with Harry Percival.

Build a simple web app with all the complexities
associated with web browsers, the HTTP protocol,
web frameworks, and database integration.

Take your
 learning further.

Get the video training course that
complements the first six chapters

of the book.

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 15172

Build a simple web app with all the complexities associated with web browsers,
the HTTP protocol, web frameworks, and database integration.

Start the course for free at oreil.ly/1svTFqB

http://oreil.ly/1svTFqB

Praise for Test-Driven Development with Python

“In this book, Harry takes us on an adventure of discovery with Python and testing. It’s an
excellent book, fun to read and full of vital information. It has my highest recommendations
for anyone interested in testing with Python, learning Django or wanting to use Selenium.

Testing is essential for developer sanity and it’s a notoriously difficult field, full of trade-
offs. Harry does a fantastic job of holding our attention whilst exploring real world testing

practices.”
— Michael Foord

 Python Core Developer and Maintainer of unittest

“This book is far more than an introduction to Test Driven Development—it’s a complete
best-practices crash course, from start to finish, into modern web application development

with Python. Every web developer needs this book.”
— Kenneth Reitz

 Fellow at Python Software Foundation

“Harry’s book is what we wish existed when we were learning Django. At a pace that’s
achievable and yet delightfully challenging, it provides excellent instruction for Django and
various test practices. The material on Selenium alone makes the book worth purchasing,

but there’s so much more!”
— Daniel and Audrey Roy Greenfeld

 authors of Two Scoops of Django (Two Scoops Press)

Harry Percival

Boston

Test-Driven Development with
Python

Test-Driven Development with Python
by Harry Percival

Copyright © 2014 Harry Percival. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Kara Ebrahim
Copyeditor: Charles Roumeliotis
Proofreader: Gillian McGarvey

Indexer: Wendy Catalano
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

June 2014: First Edition

Revision History for the First Edition:

2014-06-09: First release

2014-07-23: Second release

2014-09-19: Third release

2015-03-06: Fourth release

2015-10-16: Fifth release

See http://oreilly.com/catalog/errata.csp?isbn=9781449364823 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Test-Driven Development with Python, the image of a cashmere goat, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36482-3

[LSI]

http://safaribooksonline.com/
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449364823

Table of Contents

Preface. xvii
Prerequisites and Assumptions. xxiii
Companion Video. xxix
Acknowledgments. xxxi

Part I. The Basics of TDD and Django

1. Getting Django Set Up Using a Functional Test. 3
Obey the Testing Goat! Do Nothing Until You Have a Test 3
Getting Django Up and Running 6
Starting a Git Repository 8

2. Extending Our Functional Test Using the unittest Module. 13
Using a Functional Test to Scope Out a Minimum Viable App 13
The Python Standard Library’s unittest Module 16
Implicit waits 18
Commit 18

3. Testing a Simple Home Page with Unit Tests. 21
Our First Django App, and Our First Unit Test 22
Unit Tests, and How They Differ from Functional Tests 22
Unit Testing in Django 23
Django’s MVC, URLs, and View Functions 24
At Last! We Actually Write Some Application Code! 26
urls.py 27
Unit Testing a View 30

The Unit-Test/Code Cycle 31

vii

4. What Are We Doing with All These Tests?. 35
Programming Is like Pulling a Bucket of Water up from a Well 36
Using Selenium to Test User Interactions 37
The “Don’t Test Constants” Rule, and Templates to the Rescue 40

Refactoring to Use a Template 40
On Refactoring 44
A Little More of Our Front Page 45
Recap: The TDD Process 47

5. Saving User Input. 51
Wiring Up Our Form to Send a POST Request 51
Processing a POST Request on the Server 54
Passing Python Variables to Be Rendered in the Template 55
Three Strikes and Refactor 59
The Django ORM and Our First Model 61

Our First Database Migration 62
The Test Gets Surprisingly Far 63
A New Field Means a New Migration 64

Saving the POST to the Database 65
Redirect After a POST 68

Better Unit Testing Practice: Each Test Should Test One Thing 68
Rendering Items in the Template 69
Creating Our Production Database with migrate 71

6. Getting to the Minimum Viable Site. 77
Ensuring Test Isolation in Functional Tests 77

Running Just the Unit Tests 80
Small Design When Necessary 81

YAGNI! 82
REST 82

Implementing the New Design Using TDD 83
Iterating Towards the New Design 86
Testing Views, Templates, and URLs Together with the Django Test Client 87

A New Test Class 88
A New URL 88
A New View Function 89
A Separate Template for Viewing Lists 90

Another URL and View for Adding List Items 92
A Test Class for New List Creation 93
A URL and View for New List Creation 94
Removing Now-Redundant Code and Tests 95
Pointing Our Forms at the New URL 96

viii | Table of Contents

Adjusting Our Models 97
A Foreign Key Relationship 99
Adjusting the Rest of the World to Our New Models 100

Each List Should Have Its Own URL 102
Capturing Parameters from URLs 103
Adjusting new_list to the New World 104

One More View to Handle Adding Items to an Existing List 105
Beware of Greedy Regular Expressions! 106
The Last New URL 106
The Last New View 107
But How to Use That URL in the Form? 108

A Final Refactor Using URL includes 110

Part II. Web Development Sine Qua Nons

7. Prettification: Layout and Styling, and What to Test About It. 115
What to Functionally Test About Layout and Style 115
Prettification: Using a CSS Framework 118
Django Template Inheritance 120
Integrating Bootstrap 121

Rows and Columns 122
Static Files in Django 123

Switching to StaticLiveServerTestCase 124
Using Bootstrap Components to Improve the Look of the Site 125

Jumbotron! 125
Large Inputs 125
Table Styling 126

Using Our Own CSS 126
What We Glossed Over: collectstatic and Other Static Directories 127
A Few Things That Didn’t Make It 130

8. Testing Deployment Using a Staging Site. 133
TDD and the Danger Areas of Deployment 134
As Always, Start with a Test 135
Getting a Domain Name 137
Manually Provisioning a Server to Host Our Site 138

Choosing Where to Host Our Site 138
Spinning Up a Server 139
User Accounts, SSH, and Privileges 139
Installing Nginx 140
Configuring Domains for Staging and Live 141

Table of Contents | ix

Using the FT to Confirm the Domain Works and Nginx Is Running 142
Deploying Our Code Manually 142

Adjusting the Database Location 143
Creating a Virtualenv 144
Simple Nginx Configuration 147
Creating the Database with migrate 149

Getting to a Production-Ready Deployment 150
Switching to Gunicorn 150
Getting Nginx to Serve Static Files 151
Switching to Using Unix Sockets 152
Switching DEBUG to False and Setting ALLOWED_HOSTS 153
Using Upstart to Make Sure Gunicorn Starts on Boot 153
Saving Our Changes: Adding Gunicorn to Our requirements.txt 155

Automating 155
“Saving Your Progress” 158

9. Automating Deployment with Fabric. 159
Breakdown of a Fabric Script for Our Deployment 160
Trying It Out 164

Deploying to Live 165
Nginx and Gunicorn Config Using sed 167

Git Tag the Release 168
Further Reading 168

10. Input Validation and Test Organisation. 171
Validation FT: Preventing Blank Items 171

Skipping a Test 172
Splitting Functional Tests out into Many Files 173
Running a Single Test File 176
Fleshing Out the FT 176

Using Model-Layer Validation 177
Refactoring Unit Tests into Several Files 177
Unit Testing Model Validation and the self.assertRaises Context Manager 179
A Django Quirk: Model Save Doesn’t Run Validation 180

Surfacing Model Validation Errors in the View 180
Checking Invalid Input Isn’t Saved to the Database 183

Django Pattern: Processing POST Requests in the Same View as Renders the
Form 185
Refactor: Transferring the new_item Functionality into view_list 186
Enforcing Model Validation in view_list 188

Refactor: Removing Hardcoded URLs 189
The {% url %} Template Tag 190

x | Table of Contents

Using get_absolute_url for Redirects 190

11. A Simple Form. 195
Moving Validation Logic into a Form 195

Exploring the Forms API with a Unit Test 196
Switching to a Django ModelForm 197
Testing and Customising Form Validation 198

Using the Form in Our Views 200
Using the Form in a View with a GET Request 200
A Big Find and Replace 203

Using the Form in a View That Takes POST Requests 205
Adapting the Unit Tests for the new_list View 205
Using the Form in the View 206
Using the Form to Display Errors in the Template 207

Using the Form in the Other View 207
A Helper Method for Several Short Tests 208

Using the Form’s Own Save Method 210

12. More Advanced Forms. 213
Another FT for Duplicate Items 213

Preventing Duplicates at the Model Layer 214
A Little Digression on Queryset Ordering and String Representations 216
Rewriting the Old Model Test 218
Some Integrity Errors Do Show Up on Save 219

Experimenting with Duplicate Item Validation at the Views Layer 220
A More Complex Form to Handle Uniqueness Validation 221
Using the Existing List Item Form in the List View 223

13. Dipping Our Toes, Very Tentatively, into JavaScript. 227
Starting with an FT 227
Setting Up a Basic JavaScript Test Runner 228
Using jQuery and the Fixtures Div 231
Building a JavaScript Unit Test for Our Desired Functionality 234
Javascript Testing in the TDD Cycle 236
Columbo Says: Onload Boilerplate and Namespacing 236
A Few Things That Didn’t Make It 237

14. Deploying Our New Code. 239
Staging Deploy 239
Live Deploy 239
What to Do If You See a Database Error 240
Wrap-Up: git tag the New Release 240

Table of Contents | xi

Part III. More Advanced Topics

15. User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript. 243
Mozilla Persona (BrowserID) 244
Exploratory Coding, aka “Spiking” 244

Starting a Branch for the Spike 245
Frontend and JavaScript Code 245
The Browser-ID Protocol 246
The Server Side: Custom Authentication 247

De-spiking 253
A Common Selenium Technique: Explicit Waits 255
Reverting Our Spiked Code 257

JavaScript Unit Tests Involving External Components: Our First Mocks! 258
Housekeeping: A Site-Wide Static Files Folder 258
Mocking: Who, Why, What? 259
Namespacing 260
A Simple Mock to Unit Tests Our initialize Function 260
More Advanced Mocking 266
Checking Call Arguments 269
QUnit setup and teardown, Testing Ajax 270
More Nested Callbacks! Testing Asynchronous Code 274

16. Server-Side Authentication and Mocking in Python. 279
A Look at Our Spiked Login View 279
Mocking in Python 280

Testing Our View by Mocking Out authenticate 280
Checking the View Actually Logs the User In 283

De-spiking Our Custom Authentication Backend: Mocking Out an Internet
Request 287
1 if = 1 More Test 288
Patching at the Class Level 289
Beware of Mocks in Boolean Comparisons 292
Creating a User if Necessary 293
The get_user Method 293

A Minimal Custom User Model 295
A Slight Disappointment 297
Tests as Documentation 298
Users Are Authenticated 299

The Moment of Truth: Will the FT Pass? 300
Finishing Off Our FT, Testing Logout 301

xii | Table of Contents

17. Test Fixtures, Logging, and Server-Side Debugging. 305
Skipping the Login Process by Pre-creating a Session 305

Checking It Works 307
The Proof Is in the Pudding: Using Staging to Catch Final Bugs 308

Setting Up Logging 309
Fixing the Persona Bug 311

Managing the Test Database on Staging 313
A Django Management Command to Create Sessions 313
Getting the FT to Run the Management Command on the Server 315
An Additional Hop via subprocess 316

Baking In Our Logging Code 320
Using Hierarchical Logging Config 320

Wrap-Up 322

18. Finishing “My Lists”: Outside-In TDD. 325
The Alternative: “Inside Out” 325
Why Prefer “Outside-In”? 325
The FT for “My Lists” 326
The Outside Layer: Presentation and Templates 327
Moving Down One Layer to View Functions (the Controller) 328
Another Pass, Outside-In 329

A Quick Restructure of the Template Inheritance Hierarchy 329
Designing Our API Using the Template 330
Moving Down to the Next Layer: What the View Passes to the Template 331

The Next “Requirement” from the Views Layer: New Lists Should Record
Owner 332
A Decision Point: Whether to Proceed to the Next Layer with a Failing Test 333

Moving Down to the Model Layer 333
Final Step: Feeding Through the .name API from the Template 335

19. Test Isolation, and “Listening to Your Tests”. 339
Revisiting Our Decision Point: The Views Layer Depends on Unwritten

Models Code 339
A First Attempt at Using Mocks for Isolation 340

Using Mock side_effects to Check the Sequence of Events 341
Listen to Your Tests: Ugly Tests Signal a Need to Refactor 343
Rewriting Our Tests for the View to Be Fully Isolated 344

Keep the Old Integrated Test Suite Around as a Sanity Check 344
A New Test Suite with Full Isolation 345
Thinking in Terms of Collaborators 345

Moving Down to the Forms Layer 349
Keep Listening to Your Tests: Removing ORM Code from Our Application 350

Table of Contents | xiii

Finally, Moving Down to the Models Layer 353
Back to Views 355

The Moment of Truth (and the Risks of Mocking) 356
Thinking of Interactions Between Layers as “Contracts” 357

Identifying Implicit Contracts 358
Fixing the Oversight 359

One More Test 360
Tidy Up: What to Keep from Our Integrated Test Suite 361

Removing Redundant Code at the Forms Layer 361
Removing the Old Implementation of the View 362
Removing Redundant Code at the Forms Layer 363

Conclusions: When to Write Isolated Versus Integrated Tests 364
Let Complexity Be Your Guide 364
Should You Do Both? 365
Onwards! 365

20. Continuous Integration (CI). 367
Installing Jenkins 367

Configuring Jenkins Security 369
Adding Required Plugins 370

Setting Up Our Project 371
First Build! 373
Setting Up a Virtual Display so the FTs Can Run Headless 374
Taking Screenshots 376
A Common Selenium Problem: Race Conditions 379
Running Our QUnit JavaScript Tests in Jenkins with PhantomJS 382

Installing node 383
Adding the Build Steps to Jenkins 384

More Things to Do with a CI Server 385

21. The Token Social Bit, the Page Pattern, and an Exercise for the Reader. 387
An FT with Multiple Users, and addCleanup 387
Implementing the Selenium Interact/Wait Pattern 389
The Page Pattern 390
Extend the FT to a Second User, and the “My Lists” Page 393
An Exercise for the Reader 395

22. Fast Tests, Slow Tests, and Hot Lava. 397
Thesis: Unit Tests Are Superfast and Good Besides That 398

Faster Tests Mean Faster Development 398
The Holy Flow State 399
Slow Tests Don’t Get Run as Often, Which Causes Bad Code 399

xiv | Table of Contents

We’re Fine Now, but Integrated Tests Get Slower Over Time 399
Don’t Take It from Me 399
And Unit Tests Drive Good Design 400

The Problems with “Pure” Unit Tests 400
Isolated Tests Can Be Harder to Read and Write 400
Isolated Tests Don’t Automatically Test Integration 400
Unit Tests Seldom Catch Unexpected Bugs 400
Mocky Tests Can Become Closely Tied to Implementation 400
But All These Problems Can Be Overcome 401

Synthesis: What Do We Want from Our Tests, Anyway? 401
Correctness 401
Clean, Maintainable Code 401
Productive Workflow 402
Evaluate Your Tests Against the Benefits You Want from Them 402

Architectural Solutions 402
Ports and Adapters/Hexagonal/Clean Architecture 403
Functional Core, Imperative Shell 403

Conclusion 404

Obey the Testing Goat!. 407

A. PythonAnywhere. 409

B. Django Class-Based Views. 415

C. Provisioning with Ansible. 425

D. Testing Database Migrations. 429

E. Behaviour-Driven Development (BDD). 435

F. Cheat Sheet. 449

G. What to Do Next. 453

H. Bibliography. 457

Index. 459

Table of Contents | xv

Preface

This book is my attempt to share with the world the journey I’ve taken from “hacking”
to “software engineering”. It’s mainly about testing, but there’s a lot more to it, as you’ll
soon see.

I want to thank you for reading it.

If you bought a copy, then I’m very grateful. If you’re reading the free online version,
then I’m still grateful that you’ve decided it’s worth spending some of your time on. Who
knows, perhaps once you get to the end, you’ll decide it’s good enough to buy a real copy
for yourself or for a friend.

If you have any comments, questions, or suggestions, I’d love to hear from you. You can
reach me directly via obeythetestinggoat@gmail.com, or on Twitter @hjwp. You can also
check out the website and my blog, and there’s a mailing list.

I hope you’ll enjoy reading this book as much as I enjoyed writing it.

Why I Wrote a Book About Test-Driven Development
“Who are you, why are you writing this book, and why should I read it?” I hear you ask.

I’m still quite early on in my programming career. They say that in any discipline, you
go from apprentice, to journeyman, and eventually, sometimes, on to master. I’d say
that I’m—at best—a journeyman programmer. But I was lucky enough, early on in my
career, to fall in with a bunch of TDD fanatics, and it made such a big impact on my
programming that I’m burning to share it with everyone. You might say I have the
enthusiasm of a recent convert, and the learning experience is still a recent memory for
me, so I hope I can still empathise with beginners.

When I first learned Python (from Mark Pilgrim’s excellent Dive Into Python), I came
across the concept of TDD, and thought “Yes. I can definitely see the sense in that.”
Perhaps you had a similar reaction when you first heard about TDD? It sounds like a

xvii

mailto:obeythetestinggoat@gmail.com
https://www.twitter.com/hjwp
http://www.obeythetestinggoat.com
https://groups.google.com/forum/#!forum/obey-the-testing-goat-book

really sensible approach, a really good habit to get into—like regularly flossing your
teeth or something.

Then came my first big project, and you can guess what happened—there was a client,
there were deadlines, there was lots to do, and any good intentions about TDD went
straight out of the window.

And, actually, it was fine. I was fine.

At first.

At first I knew I didn’t really need TDD because it was a small website, and I could easily
test whether things worked by just manually checking it out. Click this link here, choose
that drop-down item there, and this should happen. Easy. This whole writing tests thing
sounded like it would have taken ages, and besides, I fancied myself, from the full height
of my three weeks of adult coding experience, as being a pretty good programmer. I
could handle it. Easy.

Then came the fearful goddess Complexity. She soon showed me the limits of my
experience.

The project grew. Parts of the system started to depend on other parts. I did my best to
follow good principles like DRY (Don’t Repeat Yourself), but that just led to some pretty
dangerous territory. Soon I was playing with multiple inheritance. Class hierarchies 8
levels deep. eval statements.

I became scared of making changes to my code. I was no longer sure what depended on
what, and what might happen if I changed this code over here, oh gosh, I think that bit
over there inherits from it—no, it doesn’t, it’s overriden. Oh, but it depends on that class
variable. Right, well, as long as I override the override it should be fine. I’ll just check
—but checking was getting much harder. There were lots of sections to the site now,
and clicking through them all manually was starting to get impractical. Better to leave
well enough alone, forget refactoring, just make do.

Soon I had a hideous, ugly mess of code. New development became painful.

Not too long after this, I was lucky enough to get a job with a company called Resolver
Systems (now PythonAnywhere), where Extreme Programming (XP) was the norm.
They introduced me to rigorous TDD.

Although my previous experience had certainly opened my mind to the possible benefits
of automated testing, I still dragged my feet at every stage. “I mean, testing in general
might be a good idea, but really? All these tests? Some of them seem like a total waste
of time… What? Functional tests as well as unit tests? Come on, that’s overdoing it! And
this TDD test/minimal-code-change/test cycle? This is just silly! We don’t need all these
baby steps! Come on, we can see what the right answer is, why don’t we just skip to the
end?”

xviii | Preface

https://www.pythonanywhere.com

Believe me, I second-guessed every rule, I suggested every shortcut, I demanded justi‐
fications for every seemingly pointless aspect of TDD, and I came out seeing the wisdom
of it all. I’ve lost count of the number of times I’ve thought “Thanks, tests”, as a functional
test uncovers a regression we would never have predicted, or a unit test saves me from
making a really silly logic error. Psychologically, it’s made development a much less
stressful process. It produces code that’s a pleasure to work with.

So, let me tell you all about it!

Aims of This Book
My main aim is to impart a methodology—a way of doing web development, which I
think makes for better web apps and happier developers. There’s not much point in a
book that just covers material you could find by googling, so this book isn’t a guide to
Python syntax, or a tutorial on web development per se. Instead, I hope to teach you
how to use TDD to get more reliably to our shared, holy goal: clean code that works.
With that said: I will constantly refer to a real practical example, by building a web app
from scratch using tools like Django, Selenium, jQuery, and Mock. I’m not assuming
any prior knowledge of any of these, so you should come out of the other end of this
book with a decent introduction to those tools, as well as the discipline of TDD.

In Extreme Programming we always pair-program, so I’ve imagined writing this book
as if I was pairing with my previous self, having to explain how the tools work and answer
questions about why we code in this particular way. So, if I ever take a bit of a patronising
tone, it’s because I’m not all that smart, and I have to be very patient with myself. And
if I ever sound defensive, it’s because I’m the kind of annoying person that systematically
disagrees with whatever anyone else says, so sometimes it takes a lot of justifying to
convince myself of anything.

Outline
I’ve split this book into three parts.
Part I (Chapters 1–6): The basics

Dives straight into building a simple web app using TDD. We start by writing a
functional test (with Selenium), then we go through the basics of Django—models,
views, templates—with rigorous unit testing at every stage. I also introduce the
Testing Goat.

Part II (Chapters 7–14): Web development essentials
Covers some of the trickier but unavoidable aspects of web development, and shows
how testing can help us with them: static files, deployment to production, form data
validation, database migrations, and the dreaded JavaScript.

Preface | xix

Part III (Chapters 15–20): More advanced topics
Mocking, integrating a third-party authentication system, Ajax, test fixtures,
Outside-In TDD, and Continuous Integration (CI).

On to a little housekeeping…

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Occasionally I will use the symbol:
[...]

to signify that some of the content has been skipped, to shorten long bits of output, or
to skip down to a relevant bit.

This element signifies a tip or suggestion.

This element signifies a general note or aside.

This element indicates a warning or caution.

xx | Preface

Using Code Examples
Code examples are available at https://github.com/hjwp/book-example/; you’ll find
branches for each chapter there (e.g., https://github.com/hjwp/book-example/tree/chap
ter_03). You’ll also find some suggestions on ways of working with this repository at
the end of each chapter.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Test-Driven Development with Python by
Harry Percival (O’Reilly). Copyright 2014 Harry Percival, 978-1-449-36482-3.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu‐
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

Preface | xxi

https://github.com/hjwp/book-example/
https://github.com/hjwp/book-example/tree/chapter_03
https://github.com/hjwp/book-example/tree/chapter_03
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

Contacting O’Reilly
If you’d like to get in touch with my beloved publisher with any questions about this
book, contact details follow:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You can also send email to bookquestions@oreilly.com.

You can find errata, examples, and additional information at http://bit.ly/test-driven-
python.

For more information about books, courses, conferences, and news, see O’Reilly’s web‐
site at http://www.oreilly.com.

Facebook: http://facebook.com/oreilly
Twitter: http://twitter.com/oreillymedia
YouTube: http://www.youtube.com/oreillymedia

xxii | Preface

mailto:bookquestions@oreilly.com
http://bit.ly/test-driven-python
http://bit.ly/test-driven-python
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Prerequisites and Assumptions

Here’s an outline of what I’m assuming about you and what you already know, as well
as what software you’ll need ready and installed on your computer.

Python 3 and Programming
I’ve written the book with beginners in mind, but if you’re new to programming, I’m
assuming that you’ve already learned the basics of Python. So if you haven’t already, do
run through a Python beginner’s tutorial or get an introductory book like Dive Into
Python or Learn Python the Hard Way, or, just for fun, Invent Your Own Computer
Games with Python, all of which are excellent introductions.

If you’re an experienced programmer but new to Python, you should get along just fine.
Python is joyously simple to understand.

I’m using Python 3 for this book. When I wrote it in 2013–14, Python 3 had been around
for several years, and the world was just about on the tipping point at which it was the
preferred choice. You should be able to follow this book on Mac, Windows, or Linux.
Detailed installation instructions for each OS follow.

This book was tested against Python 3.3 and Python 3.4. If you’re on
3.2 for any reason, you may find minor differences, so you’re best off
upgrading if you can.

I wouldn’t recommend trying to use Python 2, as the differences are more substantial.
You’ll still be able to carry across all the lessons you learn in this book if your next project
happens to be in Python 2. But spending time figuring out whether the reason your
program output looks different from mine is because of Python 2, or because you made
an actual mistake, won’t be time spent productively.

xxiii

http://www.diveintopython.net/
http://www.diveintopython.net/
http://learnpythonthehardway.org/
http://inventwithpython.com/
http://inventwithpython.com/

If you are thinking of using PythonAnywhere (the PaaS startup I work for), rather than
a locally installed Python, you should go and take a quick look at Appendix A before
you get started.

In any case, I expect you to have access to Python, to know how to launch it from a
command line (usually with the command python3), and to know how to edit a Python
file and run it. Again, have a look at the three books I recommended previously if you’re
in any doubt.

If you already have Python 2 installed, and you’re worried that in‐
stalling Python 3 will break it in some way, don’t! Python 3 and 2 can
coexist peacefully on the same system, and they each store their
packages in totally different locations. You just need to make sure that
you have one command to launch Python 3 (python3), and another
to launch Python 2 (usually, just python). Similarly, when we install
pip for Python 3, we just make sure that its command (usually pip3)
is identifiably different from the Python 2 pip.

How HTML Works
I’m also assuming you have a basic grasp of how the web works—what HTML is, what
a POST request is, etc. If you’re not sure about those, you’ll need to find a basic HTML
tutorial—there are a few at http://www.webplatform.org/. If you can figure out how to
create an HTML page on your PC and look at it in your browser, and understand what
a form is and how it might work, then you’re probably OK.

JavaScript
There’s a little bit of JavaScript in the second half of the book. If you don’t know Java‐
Script, don’t worry about it until then, and if you find yourself a little confused, I’ll
recommend a couple of guides at that point.

Required Software Installations
Aside from Python, you’ll need:
The Firefox web browser

A quick Google search will get you an installer for whichever platform you’re on.
Selenium can actually drive any of the major browsers, but Firefox is the easiest to
use as an example because it’s reliably cross-platform and, as a bonus, is less sold
out to corporate interests.

The Git version control system
This is available for any platform, at http://git-scm.com/.

xxiv | Prerequisites and Assumptions

http://www.pythonanywhere.com
http://www.webplatform.org/
http://git-scm.com/

The pip Python package management tool
This comes bundled with Python 3.4 (it didn’t always used to, this is a big hooray).
To make sure we’re using the Python3 version of pip, I’ll always use pip3 as the
executable in my command-line examples. Depending on your platform, it may be
pip-3.4 or pip-3.3. Have a look at the detailed notes for each operating system
for more info.

Windows Notes
Windows users can sometimes feel a little neglected, since OS X and Linux make it easy
to forget there’s a world outside the Unix paradigm. Backslashes as directory separators?
Drive letters? What? Still, it is absolutely possible to follow along with this book on
Windows. Here are a few tips:

1. When you install Git for Windows, make sure you choose “Run Git and included
Unix tools from the Windows command prompt”. You’ll then get access to a program
called “Git Bash”. Use this as your main command prompt and you’ll get all the
useful GNU command-line tools like ls, touch, and grep, plus forward-slash di‐
rectory separators.

2. When you install Python 3, make sure you tick the option that says “add python.exe
to Path” as in Figure P-1, to make sure you can run Python from the command line.

Figure P-1. Add python to the system path from the installer

Prerequisites and Assumptions | xxv

3. On Windows, Python 3’s executable is called python.exe, which is exactly the same
as Python 2. To avoid any confusion, create a symlink in the Git Bash binaries folder,
like this:

ln -s /c/Python34/python.exe /bin/python3.exe

You may need to right-click Git-Bash and choose “Run as an administrator” for
that command to work. Note also that the symlink will only work in Git Bash, not
in the regular DOS command prompt.

4. Python 3.4 comes with pip, the package management tool. You can check it’s in‐
stalled by doing a which pip3 from a command line, and it should show you /c/
Python34/Scripts/pip3.
If, for whatever reason, you’re stuck with Python 3.3 and you don’t have pip3, check
http://www.pip-installer.org/ for installation instructions. At the time of writing,
this involved downloading a file and then executing it with python3 get-pip.py.
Make sure you use python3 when you run the setup script.

The test for all this is that you should be able to go to a Git-
Bash command prompt and just run python3 or pip3 from any
folder.

MacOS Notes
MacOS is a bit more sane than Windows, although getting pip3 installed was still fairly
challenging up until recently. With the arrival of 3.4, things are now quite straightfor‐
ward:

• Python 3.4 should install without a fuss from its downloadable installer. It will
automatically install pip, too.

• Git’s installer should also “just work”.

Similarly to Windows, the test for all this is that you should be able to open a terminal
and just run git, python3, or pip3 from anywhere. If you run into any trouble, the search
terms “system path” and “command not found” should provide good troubleshooting
resources.

xxvi | Prerequisites and Assumptions

http://www.pip-installer.org/
http://www.python.org

1. I wouldn’t recommend installing Firefox via Homebrew though: brew puts the Firefox binary in a strange
location, and it confuses Selenium. You can work around it, but it’s simpler to just install Firefox in the
normal way.

2. I updated the book to Django 1.8 in Spring 2015, and as it’s an LTS, this will probably be the last upgrade for
a while. Make sure you install this version, even if the Django project has released a newer one since. You can
always jump to the bleeding edge when you go back to your own projects!

You might also want to check out Homebrew. It used to be the
only reliable way of installing lots of Unixy tools (including
Python 3) on a Mac.1 Although the Python installer is now fine,
you may find it useful in future. It does require you to down‐
load all 1.1 GB of Xcode, but that also gives you a C compiler,
which is a useful side effect.

Git’s Default Editor, and Other Basic Git Config
I’ll provide step-by-step instructions for Git, but it may be a good idea to get a bit of
configuration done now. For example, when you do your first commit, by default vi will
pop up, at which point you may have no idea what to do with it. Well, much as vi has
two modes, you then have two choices. One is to learn some minimal vi commands
(press the i key to go into insert mode, type your text, press <Esc> to go back to normal
mode, then write the file and quit with :wq<Enter>). You’ll then have joined the great
fraternity of people who know this ancient, revered text editor.

Or you can point-blank refuse to be involved in such a ridiculous throwback to the
1970s, and configure Git to use an editor of your choice. Quit vi using <Esc> followed
by :q!, then change your Git default editor. See the Git documentation on basic Git
configuration.

Required Python Packages
Once you have pip installed, it’s trivial to install new Python packages. We’ll install some
as we go, but there are a couple we’ll need right from the beginning, so you should install
them right away:

• Django, sudo pip3 install django==1.8.4 (omit the sudo on Windows). This is
our web framework. You should make sure you have version 1.82 installed and that
you can access the django-admin.py executable from a command line. The Django
documentation has some installation instructions if you need help.

• Selenium, sudo pip3 install --upgrade selenium (omit the sudo on Windows),
a browser automation tool that we’ll use to drive what are called functional tests.
Make sure you have the absolute latest version installed. Selenium is engaged in a

Prerequisites and Assumptions | xxvii

http://brew.sh//
http://git-scm.com/book/en/Customizing-Git-Git-Configuration
http://git-scm.com/book/en/Customizing-Git-Git-Configuration
https://docs.djangoproject.com/en/1.8/intro/install/
https://docs.djangoproject.com/en/1.8/intro/install/

permanent arms race with the major browsers, trying to keep up with the latest
features. If you ever find Selenium misbehaving for some reason, the answer is often
that it’s a new version of Firefox and you need to upgrade to the latest Selenium…

Unless you’re absolutely sure you know what you’re doing, don’t use
a virtualenv. We’ll start using one later in the book, in Chapter 8.

A Note on IDEs
If you’ve come from the world of Java or .NET, you may be keen to use an IDE for your
Python coding. They have all sorts of useful tools, including VCS integration, and there
are some excellent ones out there for Python. I used one myself when I was starting out,
and I found it very useful for my first couple of projects.

Can I suggest (and it’s only a suggestion) that you don’t use an IDE, at least for the
duration of this tutorial? IDEs are much less necessary in the Python world, and I’ve
written this whole book with the assumption that you’re just using a basic text editor
and a command line. Sometimes, that’s all you have—when you’re working on a server
for example—so it’s always worth learning how to use the basic tools first and under‐
standing how they work. It’ll be something you always have, even if you decide to go
back to your IDE and all its helpful tools, after you’ve finished this book.

Did these instructions not work for you? Or have you got better ones?
Get in touch: obeythetestinggoat@gmail.com!

xxviii | Prerequisites and Assumptions

mailto:obeythetestinggoat@gmail.com

Companion Video

I’ve recorded a 10-part video series to accompany this book. It covers the content of
Chapters 1-6. If you find you learn well from video-based material, then I encourage
you to check it out. Over and above what’s in the book, it should give you a feel for what
the “flow” of TDD is like, flicking between tests and code, explaining the thought process
as we go.

Plus I’m wearing a delightful yellow T-shirt:

xxix

http://oreil.ly/1svTFqB

Acknowledgments

Lots of people to thank, without whom this book would never have happened, and/or
would have been even worse than it is.

Thanks first to “Greg” at $OTHER_PUBLISHER, who was the first person to encourage
me to believe it really could be done. Even though your employers turned out to have
overly regressive views on copyright, I’m forever grateful that you believed in me.

Thanks to Michael Foord, another ex-employee of Resolver Systems, for providing the
original inspiration by writing a book himself, and thanks for his ongoing support for
the project. Thanks also to my boss Giles Thomas, for foolishly allowing another one
of his employees to write a book (although I believe he’s now changed the standard
employment contract to say “no books”). Thanks also for your ongoing wisdom and for
setting me off on the testing path.

Thanks to my other colleagues, Glenn Jones and Hansel Dunlop, for being invaluable
sounding boards, and your patience with my one-track record conversation over the
last year.

Thanks to my wife Clementine, and to both my families, without whose support and
patience I would never have made it. I apologise for all the time spent with nose in
computer on what should have been memorable family occasions. I had no idea when
I set out what the book would do to my life (“write it in my spare time you say? That
sounds reasonable…”). I couldn’t have done it without you.

Thanks to my tech reviewers, Jonathan Hartley, Nicholas Tollervey, and Emily Bache,
for your encouragements and invaluable feedback. Especially Emily, who actually con‐
scientiously read every single chapter. Partial credit to Nick and Jon, but that should
still be read as eternal gratitude. Having y’all around made the whole thing less of a
lonely endeavour. Without all of you the book would have been little more than the
nonsensical ramblings of an idiot.

Thanks to everyone else who’s given up some of their time to give some feedback on the
book, out of nothing more than the goodness of their heart: Gary Bernhardt, Mark

xxxi

Lavin, Matt O’Donnell, Michael Foord, Hynek Schlawack, Russell Keith-Magee, An‐
drew Godwin, Kenneth Reitz, and Nathan Stocks. Thanks for being much smarter than
I am, and for preventing me from saying several stupid things. Naturally, there are still
plenty of stupid things left in the book, for which y’all can absolutely not be held re‐
sponsible.

Thanks to my editor Meghan Blanchette, for being a very friendly and likeable slave
driver, for keeping the book on track, both in terms of timescales and by restraining my
sillier ideas. Thanks to all the others at O’Reilly for your help, including Sarah Schneider,
Kara Ebrahim, and Dan Fauxsmith for letting me keep British English. Thanks to
Charles Roumeliotis for your help with style and grammar. We may never see eye-to-
eye on the merits of Chicago School quotation/punctuation rules, but I sure am glad
you were around. And thanks to the design department for giving us a goat for the cover!

And thanks most especially to all my Early Release readers, for all your help picking out
typos, for your feedback and suggestions, for all the ways in which you helped to smooth
out the learning curve in the book, and most of all for your kind words of encouragement
and support that kept me going. Thank you Jason Wirth, Dave Pawson, Jeff Orr, Kevin
De Baere, crainbf, dsisson, Galeran, Michael Allan, James O’Donnell, Marek Turnovec,
SoonerBourne, julz, Cody Farmer, William Vincent, Trey Hunner, David Souther, Tom
Perkin, Sorcha Bowler, Jon Poler, Charles Quast, Siddhartha Naithani, Steve Young,
Roger Camargo, Wesley Hansen, Johansen Christian Vermeer, Ian Laurain, Sean Rob‐
ertson, Hari Jayaram, Bayard Randel, Konrad Korżel, Matthew Waller, Julian Harley,
Barry McClendon, Simon Jakobi, Angelo Cordon, Jyrki Kajala, Manish Jain, Mahadevan
Sreenivasan, Konrad Korżel, Deric Crago, Cosmo Smith, Markus Kemmerling, Andrea
Costantini, Daniel Patrick, Ryan Allen, Jason Selby, Greg Vaughan, Jonathan Sundqvist,
Richard Bailey, Diane Soini, Dale Stewart, Mark Keaton, Johan Wärlander, Simon Scarfe,
Eric Grannan, Marc-Anthony Taylor, Maria McKinley, John McKenna, Rafał Szymań‐
ski, Roel van der Goot, Ignacio Reguero, TJ Tolton, Jonathan Means, Theodor Nolte,
Jungsoo Moon, Craig Cook, Gabriel Ewilazarus, Vincenzo Pandolfo, David “farbish2”,
Nico Coetzee, Daniel Gonzalez, Jared Contrascere, and many, many more. If I’ve missed
your name, you have an absolute right to be aggrieved; I am incredibly grateful to you
too, so write to me and I will try and make it up to you in any way I can.

And finally thanks to you, the latest reader, for deciding to check out the book! I hope
you enjoy it.

xxxii | Acknowledgments

PART I
The Basics of TDD and Django

In this first part, I’m going to introduce the basics of Test-Driven Development (TDD).
We’ll build a real web application from scratch, writing tests first at every stage.

We’ll cover functional testing with Selenium, as well as unit testing, and see the differ‐
ence between the two. I’ll introduce the TDD workflow, what I call the unit-test/code
cycle. We’ll also do some refactoring, and see how that fits with TDD. Since it’s absolutely
essential to serious software engineering, I’ll also be using a version control system (Git).
We’ll discuss how and when to do commits and integrate them with the TDD and web
development workflow.

We’ll be using Django, the Python world’s most popular web framework (probably). I’ve
tried to introduce the Django concepts slowly and one at a time, and provide lots of
links to further reading. If you’re a total beginner to Django, I thoroughly recommend
taking the time to read them. If you find yourself feeling a bit lost, take a couple of hours
to go through the official Django tutorial, and then come back to the book.

You’ll also get to meet the Testing Goat…

Be Careful with Copy and Paste
If you’re working from a digital version of the book, it’s natural to
want to copy and paste code listings from the book as you’re work‐
ing through it. It’s much better if you don’t: typing things in by hand
gets them into your muscle memory, and just feels much more real.
You also inevitably make the occasional typo, and debugging them is
an important thing to learn.
Quite apart from that, you’ll find that the quirks of the PDF format
mean that weird stuff often happens when you try and copy/paste
from it…

CHAPTER 1
Getting Django Set Up Using a

Functional Test

TDD isn’t something that comes naturally. It’s a discipline, like a martial art, and just
like in a Kung-Fu movie, you need a bad-tempered and unreasonable master to force
you to learn the discipline. Ours is the Testing Goat.

Obey the Testing Goat! Do Nothing Until You Have a Test
The Testing Goat is the unofficial mascot of TDD in the Python testing community. It
probably means different things to different people, but, to me, the Testing Goat is a
voice inside my head that keeps me on the True Path of Testing—like one of those little
angels or demons that pop up above your shoulder in the cartoons, but with a very niche
set of concerns. I hope, with this book, to install the Testing Goat inside your head too.

We’ve decided to build a website, even if we’re not quite sure what it’s going to do yet.
Normally the first step in web development is getting your web framework installed and
configured. Download this, install that, configure the other, run the script … but TDD
requires a different mindset. When you’re doing TDD, you always have the Testing Goat
inside you — single-minded as goats are—bleating “Test first, test first!”

In TDD the first step is always the same: write a test.
First we write the test, then we run it and check that it fails as expected. Only then do
we go ahead and build some of our app. Repeat that to yourself in a goat-like voice. I
know I do.

Another thing about goats is that they take one step at a time. That’s why they seldom
fall off mountains, see, no matter how steep they are. As you can see in Figure 1-1.

3

Figure 1-1. Goats are more agile than you think (source: Caitlin Stewart, on Flickr)

We’ll proceed with nice small steps; we’re going to use Django, which is a popular Python
web framework, to build our app.

The first thing we want to do is check that we’ve got Django installed, and that it’s ready
for us to work with. The way we’ll check is by confirming that we can spin up Django’s
development server and actually see it serving up a web page, in our web browser, on
our local PC. We’ll use the Selenium browser automation tool for this.

Create a new Python file called functional_tests.py, wherever you want to keep the code
for your project, and enter the following code. If you feel like making a few little goat
noises as you do it, it may help:

4 | Chapter 1: Getting Django Set Up Using a Functional Test

http://www.flickr.com/photos/caitlinstewart/2846642630/

functional_tests.py.
from selenium import webdriver

browser = webdriver.Firefox()
browser.get('http://localhost:8000')

assert 'Django' in browser.title

Adieu to Roman Numerals!
So many introductions to TDD use Roman numerals as an example that it’s a running
joke—I even started writing one myself. If you’re curious, you can find it on my GitHub
page.

Roman numerals, as an example, are both good and bad. It’s a nice “toy” problem,
reasonably limited in scope, and you can explain TDD quite well with it.

The problem is that it can be hard to relate to the real world. That’s why I’ve decided to
use building a real web app, starting from nothing, as my example. Although it’s a simple
web app, my hope is that it will be easier for you to carry across to your next real project.

That’s our first functional test (FT); I’ll talk more about what I mean by functional tests,
and how they contrast with unit tests. For now, it’s enough to assure ourselves that we
understand what it’s doing:

• Starting a Selenium webdriver to pop up a real Firefox browser window
• Using it to open up a web page which we’re expecting to be served from the local

PC
• Checking (making a test assertion) that the page has the word “Django” in its title

Let’s try running it:
$ python3 functional_tests.py
Traceback (most recent call last):
 File "functional_tests.py", line 6, in <module>
 assert 'Django' in browser.title
AssertionError

You should see a browser window pop up and try and open localhost:8000, and then
the Python error message should appear. And then, you will probably be irritated at the
fact that it left a Firefox window lying around your desktop for you to tidy up. We’ll fix
that later!

Obey the Testing Goat! Do Nothing Until You Have a Test | 5

https://github.com/hjwp/tdd-roman-numeral-calculator/
https://github.com/hjwp/tdd-roman-numeral-calculator/

If, instead, you see an error trying to import Selenium, you might
need to go back and have another look at the Prerequisites and As‐
sumptions chapter.

For now though, we have a failing test, so that means we’re allowed to start building our
app.

Getting Django Up and Running
Since you’ve definitely read Prerequisites and Assumptions by now, you’ve already got
Django installed. The first step in getting Django up and running is to create a project,
which will be the main container for our site. Django provides a little command-line
tool for this:

$ django-admin.py startproject superlists

That will create a folder called superlists, and a set of files and subfolders inside it:
.
├── functional_tests.py
└── superlists
 ├── manage.py
 └── superlists
 ├── __init__.py
 ├── settings.py
 ├── urls.py
 └── wsgi.py

Yes, there’s a folder called superlists inside a folder called superlists. It’s a bit confusing,
but it’s just one of those things; there are good reasons when you look back at the history
of Django. For now, the important thing to know is that the superlists/superlists folder
is for stuff that applies to the whole project—like settings.py for example, which is used
to store global configuration information for the site.

You’ll also have noticed manage.py. That’s Django’s Swiss Army knife, and one of the
things it can do is run a development server. Let’s try that now. Do a cd superlists to
go into the top-level superlists folder (we’ll work from this folder a lot) and then run:

6 | Chapter 1: Getting Django Set Up Using a Functional Test

$ python3 manage.py runserver
Performing system checks...

System check identified no issues (0 silenced).

You have unapplied migrations; your app may not work properly until they are
applied.
Run 'python manage.py migrate' to apply them.

Django version 1.8, using settings 'superlists.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

It’s safe to ignore that message about “unapplied migrations” for now.
We’ll look at migrations in Chapter 5.

Leave that running, and open another command shell. In that, we can try running our
test again (from the folder we started in):

$ python3 functional_tests.py
$

Not much action on the command line, but you should notice two things: firstly, there
was no ugly AssertionError and secondly, the Firefox window that Selenium popped
up had a different-looking page on it.

Well, it may not look like much, but that was our first ever passing test! Hooray!

If it all feels a bit too much like magic, like it wasn’t quite real, why not go and take a
look at the dev server manually, by opening a web browser yourself and visiting http://
localhost:8000? You should see something like Figure 1-2.

You can quit the development server now if you like, back in the original shell, using
Ctrl-C.

Getting Django Up and Running | 7

http://127.0.0.1:8000/
http://localhost:8000
http://localhost:8000

Figure 1-2. It worked!

Starting a Git Repository
There’s one last thing to do before we finish the chapter: start to commit our work to a
version control system (VCS). If you’re an experienced programmer you don’t need to
hear me preaching about version control, but if you’re new to it please believe me when
I say that VCS is a must-have. As soon as your project gets to be more than a few weeks
old and a few lines of code, having a tool available to look back over old versions of code,
revert changes, explore new ideas safely, even just as a backup … boy. TDD goes hand
in hand with version control, so I want to make sure I impart how it fits into the
workflow.

So, our first commit! If anything it’s a bit late, shame on us. We’re using Git as our VCS,
‘cos it’s the best.

Let’s start by moving functional_tests.py into the superlists folder, and doing the git
init to start the repository:

8 | Chapter 1: Getting Django Set Up Using a Functional Test

$ ls
superlists functional_tests.py
$ mv functional_tests.py superlists/
$ cd superlists
$ git init .
Initialised empty Git repository in /workspace/superlists/.git/

From this point onwards, the top-level superlists folder will be our
working directory. Whenever I show a command to type in, it will
assume we’re in this directory. Similarly, if I mention a path to a file,
it will be relative to this top-level directory. So superlists/settings.py
means the settings.py inside the second-level superlists. Clear as mud?
If in doubt, look for manage.py; you want to be in the same directo‐
ry as manage.py.

Now let’s take a look and see what files we want to commit:
$ ls
db.sqlite3 manage.py superlists functional_tests.py

db.sqlite3 is a database file. We don’t want to have that in version control, so we add
it to a special file called .gitignore which, um, tells Git what to ignore:

$ echo "db.sqlite3" >> .gitignore

Next we can add the rest of the contents of the current folder, “.”:
$ git add .
$ git status
On branch master

Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: .gitignore
 new file: functional_tests.py
 new file: manage.py
 new file: superlists/__init__.py
 new file: superlists/__pycache__/__init__.cpython-34.pyc
 new file: superlists/__pycache__/settings.cpython-34.pyc
 new file: superlists/__pycache__/urls.cpython-34.pyc
 new file: superlists/__pycache__/wsgi.cpython-34.pyc
 new file: superlists/settings.py
 new file: superlists/urls.py
 new file: superlists/wsgi.py

Starting a Git Repository | 9

1. Did vi pop up and you had no idea what to do? Or did you see a message about account identity and git
config --global user.username? Go and take another look at Prerequisites and Assumptions; there are
some brief instructions.

Darn! We’ve got a bunch of .pyc files in there; it’s pointless to commit those. Let’s remove
them from Git and add them to .gitignore too:

$ git rm -r --cached superlists/__pycache__
rm 'superlists/__pycache__/__init__.cpython-34.pyc'
rm 'superlists/__pycache__/settings.cpython-34.pyc'
rm 'superlists/__pycache__/urls.cpython-34.pyc'
rm 'superlists/__pycache__/wsgi.cpython-34.pyc'
$ echo "__pycache__" >> .gitignore
$ echo "*.pyc" >> .gitignore

Now let’s see where we are… (You’ll see I’m using git status a lot—so much so that I
often alias it to git st … I’m not telling you how to do that though; I leave you to
discover the secrets of Git aliases on your own!):

$ git status
On branch master

Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: .gitignore
 new file: functional_tests.py
 new file: manage.py
 new file: superlists/__init__.py
 new file: superlists/settings.py
 new file: superlists/urls.py
 new file: superlists/wsgi.py

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: .gitignore

Looking good, we’re ready to do our first commit!
$ git add .gitignore
$ git commit

When you type git commit, it will pop up an editor window for you to write your
commit message in. Mine looked like Figure 1-3.1

10 | Chapter 1: Getting Django Set Up Using a Functional Test

Figure 1-3. First Git commit

If you want to really go to town on Git, this is the time to also learn
about how to push your work to a cloud-based VCS hosting service,
like GitHub or BitBucket. They’ll be useful if you think you want to
follow along with this book on different PCs. I leave it to you to find
out how they work; they have excellent documentation. Alternative‐
ly, you can wait until Chapter 8 when we’ll be using one for deploy‐
ment.

That’s it for the VCS lecture. Congratulations! You’ve written a functional test using
Selenium, and you’ve gotten Django installed and running, in a certifiable, test-first,
goat-approved TDD way. Give yourself a well-deserved pat on the back before moving
on to Chapter 2.

Starting a Git Repository | 11

CHAPTER 2
Extending Our Functional Test Using the

unittest Module

Let’s adapt our test, which currently checks for the default Django “it worked” page, and
check instead for some of the things we want to see on the real front page of our site.

Time to reveal what kind of web app we’re building: a to-do lists site! In doing so we’re
very much following fashion: a few years ago all web tutorials were about building a
blog. Then it was forums and polls; nowadays it’s all to-do lists.

The reason is that a to-do list is a really nice example. At its most basic it is very simple
indeed—just a list of text strings—so it’s easy to get a “minimum viable” list app up and
running. But it can be extended in all sorts of ways—different persistence models,
adding deadlines, reminders, sharing with other users, and improving the client-side
UI. There’s no reason to be limited to just “to-do” lists either; they could be any kind of
lists. But the point is that it should allow me to demonstrate all of the main aspects of
web programming, and how you apply TDD to them.

Using a Functional Test to Scope Out a Minimum Viable
App
Tests that use Selenium let us drive a real web browser, so they really let us see how the
application functions from the user’s point of view. That’s why they’re called functional
tests.
This means that an FT can be a sort of specification for your application. It tends to
track what you might call a User Story, and follows how the user might work with a
particular feature and how the app should respond to them.

13

Terminology: Functional Test == Acceptance Test == End-to-End Test
What I call functional tests, some people prefer to call acceptance tests, or end-to-end
tests. The main point is that these kinds of tests look at how the whole application
functions, from the outside. Another term is black box test, because the test doesn’t know
anything about the internals of the system under test.

FTs should have a human-readable story that we can follow. We make it explicit using
comments that accompany the test code. When creating a new FT, we can write the
comments first, to capture the key points of the User Story. Being human-readable, you
could even share them with nonprogrammers, as a way of discussing the requirements
and features of your app.

TDD and agile software development methodologies often go together, and one of the
things we often talk about is the minimum viable app; what is the simplest thing we can
build that is still useful? Let’s start by building that, so that we can test the water as quickly
as possible.

A minimum viable to-do list really only needs to let the user enter some to-do items,
and remember them for their next visit.

Open up functional_tests.py and write a story a bit like this one:
functional_tests.py.

from selenium import webdriver

browser = webdriver.Firefox()

Edith has heard about a cool new online to-do app. She goes
to check out its homepage
browser.get('http://localhost:8000')

She notices the page title and header mention to-do lists
assert 'To-Do' in browser.title

She is invited to enter a to-do item straight away

She types "Buy peacock feathers" into a text box (Edith's hobby
is tying fly-fishing lures)

When she hits enter, the page updates, and now the page lists
"1: Buy peacock feathers" as an item in a to-do list

There is still a text box inviting her to add another item. She
enters "Use peacock feathers to make a fly" (Edith is very methodical)

The page updates again, and now shows both items on her list

14 | Chapter 2: Extending Our Functional Test Using the unittest Module

Edith wonders whether the site will remember her list. Then she sees
that the site has generated a unique URL for her -- there is some
explanatory text to that effect.

She visits that URL - her to-do list is still there.

Satisfied, she goes back to sleep

browser.quit()

We Have a Word for Comments…
When I first started at Resolver, I used to virtuously pepper my code with nice descriptive
comments. My colleagues said to me: “Harry, we have a word for comments. We call
them lies.” I was shocked! But I learned in school that comments are good practice?

They were exaggerating for effect. There is definitely a place for comments that add
context and intention. But their point was that it’s pointless to write a comment that just
repeats what you’re doing with the code:

increment wibble by 1
wibble += 1

Not only is it pointless, there’s a danger that you forget to update the comments when
you update the code, and they end up being misleading. The ideal is to strive to make
your code so readable, to use such good variable names and function names, and to
structure it so well that you no longer need any comments to explain what the code is
doing. Just a few here and there to explain why.

There are other places where comments are very useful. We’ll see that Django uses them
a lot in the files it generates for us to use as a way of suggesting helpful bits of its API.
And, of course, we use comments to explain the User Story in our functional tests—by
forcing us to make a coherent story out of the test, it makes sure we’re always testing
from the point of view of the user.

There is more fun to be had in this area, things like Behaviour Driven Development (see
Appendix E) and testing DSLs, but they’re topics for other books.

You’ll notice that, apart from writing the test out as comments, I’ve updated the as
sert to look for the word “To-Do” instead of “Django”. That means we expect the test
to fail now. Let’s try running it

First, start up the server:
$ python3 manage.py runserver

And then, in another shell, run the tests:
$ python3 functional_tests.py
Traceback (most recent call last):

Using a Functional Test to Scope Out a Minimum Viable App | 15

 File "functional_tests.py", line 10, in <module>
 assert 'To-Do' in browser.title
AssertionError

That’s what we call an expected fail, which is actually good news - not quite as good as
a test that passes, but at least it’s failing for the right reason; we can have some confidence
we’ve written the test correctly.

The Python Standard Library’s unittest Module
There are a couple of little annoyances we should probably deal with. Firstly, the message
“AssertionError” isn’t very helpful—it would be nice if the test told us what it actually
found as the browser title. Also, it’s left a Firefox window hanging around the desktop,
it would be nice if this would clear up for us automatically.

One option would be to use the second parameter to the assert keyword, something
like:

assert 'To-Do' in browser.title, "Browser title was " + browser.title

And we could also use a try/finally to clean up the old Firefox window. But these
sorts of problems are quite common in testing, and there are some ready-made solutions
for us in the standard library’s unittest module. Let’s use that! In functional_tests.py:

functional_tests.py.
from selenium import webdriver
import unittest

class NewVisitorTest(unittest.TestCase): #

 def setUp(self): #
 self.browser = webdriver.Firefox()

 def tearDown(self): #
 self.browser.quit()

 def test_can_start_a_list_and_retrieve_it_later(self): #
 # Edith has heard about a cool new online to-do app. She goes
 # to check out its homepage
 self.browser.get('http://localhost:8000')

 # She notices the page title and header mention to-do lists
 self.assertIn('To-Do', self.browser.title) #
 self.fail('Finish the test!') #

 # She is invited to enter a to-do item straight away
 [...rest of comments as before]

if __name__ == '__main__': #
 unittest.main(warnings='ignore') #

16 | Chapter 2: Extending Our Functional Test Using the unittest Module

1. The only exception is if you have an exception inside setUp, then tearDown doesn’t run.

You’ll probably notice a few things here:

Tests are organised into classes, which inherit from unittest.TestCase.
The main body of the test is in a method called test_can_start_a_list_and_re
trieve_it_later. Any method whose name starts with test is a test method,
and will be run by the test runner. You can have more than one test_ method
per class. Nice descriptive names for our test methods are a good idea too.

 setUp and tearDown are special methods which get run before and after each
test. I’m using them to start and stop our browser—note that they’re a bit like a
try/except, in that tearDown will run even if there’s an error during the test
itself.1 No more Firefox windows left lying around!
We use self.assertIn instead of just assert to make our test assertions.
unittest provides lots of helper functions like this to make test assertions, like
assertEqual, assertTrue, assertFalse, and so on. You can find more in the
unittest documentation.
self.fail just fails no matter what, producing the error message given. I’m
using it as a reminder to finish the test.
Finally, we have the if __name__ == '__main__' clause (if you’ve not seen it
before, that’s how a Python script checks if it’s been executed from the command
line, rather than just imported by another script). We call unittest.main(),
which launches the unittest test runner, which will automatically find test
classes and methods in the file and run them.
warnings='ignore' suppresses a superfluous ResourceWarning which was
being emitted at the time of writing. It may have disappeared by the time you
read this; feel free to try removing it!

If you’ve read the Django testing documentation, you might have
seen something called LiveServerTestCase, and are wondering
whether we should use it now. Full points to you for reading the
friendly manual! LiveServerTestCase is a bit too complicated for
now, but I promise I’ll use it in a later chapter…

Let’s try it!
$ python3 functional_tests.py
F
==
FAIL: test_can_start_a_list_and_retrieve_it_later (__main__.NewVisitorTest)

The Python Standard Library’s unittest Module | 17

http://docs.python.org/3/library/unittest.html

Traceback (most recent call last):
 File "functional_tests.py", line 18, in
test_can_start_a_list_and_retrieve_it_later
 self.assertIn('To-Do', self.browser.title)
AssertionError: 'To-Do' not found in 'Welcome to Django'

Ran 1 test in 1.747s

FAILED (failures=1)

That’s a bit nicer isn’t it? It tidied up our Firefox window, it gives us a nicely formatted
report of how many tests were run and how many failed, and the assertIn has given
us a helpful error message with useful debugging info. Bonzer!

Implicit waits
There’s one more thing to do at this stage: add an implicitly_wait in the setUp:

functional_tests.py.
[...]
def setUp(self):
 self.browser = webdriver.Firefox()
 self.browser.implicitly_wait(3)

def tearDown(self):
[...]

This is a standard trope in Selenium tests. Selenium is reasonably good at waiting for
pages to complete loading before it tries to do anything, but it’s not perfect. The implic
itly_wait tells it to wait a few seconds if it needs to. When asked to find something on
the page, Selenium will now wait up to three seconds for it to appear.

Don’t rely on implicitly_wait; it won’t work for every use case. It
will do its job while our app is still simple, but as we’ll see in Part III
(e.g., in Chapter 15 and Chapter 20), you’ll want to build more so‐
phisticated, explicit wait algorithms into your tests once your app
gets beyond a certain level of complexity.

Commit
This is a good point to do a commit; it’s a nicely self-contained change. We’ve expanded
our functional test to include comments that describe the task we’re setting ourselves,
our minimum viable to-do list. We’ve also rewritten it to use the Python unittest
module and its various testing helper functions.

Do a git status—that should assure you that the only file that has changed is func‐
tional_tests.py. Then do a git diff, which shows you the difference between the last

18 | Chapter 2: Extending Our Functional Test Using the unittest Module

commit and what’s currently on disk. That should tell you that functional_tests.py has
changed quite substantially:

$ git diff
diff --git a/functional_tests.py b/functional_tests.py
index d333591..b0f22dc 100644
--- a/functional_tests.py
+++ b/functional_tests.py
@@ -1,6 +1,45 @@
 from selenium import webdriver
+import unittest

-browser = webdriver.Firefox()
-browser.get('http://localhost:8000')
+class NewVisitorTest(unittest.TestCase):

-assert 'Django' in browser.title
+ def setUp(self):
+ self.browser = webdriver.Firefox()
+ self.browser.implicitly_wait(3)
+
+ def tearDown(self):
+ self.browser.quit()
[...]

Now let’s do a:
$ git commit -a

The -a means “automatically add any changes to tracked files” (i.e., any files that we’ve
committed before). It won’t add any brand new files (you have to explicitly git add
them yourself), but often, as in this case, there aren’t any new files, so it’s a useful shortcut.

When the editor pops up, add a descriptive commit message, like “First FT specced out
in comments, and now uses unittest.”

Now we’re in an excellent position to start writing some real code for our lists app. Read
on!

Useful TDD Concepts
User Story

A description of how the application will work from the point of view of the user.
Used to structure a functional test.

Expected failure
When a test fails in the way that we expected it to.

Commit | 19

CHAPTER 3
Testing a Simple Home Page with Unit Tests

We finished the last chapter with a functional test failing, telling us that it wanted the
home page for our site to have “To-Do” in its title. It’s time to start working on our
application.

Warning: Things Are About to Get Real
The first two chapters were intentionally nice and light. From now on, we get into some
more meaty coding. Here’s a prediction: at some point, things are going to go wrong.
You’re going to see different results from what I say you should see. This is a Good Thing,
because it will be a genuine character-building Learning Experience™.

One possibility is that I’ve given some ambiguous explanations, and you’ve done some‐
thing different from what I intended. Step back and have a think about what we’re trying
to achieve at this point in the book. Which file are we editing, what do we want the user
to be able to do, what are we testing and why? It may be that you’ve edited the wrong
file or function, or are running the wrong tests. I reckon you’ll learn more about TDD
from these stop and think moments than you do from all the bits where the following
instructions and copy-pasting goes smoothly.

Or it may be a real bug. Be tenacious, read the error message carefully (see my aside on
reading tracebacks a little later on in the chapter), and you’ll get to the bottom of it. It’s
probably just a missing comma, or trailing-slash, or maybe a missing “s” in one of the
Selenium find methods. But, as Zed Shaw put it so well, this kind of debugging is also
an absolutely vital part of learning, so do stick it out!

You can always drop me an email (or try the Google Group) if you get really stuck.
Happy debugging!

21

https://groups.google.com/forum/#!forum/obey-the-testing-goat-book

Our First Django App, and Our First Unit Test
Django encourages you to structure your code into apps: the theory is that one project
can have many apps, you can use third-party apps developed by other people, and you
might even reuse one of your own apps in a different project…although I admit I’ve
never actually managed it myself! Still, apps are a good way to keep your code organised.

Let’s start an app for our to-do lists:
$ python3 manage.py startapp lists

That will create a folder at superlists/lists, next to superlists/superlists, and within it a
number of placeholder files for things like models, views, and, of immediate interest to
us, tests:

superlists/
├── db.sqlite3
├── functional_tests.py
├── lists
│ ├── admin.py
│ ├── __init__.py
│ ├── migrations
│ │ └── __init__.py
│ ├── models.py
│ ├── tests.py
│ └── views.py
├── manage.py
└── superlists
 ├── __init__.py
 ├── __pycache__
 ├── settings.py
 ├── urls.py
 └── wsgi.py

Unit Tests, and How They Differ from Functional Tests
As with so many of the labels we put on things, the line between unit tests and functional
tests can become a little blurry at times. The basic distinction, though, is that functional
tests test the application from the outside, from the point of view of the user. Unit tests
test the application from the inside, from the point of view of the programmer.

The TDD approach I’m following wants our application to be covered by both types of
test. Our workflow will look a bit like this:

1. We start by writing a functional test, describing the new functionality from the user’s
point of view.

2. Once we have a functional test that fails, we start to think about how to write code
that can get it to pass (or at least to get past its current failure). We now use one or

22 | Chapter 3: Testing a Simple Home Page with Unit Tests

more unit tests to define how we want our code to behave—the idea is that each
line of production code we write should be tested by (at least) one of our unit tests.

3. Once we have a failing unit test, we write the smallest amount of application code
we can, just enough to get the unit test to pass. We may iterate between steps 2 and
3 a few times, until we think the functional test will get a little further.

4. Now we can rerun our functional tests and see if they pass, or get a little further.
That may prompt us to write some new unit tests, and some new code, and so on.

You can see that, all the way through, the functional tests are driving what development
we do from a high level, while the unit tests drive what we do at a low level.

Does that seem slightly redundant? Sometimes it can feel that way, but functional tests
and unit tests do really have very different objectives, and they will usually end up
looking quite different.

Functional tests should help you build an application with the right
functionality, and guarantee you never accidentally break it. Unit tests
should help you to write code that’s clean and bug free.

Enough theory for now, let’s see how it looks in practice.

Unit Testing in Django
Let’s see how to write a unit test for our home page view. Open up the new file at lists/
tests.py, and you’ll see something like this:

lists/tests.py.
from django.test import TestCase

Create your tests here.

Django has helpfully suggested we use a special version of TestCase, which it provides.
It’s an augmented version of the standard unittest.TestCase, with some additional
Django-specific features, which we’ll discover over the next few chapters.

You’ve already seen that the TDD cycle involves starting with a test that fails, then writing
code to get it to pass. Well, before we can even get that far, we want to know that the
unit test we’re writing will definitely be run by our automated test runner, whatever it
is. In the case of functional_tests.py, we’re running it directly, but this file made by Django
is a bit more like magic. So, just to make sure, let’s make a deliberately silly failing test:

Unit Testing in Django | 23

lists/tests.py.
from django.test import TestCase

class SmokeTest(TestCase):

 def test_bad_maths(self):
 self.assertEqual(1 + 1, 3)

Now let’s invoke this mysterious Django test runner. As usual, it’s a manage.py
command:

$ python3 manage.py test
Creating test database for alias 'default'...
F
==
FAIL: test_bad_maths (lists.tests.SmokeTest)

Traceback (most recent call last):
 File "/workspace/superlists/lists/tests.py", line 6, in test_bad_maths
 self.assertEqual(1 + 1, 3)
AssertionError: 2 != 3

Ran 1 test in 0.001s

FAILED (failures=1)
Destroying test database for alias 'default'...

Excellent. The machinery seems to be working. This is a good point for a commit:
$ git status # should show you lists/ is untracked
$ git add lists
$ git diff --staged # will show you the diff that you're about to commit
$ git commit -m "Add app for lists, with deliberately failing unit test"

As you’ve no doubt guessed, the -m flag lets you pass in a commit message at the com‐
mand line, so you don’t need to use an editor. It’s up to you to pick the way you like to
use the Git command line, I’ll just show you the main ones I’ve seen used. The main
rule is: make sure you always review what you’re about to commit before you do it.

Django’s MVC, URLs, and View Functions
Django is broadly structured along a classic Model-View-Controller (MVC) pattern.
Well, broadly. It definitely does have models, but its views are more like a controller,
and it’s the templates that are actually the view part, but the general idea is there. If you’re
interested, you can look up the finer points of the discussion in the Django FAQs.

Irrespective of any of that, like any web server, Django’s main job is to decide what to
do when a user asks for a particular URL on our site. Django’s workflow goes something
like this:

24 | Chapter 3: Testing a Simple Home Page with Unit Tests

https://docs.djangoproject.com/en/1.8/faq/general/

1. An HTTP request comes in for a particular URL.
2. Django uses some rules to decide which view function should deal with the request

(this is referred to as resolving the URL).
3. The view function processes the request and returns an HTTP response.

So we want to test two things:

• Can we resolve the URL for the root of the site (“/”) to a particular view function
we’ve made?

• Can we make this view function return some HTML which will get the functional
test to pass?

Let’s start with the first. Open up lists/tests.py, and change our silly test to something
like this:

lists/tests.py.
from django.core.urlresolvers import resolve
from django.test import TestCase
from lists.views import home_page #

class HomePageTest(TestCase):

 def test_root_url_resolves_to_home_page_view(self):
 found = resolve('/') #
 self.assertEqual(found.func, home_page) #

What’s going on here?

 resolve is the function Django uses internally to resolve URLs, and find what
view function they should map to. We’re checking that resolve, when called
with “/”, the root of the site, finds a function called home_page.
What function is that? It’s the view function we’re going to write next, which will
actually return the HTML we want. You can see from the import that we’re
planning to store it in lists/views.py.

So, what do you think will happen when we run the tests?
$ python3 manage.py test
ImportError: cannot import name 'home_page'

It’s a very predictable and uninteresting error: we tried to import something we haven’t
even written yet. But it’s still good news—for the purposes of TDD, an exception which
was predicted counts as an expected failure. Since we have both a failing functional test
and a failing unit test, we have the Testing Goat’s full blessing to code away.

Django’s MVC, URLs, and View Functions | 25

At Last! We Actually Write Some Application Code!
It is exciting isn’t it? Be warned, TDD means that long periods of anticipation are only
defused very gradually, and by tiny increments. Especially since we’re learning and only
just starting out, we only allow ourselves to change (or add) one line of code at a time
—and each time, we make just the minimal change required to address the current test
failure.

I’m being deliberately extreme here, but what’s our current test failure? We can’t import
home_page from lists.views? OK, let’s fix that—and only that. In lists/views.py:

lists/views.py.
from django.shortcuts import render

Create your views here.
home_page = None

"You must be joking!" I can hear you say.

I can hear you because it’s what I used to say (with feeling) when my colleagues first
demonstrated TDD to me. Well, bear with me, we’ll talk about whether or not this is all
taking it too far in a little while. For now, let yourself follow along, even if it’s with some
exasperation, and see where it takes us.

Let’s run the tests again:
$ python3 manage.py test
Creating test database for alias 'default'...
E
==
ERROR: test_root_url_resolves_to_home_page_view (lists.tests.HomePageTest)

Traceback (most recent call last):
 File "/workspace/superlists/lists/tests.py", line 8, in
test_root_url_resolves_to_home_page_view
 found = resolve('/')
 File "/usr/local/lib/python3.4/dist-packages/django/core/urlresolvers.py",
line 522, in resolve
 return get_resolver(urlconf).resolve(path)
 File "/usr/local/lib/python3.4/dist-packages/django/core/urlresolvers.py",
line 388, in resolve
 raise Resolver404({'tried': tried, 'path': new_path})
django.core.urlresolvers.Resolver404: {'tried': [[<RegexURLResolver
<RegexURLPattern list> (admin:admin) ^admin/>]], 'path': ''}

Ran 1 test in 0.002s

FAILED (errors=1)
Destroying test database for alias 'default'...

26 | Chapter 3: Testing a Simple Home Page with Unit Tests

Reading Tracebacks
Let’s spend a moment talking about how to read tracebacks, since it’s something we have
to do a lot in TDD. You soon learn to scan through them and pick up relevant clues:

==
ERROR: test_root_url_resolves_to_home_page_view (lists.tests.HomePageTest)

Traceback (most recent call last):
 File "/workspace/superlists/lists/tests.py", line 8, in
test_root_url_resolves_to_home_page_view
 found = resolve('/')
 File "/usr/local/lib/python3.4/dist-packages/django/core/urlresolvers.py",
line 522, in resolve
 return get_resolver(urlconf).resolve(path)
 File "/usr/local/lib/python3.4/dist-packages/django/core/urlresolvers.py",
line 388, in resolve
 raise Resolver404({'tried': tried, 'path': new_path})
django.core.urlresolvers.Resolver404: {'tried': [[<RegexURLResolver
<RegexURLPattern list> (admin:admin) ^admin/>]], 'path': ''}

[...]

 The first place you look is usually the error itself. Sometimes that’s all you need
to see, and it will let you identify the problem immediately. But sometimes, like
in this case, it’s not quite self-evident.
The next thing to double-check is: which test is failing? Is it definitely the one
we expected, i.e., the one we just wrote? In this case, the answer is yes.
Then we look for the place in our test code that kicked off the failure. We work
our way down from the top of the traceback, looking for the filename of the
tests file, to check which test function, and what line of code, the failure is coming
from. In this case it’s the line where we call the resolve function for the “/”
URL.

There is ordinarily a fourth step, where we look further down for any of our own ap‐
plication code which was involved with the problem. In this case it’s all Django code, but
we’ll see plenty of examples of this fourth step later in the book.

Pulling it all together, we interpret the traceback as telling us that, when trying to resolve
“/”, Django raised a 404 error—in other words, Django can’t find a URL mapping for
“/”. Let’s help it out.

urls.py
Django uses a file called urls.py to define how URLs map to view functions. There’s a
main urls.py for the whole site in the superlists/superlists folder. Let’s go take a look:

urls.py | 27

superlists/urls.py.
"""superlists URL Configuration

The `urlpatterns` list routes URLs to views. For more information please see:
 https://docs.djangoproject.com/en/1.8/topics/http/urls/
Examples:
Function views
 1. Add an import: from my_app import views
 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home')
Class-based views
 1. Add an import: from other_app.views import Home
 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home')
Including another URLconf
 1. Add an import: from blog import urls as blog_urls
 2. Add a URL to urlpatterns: url(r'^blog/', include(blog_urls))
"""
from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
 url(r'^admin/', include(admin.site.urls)),
]

As usual, lots of helpful comments and default suggestions from Django.

A url entry starts with a regular expression that defines which URLs it applies to, and
goes on to say where it should send those requests—either to a view function you’ve
imported, or maybe to another urls.py file somewhere else using include.

You can see there’s one entry in there by default there for the admin site. We’re not using
that yet, so let’s comment it out for now:

superlists/urls.py.
from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
 # url(r'^admin/', include(admin.site.urls)),
]

The first example entry has the regular expression ^$, which means an empty string—
could this be the same as the root of our site, which we’ve been testing with “/”? Let’s
find out—what happens if we include it?

If you’ve never come across regular expressions, you can get away
with just taking my word for it, for now—but you should make a
mental note to go learn about them.

28 | Chapter 3: Testing a Simple Home Page with Unit Tests

superlists/urls.py.
from django.conf.urls import url

from lists import views

urlpatterns = [
 url(r'^$', views.home_page, name='home'),
 # url(r'^admin/', include(admin.site.urls)),
]

Run the unit tests again, with python3 manage.py test:
[...]
AttributeError: 'NoneType' object has no attribute 'rindex'

That’s progress! We’re no longer getting a 404.

The message is slightly cryptic, but the unit tests have actually made the link between
the URL / and the home_page = None in lists/views.py, and are now complaining that
home_page is a NoneType. And that gives us a justification for changing it from being
None to being an actual function. Every single code change is driven by the tests!

Back in lists/views.py:
lists/views.py.

from django.shortcuts import render

Create your views here.
def home_page():
 pass

And now?
$ python3 manage.py test
Creating test database for alias 'default'...
.

Ran 1 test in 0.003s

OK
Destroying test database for alias 'default'...

Hooray! Our first ever unit test pass! That’s so momentous that I think it’s worthy of a
commit:

$ git diff # should show changes to urls.py, tests.py, and views.py
$ git commit -am "First unit test and url mapping, dummy view"

That was the last variation on git commit I’ll show, the a and m flags together, which
adds all changes to tracked files and uses the commit message from the command line.

urls.py | 29

git commit -am is the quickest formulation, but also gives you the
least feedback about what’s being committed, so make sure you’ve
done a git status and a git diff beforehand, and are clear on
what changes are about to go in.

Unit Testing a View
On to writing a test for our view, so that it can be something more than a do-nothing
function, and instead be a function that returns a real response with HTML to the
browser. Open up lists/tests.py, and add a new test method. I’ll explain each bit:

lists/tests.py.
from django.core.urlresolvers import resolve
from django.test import TestCase
from django.http import HttpRequest

from lists.views import home_page

class HomePageTest(TestCase):

 def test_root_url_resolves_to_home_page_view(self):
 found = resolve('/')
 self.assertEqual(found.func, home_page)

 def test_home_page_returns_correct_html(self):
 request = HttpRequest() #
 response = home_page(request) #
 self.assertTrue(response.content.startswith(b'<html>')) #
 self.assertIn(b'<title>To-Do lists</title>', response.content) #
 self.assertTrue(response.content.endswith(b'</html>')) #

What’s going on in this new test?

We create an HttpRequest object, which is what Django will see when a user’s
browser asks for a page.
We pass it to our home_page view, which gives us a response. You won’t be
surprised to hear that this object is an instance of a class called HttpResponse.
Then, we assert that the .content of the response—which is the HTML that we
send to the user—has certain properties.

 We want it to start with an <html> tag which gets closed at the end. Notice that
response.content is raw bytes, not a Python string, so we have to use the b''
syntax to compare them. More info is available in Django’s Porting to Python 3
docs.

30 | Chapter 3: Testing a Simple Home Page with Unit Tests

https://docs.djangoproject.com/en/1.8/topics/python3/
https://docs.djangoproject.com/en/1.8/topics/python3/

And we want a <title> tag somewhere in the middle, with the words “To-Do
lists” in it—because that’s what we specified in our functional test.

Once again, the unit test is driven by the functional test, but it’s also much closer to the
actual code—we’re thinking like programmers now.

Let’s run the unit tests now and see how we get on:
TypeError: home_page() takes 0 positional arguments but 1 was given

The Unit-Test/Code Cycle
We can start to settle into the TDD unit-test/code cycle now:

1. In the terminal, run the unit tests and see how they fail.
2. In the editor, make a minimal code change to address the current test failure.

And repeat!

The more nervous we are about getting our code right, the smaller and more minimal
we make each code change—the idea is to be absolutely sure that each bit of code is
justified by a test. It may seem laborious, but once you get into the swing of things, it
really moves quite fast—so much so that, at work, we usually keep our code changes
microscopic even when we’re confident we could skip ahead.

Let’s see how fast we can get this cycle going:

• Minimal code change:

lists/views.py.
def home_page(request):
 pass

• Tests:

 self.assertTrue(response.content.startswith(b'<html>'))
AttributeError: 'NoneType' object has no attribute 'content'

• Code—we use django.http.HttpResponse, as predicted:

lists/views.py.
from django.http import HttpResponse

Create your views here.
def home_page(request):
 return HttpResponse()

Unit Testing a View | 31

• Tests again:

 self.assertTrue(response.content.startswith(b'<html>'))
AssertionError: False is not true

• Code again:

lists/views.py.
def home_page(request):
 return HttpResponse('<html>')

• Tests:

AssertionError: b'<title>To-Do lists</title>' not found in b'<html>'

• Code:

lists/views.py.
def home_page(request):
 return HttpResponse('<html><title>To-Do lists</title>')

• Tests—almost there?

 self.assertTrue(response.content.endswith(b'</html>'))
AssertionError: False is not true

• Come on, one last effort:

lists/views.py.
def home_page(request):
 return HttpResponse('<html><title>To-Do lists</title></html>')

• Surely?

$ python3 manage.py test
Creating test database for alias 'default'...
..

Ran 2 tests in 0.001s

OK
Destroying test database for alias 'default'...

Yes! Now, let’s run our functional tests. Don’t forget to spin up the dev server again, if
it’s not still running. It feels like the final heat of the race here, surely this is it…could it
be?

32 | Chapter 3: Testing a Simple Home Page with Unit Tests

$ python3 functional_tests.py
F
==
FAIL: test_can_start_a_list_and_retrieve_it_later (__main__.NewVisitorTest)

Traceback (most recent call last):
 File "functional_tests.py", line 20, in
test_can_start_a_list_and_retrieve_it_later
 self.fail('Finish the test!')
AssertionError: Finish the test!

Ran 1 test in 1.609s

FAILED (failures=1)

Failed? What? Oh, it’s just our little reminder? Yes? Yes! We have a web page!

Ahem. Well, I thought it was a thrilling end to the chapter. You may still be a little baffled,
perhaps keen to hear a justification for all these tests, and don’t worry, all that will come,
but I hope you felt just a tinge of excitement near the end there.

Just a little commit to calm down, and reflect on what we’ve covered:
$ git diff # should show our new test in tests.py, and the view in views.py
$ git commit -am "Basic view now returns minimal HTML"

That was quite a chapter! Why not try typing git log, possibly using the --oneline
flag, for a reminder of what we got up to:

$ git log --oneline
a6e6cc9 Basic view now returns minimal HTML
450c0f3 First unit test and url mapping, dummy view
ea2b037 Add app for lists, with deliberately failing unit test
[...]

Not bad—we covered:

• Starting a Django app
• The Django unit test runner
• The difference between FTs and unit tests
• Django URL resolving and urls.py
• Django view functions, request and response objects
• And returning basic HTML

Unit Testing a View | 33

Useful Commands and Concepts
Running the Django dev server

python3 manage.py runserver

Running the functional tests
python3 functional_tests.py

Running the unit tests
python3 manage.py test

The unit-test/code cycle
1. Run the unit tests in the terminal.
2. Make a minimal code change in the editor.
3. Repeat!

34 | Chapter 3: Testing a Simple Home Page with Unit Tests

CHAPTER 4
What Are We Doing with All These Tests?

Now that we’ve seen the basics of TDD in action, it’s time to pause and talk about why
we’re doing it.

I’m imagining several of you, dear readers, have been holding back some seething frus‐
tration—perhaps some of you have done a bit of unit testing before, and perhaps some
of you are just in a hurry. You’ve been biting back questions like:

• Aren’t all these tests a bit excessive?
• Surely some of them are redundant? There’s duplication between the functional

tests and the unit tests.
• I mean, what are you doing importing django.core.urlresolvers in your unit

tests? Isn’t that testing Django, i.e., testing third-party code? I thought that was a
no-no?

• Those unit tests seemed way too trivial—testing one line of declaration, and a one-
line function that returns a constant! Isn’t that just a waste of time? Shouldn’t we
save our tests for more complex things?

• What about all those tiny changes during the unit-test/code cycle? Surely we could
have just skipped to the end? I mean, home_page = None!? Really?

• You’re not telling me you actually code like this in real life?

Ah, young grasshopper. I too was once full of questions like these. But only because
they’re perfectly good questions. In fact, I still ask myself questions like these, all the
time. Does all this stuff really have value? Is this a bit of a cargo cult?

35

Programming Is like Pulling a Bucket of Water up from a
Well
Ultimately, programming is hard. Often, we are smart, so we succeed. TDD is there to
help us out when we’re not so smart. Kent Beck (who basically invented TDD) uses the
metaphor of lifting a bucket of water out of a well with a rope: when the well isn’t too
deep, and the bucket isn’t very full, it’s easy. And even lifting a full bucket is pretty easy
at first. But after a while, you’re going to get tired. TDD is like having a ratchet that lets
you save your progress, take a break, and make sure you never slip backwards. That way
you don’t have to be smart all the time.

Figure 4-1. Test ALL the things (original illustration source: Allie Brosh, Hyperbole and
a Half)

OK, perhaps in general, you’re prepared to concede that TDD is a good idea, but maybe
you still think I’m overdoing it? Testing the tiniest thing, and taking ridiculously many
small steps?

TDD is a discipline, and that means it’s not something that comes naturally; because
many of the payoffs aren’t immediate but only come in the longer term, you have to
force yourself to do it in the moment. That’s what the image of the Testing Goat is
supposed to illustrate—you need to be a bit bloody-minded about it.

On the Merits of Trivial Tests for Trivial Functions
In the short term it may feel a bit silly to write tests for simple functions and constants.
It’s perfectly possible to imagine still doing “mostly” TDD, but following more relaxed
rules where you don’t unit test absolutely everything. But in this book my aim is to
demonstrate full, rigorous TDD. Like a kata in a martial art, the idea is to learn the
motions in a controlled context, when there is no adversity, so that the techiques are
part of your muscle memory. It seems trivial now, because we’ve started with a very
simple example. The problem comes when your application gets complex—that’s when
you really need your tests. And the danger is that complexity tends to sneak up on you,
gradually. You may not notice it happening, but quite soon you’re a boiled frog.

36 | Chapter 4: What Are We Doing with All These Tests?

http://bit.ly/1iXxdYp
http://bit.ly/1iXxdYp

There are two other things to say in favour of tiny, simple tests for simple functions:

Firstly, if they’re really trivial tests, then they won’t take you that long to write them. So
stop moaning and just write them already.

Secondly, it’s always good to have a placeholder. Having a test there for a simple function
means it’s that much less of a psychological barrier to overcome when the simple func‐
tion gets a tiny bit more complex—perhaps it grows an if. Then a few weeks later it
grows a for loop. Before you know it, it’s a recursive metaclass-based polymorphic tree
parser factory. But because it’s had tests from the very beginning, adding a new test each
time has felt quite natural, and it’s well tested. The alternative involves trying to decide
when a function becomes “complicated enough” which is highly subjective, but worse,
because there’s no placeholder, it seems like that much more effort, and you’re tempted
each time to put it off a little longer, and pretty soon—frog soup!

Instead of trying to figure out some hand-wavy subjective rules for when you should
write tests, and when you can get away with not bothering, I suggest following the
discipline for now—like any discipline, you have to take the time to learn the rules before
you can break them.

Now, back to our onions.

Using Selenium to Test User Interactions
Where were we at the end of the last chapter? Let’s rerun the test and find out:

$ python3 functional_tests.py
F
==
FAIL: test_can_start_a_list_and_retrieve_it_later (__main__.NewVisitorTest)

Traceback (most recent call last):
 File "functional_tests.py", line 20, in
test_can_start_a_list_and_retrieve_it_later
 self.fail('Finish the test!')
AssertionError: Finish the test!

Ran 1 test in 1.609s

FAILED (failures=1)

Did you try it, and get an error saying Problem loading page or Unable to connect? So
did I. It’s because we forgot to spin up the dev server first using manage.py runserv
er. Do that, and you’ll get the failure message we’re after.

Using Selenium to Test User Interactions | 37

One of the great things about TDD is that you never have to worry
about forgetting what to do next—just rerun your tests and they will
tell you what you need to work on.

“Finish the test”, it says, so let’s do just that! Open up functional_tests.py and we’ll extend
our FT:

functional_tests.py.
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import unittest

class NewVisitorTest(unittest.TestCase):

 def setUp(self):
 self.browser = webdriver.Firefox()
 self.browser.implicitly_wait(3)

 def tearDown(self):
 self.browser.quit()

 def test_can_start_a_list_and_retrieve_it_later(self):
 # Edith has heard about a cool new online to-do app. She goes
 # to check out its homepage
 self.browser.get('http://localhost:8000')

 # She notices the page title and header mention to-do lists
 self.assertIn('To-Do', self.browser.title)
 header_text = self.browser.find_element_by_tag_name('h1').text
 self.assertIn('To-Do', header_text)

 # She is invited to enter a to-do item straight away
 inputbox = self.browser.find_element_by_id('id_new_item')
 self.assertEqual(
 inputbox.get_attribute('placeholder'),
 'Enter a to-do item'
)

 # She types "Buy peacock feathers" into a text box (Edith's hobby
 # is tying fly-fishing lures)
 inputbox.send_keys('Buy peacock feathers')

 # When she hits enter, the page updates, and now the page lists
 # "1: Buy peacock feathers" as an item in a to-do list table
 inputbox.send_keys(Keys.ENTER)

 table = self.browser.find_element_by_id('id_list_table')
 rows = table.find_elements_by_tag_name('tr')
 self.assertTrue(

38 | Chapter 4: What Are We Doing with All These Tests?

 any(row.text == '1: Buy peacock feathers' for row in rows)
)

 # There is still a text box inviting her to add another item. She
 # enters "Use peacock feathers to make a fly" (Edith is very
 # methodical)
 self.fail('Finish the test!')

 # The page updates again, and now shows both items on her list
 [...]

We’re using several of the methods that Selenium provides to examine web pages:
find_element_by_tag_name, find_element_by_id, and find_elements_by_tag_name
(notice the extra s, which means it will return several elements rather than just one).
We also use send_keys, which is Selenium’s way of typing into input elements. You’ll
also see the Keys class (don’t forget to import it), which lets us send special keys like
Enter, but also modifiers like Ctrl.

Watch out for the difference between the Selenium find_ele
ment_by... and find_elements_by... functions. One returns an
element, and raises an exception if it can’t find it, whereas the other
returns a list, which may be empty.

Also, just look at that any function. It’s a little-known Python built-in. I don’t even need
to explain it, do I? Python is such a joy.

Although, if you’re one of my readers who doesn’t know Python, what’s happening inside
the any is a generator expression, which is like a list comprehension but awesomer. You
need to read up on this. If you Google it, you’ll find Guido himself explaining it nice‐
ly. Come back and tell me that’s not pure joy!

Let’s see how it gets on:
$ python3 functional_tests.py
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"tag name","selector":"h1"}
Stacktrace:
[...]

Decoding that, the test is saying it can’t find an <h1> element on the page. Let’s see what
we can do to add that to the HTML of our home page.

Big changes to a functional test are usually a good thing to commit on their own. I failed
to do so in my first draft, and I regretted it later when I changed my mind and had the
change mixed up with a bunch of others. The more atomic your commits, the better:

Using Selenium to Test User Interactions | 39

http://bit.ly/1iXxD18
http://bit.ly/1iXxD18

$ git diff # should show changes to functional_tests.py
$ git commit -am "Functional test now checks we can input a to-do item"

The “Don’t Test Constants” Rule, and Templates to the
Rescue
Let’s take a look at our unit tests, lists/tests.py. Currently we’re looking for specific HTML
strings, but that’s not a particularly efficient way of testing HTML. In general, one of
the rules of unit testing is Don’t test constants, and testing HTML as text is a lot like
testing a constant.

In other words, if you have some code that says:
wibble = 3

There’s not much point in a test that says:
from myprogram import wibble
assert wibble == 3

Unit tests are really about testing logic, flow control, and configuration. Making asser‐
tions about exactly what sequence of characters we have in our HTML strings isn’t doing
that.

What’s more, mangling raw strings in Python really isn’t a great way of dealing with
HTML. There’s a much better solution, which is to use templates. Quite apart from
anything else, if we can keep HTML to one side in a file whose name ends in .html, we’ll
get better syntax highlighting! There are lots of Python templating frameworks out
there, and Django has its own which works very well. Let’s use that.

Refactoring to Use a Template
What we want to do now is make our view function return exactly the same HTML, but
just using a different process. That’s a refactor—when we try to improve the code without
changing its functionality.

That last bit is really important. If you try and add new functionality at the same time
as refactoring, you’re much more likely to run into trouble. Refactoring is actually a
whole discipline in itself, and it even has a reference book: Martin Fowler’s Refactoring.

The first rule is that you can’t refactor without tests. Thankfully, we’re doing TDD, so
we’re way ahead of the game. Let’s check our tests pass; they will be what makes sure
that our refactoring is behaviour preserving:

$ python3 manage.py test
[...]
OK

40 | Chapter 4: What Are We Doing with All These Tests?

http://refactoring.com/

1. Some people like to use another subfolder named after the app (i.e., lists/templates/lists) and then refer to the
template as lists/home.html. This is called “template namespacing”. I figured it was overcomplicated for this
small project, but it may be worth it on larger projects. There’s more in the Django tutorial.

Great! We’ll start by taking our HTML string and putting it into its own file. Create a
directory called lists/templates to keep templates in, and then open a file at lists/
templates/home.html, to which we’ll transfer our HTML:1

lists/templates/home.html.
<html>
 <title>To-Do lists</title>
</html>

Mmmh, syntax-highlighted…much nicer! Now to change our view function:
lists/views.py.

from django.shortcuts import render

def home_page(request):
 return render(request, 'home.html')

Instead of building our own HttpResponse, we now use the Django render function. It
takes the request as its first parameter (for reasons we’ll go into later) and the name of
the template to render. Django will automatically search folders called templates inside
any of your apps’ directories. Then it builds an HttpResponse for you, based on the
content of the template.

Templates are a very powerful feature of Django’s, and their main
strength consists of substituting Python variables into HTML text.
We’re not using this feature yet, but we will in future chapters.
That’s why we use render and (later) render_to_ string rather
than, say, manually reading the file from disk with the built-in
open.

Let’s see if it works:
$ python3 manage.py test
[...]
==
ERROR: test_home_page_returns_correct_html (lists.tests.HomePageTest)

Traceback (most recent call last):
 File "/workspace/superlists/lists/tests.py", line 17, in
test_home_page_returns_correct_html
 response = home_page(request)
 File "/workspace/superlists/lists/views.py", line 5, in home_page
 return render(request, 'home.html')
 File "/usr/local/lib/python3.3/dist-packages/django/shortcuts.py", line 48,
in render
 return HttpResponse(loader.render_to_string(*args, **kwargs),

The “Don’t Test Constants” Rule, and Templates to the Rescue | 41

http://bit.ly/1iXxWZL

 File "/usr/local/lib/python3.3/dist-packages/django/template/loader.py", line
170, in render_to_string
 t = get_template(template_name, dirs)
 File "/usr/local/lib/python3.3/dist-packages/django/template/loader.py", line
144, in get_template
 template, origin = find_template(template_name, dirs)
 File "/usr/local/lib/python3.3/dist-packages/django/template/loader.py", line
136, in find_template
 raise TemplateDoesNotExist(name)
django.template.base.TemplateDoesNotExist: home.html

Ran 2 tests in 0.004s

Another chance to analyse a traceback:

We start with the error: it can’t find the template.
Then we double-check what test is failing: sure enough, it’s our test of the view
HTML.
Then we find the line in our tests that caused the failure: it’s when we call the
home_page function.
Finally, we look for the part of our own application code that caused the failure:
it’s when we try and call render.

So why can’t Django find the template? It’s right where it’s supposed to be, in the lists/
templates folder.

The thing is that we haven’t yet officially registered our lists app with Django. Unfortu‐
nately, just running the startapp command and having what is obviously an app in
your project folder isn’t quite enough. You have to tell Django that you really mean it,
and add it to settings.py as well. Belt and braces. Open it up and look for a variable called
INSTALLED_APPS, to which we’ll add lists:

superlists/settings.py.
Application definition

INSTALLED_APPS = (
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'lists',
)

You can see there’s lots of apps already in there by default. We just need to add ours,
lists, to the bottom of the list. Don’t forget the trailing comma—it may not be required,

42 | Chapter 4: What Are We Doing with All These Tests?

but one day you’ll be really annoyed when you forget it and Python concatenates two
strings on different lines…

Now we can try running the tests again:
$ python3 manage.py test
 [...]
 self.assertTrue(response.content.endswith(b'</html>'))
AssertionError: False is not true

Darn, not quite.

Depending on whether your text editor insists on adding newlines to
the end of files, you may not even see this error. If so, you can safely
ignore the next bit, and skip straight to where you can see the list‐
ing says OK.

But it did get further! It seems it’s managed to find our template, but the last of the three
assertions is failing. Apparently there’s something wrong at the end of the output. I had
to do a little print(repr(response.content)) to debug this, but it turns out that the
switch to templates has introduced an additional newline (\n) at the end. We can get
them to pass like this:

lists/tests.py.
self.assertTrue(response.content.strip().endswith(b'</html>'))

It’s a tiny bit of a cheat, but whitespace at the end of an HTML file really shouldn’t matter
to us. Let’s try running the tests again:

$ python3 manage.py test
[...]
OK

Our refactor of the code is now complete, and the tests mean we’re happy that behaviour
is preserved. Now we can change the tests so that they’re no longer testing constants;
instead, they should just check that we’re rendering the right template. Another Django
helper function called render_to_string is our friend here:

lists/tests.py.
from django.template.loader import render_to_string
[...]

 def test_home_page_returns_correct_html(self):
 request = HttpRequest()
 response = home_page(request)
 expected_html = render_to_string('home.html')
 self.assertEqual(response.content.decode(), expected_html)

The “Don’t Test Constants” Rule, and Templates to the Rescue | 43

We use .decode() to convert the response.content bytes into a Python unicode string,
which allows us to compare strings with strings, instead of bytes with bytes as we did
earlier.

The main point, though, is that instead of testing constants we’re testing our imple‐
mentation. Great!

Django has a test client with tools for testing templates, which we’ll
use in later chapters. For now we’ll use the low-level tools to make
sure we’re comfortable with how everything works. No magic!

On Refactoring
That was an absolutely trivial example of refactoring. But, as Kent Beck puts it in Test-
Driven Development: By Example, “Am I recommending that you actually work this
way? No. I’m recommending that you be able to work this way.”

In fact, as I was writing this my first instinct was to dive in and change the test first—
make it use the render_to_string function straight away, delete the three superfluous
assertions, leaving just a check of the contents against the expected render, and then go
ahead and make the code change. But notice how that actually would have left space for
me to break things: I could have defined the template as containing any arbitrary string,
instead of the string with the right <html> and <title> tags.

When refactoring, work on either the code or the tests, but not both
at once.

There’s always a tendency to skip ahead a couple of steps, to make a couple of tweaks
to the behaviour while you’re refactoring, but pretty soon you’ve got changes to half a
dozen different files, you’ve totally lost track of where you are, and nothing works any
more. If you don’t want to end up like Refactoring Cat (Figure 4-2), stick to small steps;
keep refactoring and functionality changes entirely separate.

44 | Chapter 4: What Are We Doing with All These Tests?

http://bit.ly/1iXyRt4

Figure 4-2. Refactoring Cat—be sure to look up the full animated GIF (source:
4GIFs.com)

We’ll come across “Refactoring Cat” again during this book, as an
example of what happens when we get carried away and want to
change too many things at once. Think of it as the little cartoon demon
counterpart to the Testing Goat, popping up over your other shoul‐
der and giving you bad advice…

It’s a good idea to do a commit after any refactoring:
$ git status # see tests.py, views.py, settings.py, + new templates folder
$ git add . # will also add the untracked templates folder
$ git diff --staged # review the changes we're about to commit
$ git commit -m "Refactor home page view to use a template"

A Little More of Our Front Page
In the meantime, our functional test is still failing. Let’s now make an actual code change
to get it passing. Because our HTML is now in a template, we can feel free to make
changes to it, without needing to write any extra unit tests. We wanted an <h1>:

lists/templates/home.html.
<html>
 <head>
 <title>To-Do lists</title>
 </head>
 <body>
 <h1>Your To-Do list</h1>
 </body>
</html>

Let’s see if our functional test likes it a little better:

A Little More of Our Front Page | 45

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"id_new_item"}

OK…
lists/templates/home.html.

 [...]
 <h1>Your To-Do list</h1>
 <input id="id_new_item" />
 </body>
 [...]

And now?
AssertionError: '' != 'Enter a to-do item'

We add our placeholder text…
lists/templates/home.html.

 <input id="id_new_item" placeholder="Enter a to-do item" />

Which gives:
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"id_list_table"}

So we can go ahead and put the table onto the page. At this stage it’ll just be empty…
lists/templates/home.html.

 <input id="id_new_item" placeholder="Enter a to-do item" />
 <table id="id_list_table">
 </table>
</body>

Now what does the FT say?
 File "functional_tests.py", line 42, in
test_can_start_a_list_and_retrieve_it_later
 any(row.text == '1: Buy peacock feathers' for row in rows)
AssertionError: False is not true

Slightly cryptic. We can use the line number to track it down, and it turns out it’s that
any function I was so smug about earlier—or, more precisely, the assertTrue, which
doesn’t have a very explicit failure message. We can pass a custom error message as an
argument to most assertX methods in unittest:

functional_tests.py.
 self.assertTrue(
 any(row.text == '1: Buy peacock feathers' for row in rows),
 "New to-do item did not appear in table"
)

If you run the FT again, you should see our message:
AssertionError: False is not true : New to-do item did not appear in table

But now, to get this to pass, we will need to actually process the user’s form submission.
And that’s a topic for the next chapter.

46 | Chapter 4: What Are We Doing with All These Tests?

For now let’s do a commit:
$ git diff
$ git commit -am "Front page HTML now generated from a template"

Thanks to a bit of refactoring, we’ve got our view set up to render a template, we’ve
stopped testing constants, and we’re now well placed to start processing user input.

Recap: The TDD Process
We’ve now seen all the main aspects of the TDD process, in practice:

• Functional tests
• Unit tests
• The unit-test/code cycle
• Refactoring

It’s time for a little recap, and perhaps even some flowcharts. Forgive me, years misspent
as a management consultant have ruined me. On the plus side, it will feature recursion.

What is the overall TDD process? See Figure 4-3.

Figure 4-3. Overall TDD process

We write a test. We run the test and see it fail. We write some minimal code to get it a
little further. We rerun the test and repeat until it passes. Then, optionally, we might
refactor our code, using our tests to make sure we don’t break anything.

But how does this apply when we have functional tests and unit tests? Well, you can
think of the functional test as being a high-level view of the cycle, where “writing the

Recap: The TDD Process | 47

code” to get the functional tests to pass actually involves using another, smaller TDD
cycle which uses unit tests. See Figure 4-4.

Figure 4-4. The TDD process with functional and unit tests

We write a functional test and see it fail. Then, the process of “writing code” to get it to
pass is a mini-TDD cycle of its own: we write one or more unit tests, and go into the
unit-test/code cycle until the unit tests pass. Then, we go back to our FT to check that
it gets a little further, and we can write a bit more of our application—using more unit
tests, and so on.

What about refactoring, in the context of functional tests? Well, that means we use the
functional test to check that we’ve preserved the behaviour of our application, but we
can change or add and remove unit tests, and use a unit test cycle to actually change the
implementation.

The functional tests are the ultimate judge of whether your application works or not.
The unit tests are a tool to help you along the way.

48 | Chapter 4: What Are We Doing with All These Tests?

This way of looking at things is sometimes called “Double-Loop TDD”. One of my
eminent tech reviewers, Emily Bache, wrote a blog post on the topic, which I recommend
for a different perspective.

We’ll explore all of the different parts of this workflow in more detail over the coming
chapters.

How to “Check” Your Code, or Skip Ahead (If You Must)
All of the code examples I’ve used in the book are available in my repo on GitHub. So,
if you ever want to compare your code against mine, you can take a look at it there.

Each chapter has its own branch following the convention chapter_XX:

• Chapter 3: https://github.com/hjwp/book-example/tree/chapter_03
• Chapter 4: https://github.com/hjwp/book-example/tree/chapter_04
• Chapter 5: https://github.com/hjwp/book-example/tree/chapter_05
• Etc.

Be aware that each branch contains all of the commits for that chapter, so its state rep‐
resents the code at the end of the chapter.

Using Git to check your progress
If you feel like developing your Git-Fu a little further, you can add my repo as a remote:

git remote add harry https://github.com/hjwp/book-example.git
git fetch harry

And then, to check your difference from the end of Chapter 4:
git diff harry/chapter_04

Git can handle multiple remotes, so you can still do this even if you’re already pushing
your code up to GitHub or Bitbucket.

Be aware that the precise order of, say, methods in a class may differ between your version
and mine. It may make diffs hard to read.

Recap: The TDD Process | 49

http://bit.ly/1iXzoLR
https://github.com/hjwp/book-example/
https://github.com/hjwp/book-example/tree/chapter_03
https://github.com/hjwp/book-example/tree/chapter_04
https://github.com/hjwp/book-example/tree/chapter_05

2. I don’t recommend skipping ahead. I haven’t designed the chapters to stand on their own; each relies on the
previous ones, so it may be more confusing than anything else…

Downloading a ZIP file for a chapter
If, for whatever reason, you want to “start from scratch” for a chapter, or skip ahead,2

and/or you’re just not comfortable with Git, you can download a version of my code as
a ZIP file, from URLs following this pattern:

https://github.com/hjwp/book-example/archive/chapter_05.zip

https://github.com/hjwp/book-example/archive/chapter_06.zip

Don’t let it become a crutch!
Try not to sneak a peak at the answers unless you’re really, really stuck. Like I said at the
beginning of the last chapter, there’s a lot of value in debugging errors all by yourself,
and in real life, there’s no “harrys repo” to check against and find all the answers.

50 | Chapter 4: What Are We Doing with All These Tests?

https://github.com/hjwp/book-example/archive/chapter_05.zip
https://github.com/hjwp/book-example/archive/chapter_06.zip

CHAPTER 5
Saving User Input

We want to take the to-do item input from the user and send it to the server, so that we
can save it somehow and display it back to her later.

As I started writing this chapter, I immediately skipped to what I thought was the right
design: multiple models for lists and list items, a bunch of different URLs for adding
new lists and items, three new view functions, and about half a dozen new unit tests for
all of the above. But I stopped myself. Although I was pretty sure I was smart enough
to handle all those problems at once, the point of TDD is to allow you to do one thing
at a time, when you need to. So I decided to be deliberately short-sighted, and at any
given moment only do what was necessary to get the functional tests a little further.

It’s a demonstration of how TDD can support an iterative style of development—it may
not be the quickest route, but you do get there in the end. There’s a neat side benefit,
which is that it allows me to introduce new concepts like models, dealing with POST
requests, Django template tags, and so on one at a time rather than having to dump
them on you all at once.

None of this says that you shouldn’t try and think ahead, and be clever. In the next
chapter we’ll use a bit more design and up-front thinking, and show how that fits in
with TDD. But for now let’s plough on mindlessly and just do what the tests tell us to.

Wiring Up Our Form to Send a POST Request
At the end of the last chapter, the tests were telling us we weren’t able to save the user’s
input. For now, we’ll use a standard HTML POST request. A little boring, but also nice
and easy to deliver—we can use all sorts of sexy HTML5 and JavaScript later in the book.

To get our browser to send a POST request, we need to do two things:

51

1. Give the <input> element a name= attribute
2. Wrap it in a <form> tag with method="POST".

Let’s adjust our template at lists/templates/home.html:
lists/templates/home.html.

<h1>Your To-Do list</h1>
<form method="POST">
 <input name="item_text" id="id_new_item" placeholder="Enter a to-do item" />
</form>

<table id="id_list_table">

Now, running our FTs gives us a slightly cryptic, unexpected error:
$ python3 functional_tests.py
[...]
Traceback (most recent call last):
 File "functional_tests.py", line 39, in
test_can_start_a_list_and_retrieve_it_later
 table = self.browser.find_element_by_id('id_list_table')
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"id_list_table"}

When a functional test fails with an unexpected failure, there are several things we can
do to debug them:

• Add print statements, to show, e.g., what the current page text is.
• Improve the error message to show more info about the current state.
• Manually visit the site yourself.
• Use time.sleep to pause the test during execution.

We’ll look at all of these over the course of this book, but the time.sleep option is one
I find myself using very often. Let’s try it now. We add the sleep just before the error
occurs:

functional_tests.py.
 # When she hits enter, the page updates, and now the page lists
 # "1: Buy peacock feathers" as an item in a to-do list table
 inputbox.send_keys(Keys.ENTER)

 import time
 time.sleep(10)
 table = self.browser.find_element_by_id('id_list_table')

Depending on how fast Selenium runs on your PC, you may have caught a glimpse of
this already, but when we run the functional tests again, we’ve got time to see what’s
going on: you should see a page that looks like Figure 5-1, with lots of Django debug
information.

52 | Chapter 5: Saving User Input

Figure 5-1. Django DEBUG page showing CSRF error

Security: Surprisingly Fun!
If you’ve never heard of a Cross-Site Request Forgery exploit, why not look it up now?
Like all security exploits, it’s entertaining to read about, being an ingenious use of a
system in unexpected ways…

When I went back to university to get my Computer Science degree, I signed up for the
Security module out of a sense of duty: Oh well, it’ll probably be very dry and boring, but
I suppose I’d better take it. It turned out to be one of the most fascinating modules of the
whole course—absolutely full of the joy of hacking, of the particular mindset it takes to
think about how systems can be used in unintended ways.

I want to recommend the textbook for my course, Ross Anderson’s Security Engineer‐
ing. It’s quite light on pure crypto, but it’s absolutely full of interesting discussions of
unexpected topics like lock-picking, forging bank notes, inkjet printer cartridge eco‐
nomics, and spoofing South African Air Force jets with replay attacks. It’s a huge tome,
about three inches thick, and I promise you it’s an absolute page-turner.

Wiring Up Our Form to Send a POST Request | 53

Django’s CSRF protection involves placing a little auto-generated token into each gen‐
erated form, to be able to identify POST requests as having come from the original site.
So far our template has been pure HTML, and in this step we make the first use of
Django’s template magic. To add the CSRF token we use a template tag, which has the
curly-bracket/percent syntax, {% … %}—famous for being the world’s most annoying
two-key touch-typing combination:

lists/templates/home.html.
<form method="POST">
 <input name="item_text" id="id_new_item" placeholder="Enter a to-do item" />
 {% csrf_token %}
</form>

Django will substitute that during rendering with an <input type="hidden"> con‐
taining the CSRF token. Rerunning the functional test will now give us an expected
failure:

AssertionError: False is not true : New to-do item did not appear in table

Since our time.sleep is still there, the test will pause on the final screen, showing us
that the new item text disappears after the form is submitted, and the page refreshes to
show an empty form again. That’s because we haven’t wired up our server to deal with
the POST request yet—it just ignores it and displays the normal home page.

We can remove the time.sleep now though:
functional_tests.py.

 # "1: Buy peacock feathers" as an item in a to-do list table
 inputbox.send_keys(Keys.ENTER)

 table = self.browser.find_element_by_id('id_list_table')

Processing a POST Request on the Server
Because we haven’t specified an action= attribute in the form, it is submitting back to
the same URL it was rendered from by default (i.e., /), which is dealt with by our
home_page function. Let’s adapt the view to be able to deal with a POST request.

That means a new unit test for the home_page view. Open up lists/tests.py, and add a
new method to HomePageTest—I copied the previous method, then adapted it to add
our POST request and check that the returned HTML will have the new item text in it:

lists/tests.py (ch05l005).
def test_home_page_returns_correct_html(self):
 [...]

def test_home_page_can_save_a_POST_request(self):
 request = HttpRequest()
 request.method = 'POST'
 request.POST['item_text'] = 'A new list item'

54 | Chapter 5: Saving User Input

 response = home_page(request)

 self.assertIn('A new list item', response.content.decode())

Are you wondering about the line spacing in the test? I’m grouping
together three lines at the beginning which set up the test, one line in
the middle which actually calls the function under test, and the as‐
sertions at the end. This isn’t obligatory, but it does help see the
structure of the test. Setup, Exercise, Assert is the typical structure for
a unit test.

You can see that we’re using a couple of special attributes of the HttpRequest: .method
and .POST (they’re fairly self-explanatory, although now might be a good time for a peek
at the Django request and response documentation). Then we check that the text from
our POST request ends up in the rendered HTML. That gives us our expected fail:

$ python3 manage.py test
[...]
AssertionError: 'A new list item' not found in '<html> [...]

We can get the test to pass by adding an if and providing a different code path for POST
requests. In typical TDD style, we start with a deliberately silly return value:

lists/views.py.
from django.http import HttpResponse
from django.shortcuts import render

def home_page(request):
 if request.method == 'POST':
 return HttpResponse(request.POST['item_text'])
 return render(request, 'home.html')

That gets our unit tests passing, but it’s not really what we want. What we really want
to do is add the POST submission to the table in the home page template.

Passing Python Variables to Be Rendered in the Template
We’ve already had a hint of it, and now it’s time to start to get to know the real power
of the Django template syntax, which is to pass variables from our Python view code
into HTML templates.

Let’s start by seeing how the template syntax lets us include a Python object in our
template. The notation is {{ ... }}, which displays the object as a string:

lists/templates/home.html.
<body>
 <h1>Your To-Do list</h1>
 <form method="POST">
 <input name="item_text" id="id_new_item" placeholder="Enter a to-do item" />

Passing Python Variables to Be Rendered in the Template | 55

https://docs.djangoproject.com/en/1.8/ref/request-response/

 {% csrf_token %}
 </form>

 <table id="id_list_table">
 <tr><td>{{ new_item_text }}</td></tr>
 </table>
</body>

How can we test that our view is passing in the correct value for new_item_text? How
do we pass a variable to a template? We can find out by actually doing it in the unit test
—we’ve already used the render_to_string function in a previous unit test to manually
render a template and compare it with the HTML the view returns. Now let’s add the
variable we want to pass in:

lists/tests.py.
 self.assertIn('A new list item', response.content.decode())
 expected_html = render_to_string(
 'home.html',
 {'new_item_text': 'A new list item'}
)
 self.assertEqual(response.content.decode(), expected_html)

As you can see, the render_to_string function takes, as its second parameter, a map‐
ping of variable names to values. We’re giving the template a variable named
new_item_text, whose value is the expected item text from our POST request.

When we run the unit test, render_to_string will substitute {{ new_item_text }}
for A new list item inside the <td>. That’s something the actual view isn’t doing yet, so
we should see a test failure:

 self.assertEqual(response.content.decode(), expected_html)
AssertionError: 'A new list item' != '<html>\n <head>\n [...]

Good, our deliberately silly return value is now no longer fooling our tests, so we are
allowed to rewrite our view, and tell it to pass the POST parameter to the template:

lists/views.py (ch05l009).
def home_page(request):
 return render(request, 'home.html', {
 'new_item_text': request.POST['item_text'],
 })

Running the unit tests again:
ERROR: test_home_page_returns_correct_html (lists.tests.HomePageTest)
[...]
 'new_item_text': request.POST['item_text'],
KeyError: 'item_text'

An unexpected failure.

If you remember the rules for reading tracebacks, you’ll spot that it’s actually a failure
in a different test. We got the actual test we were working on to pass, but the unit tests

56 | Chapter 5: Saving User Input

have picked up an unexpected consequence, a regression: we broke the code path where
there is no POST request.

This is the whole point of having tests. Yes, we could have predicted this would happen,
but imagine if we’d been having a bad day or weren’t paying attention: our tests have
just saved us from accidentally breaking our application, and, because we’re using TDD,
we found out immediately. We didn’t have to wait for a QA team, or switch to a web
browser and click through our site manually, and we can get on with fixing it straight
away. Here’s how:

lists/views.py.
def home_page(request):
 return render(request, 'home.html', {
 'new_item_text': request.POST.get('item_text', ''),
 })

Look up dict.get if you’re not sure what’s going on there.

The unit tests should now pass. Let’s see what the functional tests say:
AssertionError: False is not true : New to-do item did not appear in table

Hmm, not a wonderfully helpful error. Let’s use another of our FT debugging techni‐
ques: improving the error message. This is probably the most constructive technique,
because those improved error messages stay around to help debug any future errors:

functional_tests.py.
 self.assertTrue(
 any(row.text == '1: Buy peacock feathers' for row in rows),
 "New to-do item did not appear in table -- its text was:\n%s" % (
 table.text,
)
)

That gives us a more helpful error message:
AssertionError: False is not true : New to-do item did not appear in table --
its text was:
Buy peacock feathers

You know what could be even better than that? Making that assertion a bit less clever.
As you may remember, I was very pleased with myself for using the any function, but
one of my Early Release readers (thanks Jason!) suggested a much simpler implemen‐
tation. We can replace all six lines of the assertTrue with a single assertIn:

functional_tests.py.
 self.assertIn('1: Buy peacock feathers', [row.text for row in rows])

Much better. You should always be very worried whenever you think you’re being clever,
because what you’re probably being is overcomplicated. And we get the error message
for free:

 self.assertIn('1: Buy peacock feathers', [row.text for row in rows])
AssertionError: '1: Buy peacock feathers' not found in ['Buy peacock feathers']

Passing Python Variables to Be Rendered in the Template | 57

http://docs.python.org/3/library/stdtypes.html#dict.get

Consider me suitably chastened.

If, instead, your FT seems to be saying the table is empty (“not found
in []”), check your <input> tag — does it have the correct
name="item_text" attribute? Without it, the user’s input won’t be
associated with the right key in request.POST.

The point is that the FT wants us to enumerate list items with a “1:” at the beginning of
the first list item. The fastest way to get that to pass is with a quick “cheating” change to
the template:

lists/templates/home.html.
 <tr><td>1: {{ new_item_text }}</td></tr>

Red/Green/Refactor and Triangulation
The unit-test/code cycle is sometimes taught as Red, Green, Refactor:

• Start by writing a unit test which fails (Red).
• Write the simplest possible code to get it to pass (Green), even if that means cheating.
• Refactor to get to better code that makes more sense.

So what do we do during the Refactor stage? What justifies moving from an implemen‐
tation where we “cheat” to one we’re happy with?

One methodology is eliminate duplication: if your test uses a magic constant (like the
“1:” in front of our list item), and your application code also uses it, that counts as
duplication, so it justifies refactoring. Removing the magic constant from the application
code usually means you have to stop cheating.

I find that leaves things a little too vague, so I usually like to use a second technique,
which is called triangulation: if your tests let you get away with writing “cheating” code
that you’re not happy with, like returning a magic constant, write another test that forces
you to write some better code. That’s what we’re doing when we extend the FT to check
that we get a “2:” when inputting a second list item.

Now we get to the self.fail('Finish the test!'). If we extend our FT to check for
adding a second item to the table (copy and paste is our friend), we begin to see that
our first cut solution really isn’t going to, um, cut it:

58 | Chapter 5: Saving User Input

1. If you’ve not come across the concept, a “code smell” is something about a piece of code that makes you want
to rewrite it. Jeff Atwood has a compilation on his blog Coding Horror. The more experience you gain as a
programmer, the more fine-tuned your nose becomes to code smells…

functional_tests.py.
 # There is still a text box inviting her to add another item. She
 # enters "Use peacock feathers to make a fly" (Edith is very
 # methodical)
 inputbox = self.browser.find_element_by_id('id_new_item')
 inputbox.send_keys('Use peacock feathers to make a fly')
 inputbox.send_keys(Keys.ENTER)

 # The page updates again, and now shows both items on her list
 table = self.browser.find_element_by_id('id_list_table')
 rows = table.find_elements_by_tag_name('tr')
 self.assertIn('1: Buy peacock feathers', [row.text for row in rows])
 self.assertIn(
 '2: Use peacock feathers to make a fly' ,
 [row.text for row in rows]
)

 # Edith wonders whether the site will remember her list. Then she sees
 # that the site has generated a unique URL for her -- there is some
 # explanatory text to that effect.
 self.fail('Finish the test!')

 # She visits that URL - her to-do list is still there.

Sure enough, the functional tests return an error:
AssertionError: '1: Buy peacock feathers' not found in ['1: Use peacock
feathers to make a fly']

Three Strikes and Refactor
Before we go further—we’ve got a bad code smell1 in this FT. We have three almost
identical code blocks checking for new items in the list table. There’s a principle called
don’t repeat yourself (DRY), which we like to apply by following the mantra three strikes
and refactor. You can copy and paste code once, and it may be premature to try and
remove the duplication it causes, but once you get three occurrences, it’s time to remove
duplication.

We start by committing what we have so far. Even though we know our site has a major
flaw—it can only handle one list item—it’s still further ahead than it was. We may have
to rewrite it all, and we may not, but the rule is that before you do any refactoring, always
do a commit:

Three Strikes and Refactor | 59

http://www.codinghorror.com/blog/2006/05/code-smells.html

$ git diff
should show changes to functional_tests.py, home.html,
tests.py and views.py
$ git commit -a

Back to our functional test refactor: we could use an inline function, but that upsets the
flow of the test slightly. Let’s use a helper method—remember, only methods that begin
with test_ will get run as tests, so you can use other methods for your own purposes:

functional_tests.py.
 def tearDown(self):
 self.browser.quit()

 def check_for_row_in_list_table(self, row_text):
 table = self.browser.find_element_by_id('id_list_table')
 rows = table.find_elements_by_tag_name('tr')
 self.assertIn(row_text, [row.text for row in rows])

 def test_can_start_a_list_and_retrieve_it_later(self):
 [...]

I like to put helper methods near the top of the class, between the tearDown and the first
test. Let’s use it in the FT:

functional_tests.py.
 # When she hits enter, the page updates, and now the page lists
 # "1: Buy peacock feathers" as an item in a to-do list table
 inputbox.send_keys(Keys.ENTER)
 self.check_for_row_in_list_table('1: Buy peacock feathers')

 # There is still a text box inviting her to add another item. She
 # enters "Use peacock feathers to make a fly" (Edith is very
 # methodical)
 inputbox = self.browser.find_element_by_id('id_new_item')
 inputbox.send_keys('Use peacock feathers to make a fly')
 inputbox.send_keys(Keys.ENTER)

 # The page updates again, and now shows both items on her list
 self.check_for_row_in_list_table('1: Buy peacock feathers')
 self.check_for_row_in_list_table('2: Use peacock feathers to make a fly')

 # Edith wonders whether the site will remember her list. Then she sees
 [...]

We run the FT again to check that it still behaves in the same way…
AssertionError: '1: Buy peacock feathers' not found in ['1: Use peacock
feathers to make a fly']

Good. Now we can commit the FT refactor as its own small, atomic change:
$ git diff # check the changes to functional_tests.py
$ git commit -a

60 | Chapter 5: Saving User Input

And back to work. If we’re ever going to handle more than one list item, we’re going to
need some kind of persistence, and databases are a stalwart solution in this area.

The Django ORM and Our First Model
An Object-Relational Mapper (ORM) is a layer of abstraction for data stored in a data‐
base with tables, rows, and columns. It lets us work with databases using familiar object-
oriented metaphors which work well with code. Classes map to database tables, at‐
tributes map to columns, and an individual instance of the class represents a row of data
in the database.

Django comes with an excellent ORM, and writing a unit test that uses it is actually an
excellent way of learning it, since it exercises code by specifying how we want it to work.

Let’s create a new class in lists/tests.py:
lists/tests.py.

from lists.models import Item
[...]

class ItemModelTest(TestCase):

 def test_saving_and_retrieving_items(self):
 first_item = Item()
 first_item.text = 'The first (ever) list item'
 first_item.save()

 second_item = Item()
 second_item.text = 'Item the second'
 second_item.save()

 saved_items = Item.objects.all()
 self.assertEqual(saved_items.count(), 2)

 first_saved_item = saved_items[0]
 second_saved_item = saved_items[1]
 self.assertEqual(first_saved_item.text, 'The first (ever) list item')
 self.assertEqual(second_saved_item.text, 'Item the second')

You can see that creating a new record in the database is a relatively simple matter of
creating an object, assigning some attributes, and calling a .save() function. Django
also gives us an API for querying the database via a class attribute, .objects, and we
use the simplest possible query, .all(), which retrieves all the records for that table.
The results are returned as a list-like object called a QuerySet, from which we can extract
individual objects, and also call further functions, like .count(). We then check the
objects as saved to the database, to check whether the right information was saved.

Django’s ORM has many other helpful and intuitive features; this might be a good time
to skim through the Django tutorial, which has an excellent intro to them.

The Django ORM and Our First Model | 61

https://docs.djangoproject.com/en/1.8/intro/tutorial01/

I’ve written this unit test in a very verbose style, as a way of intro‐
ducing the Django ORM. You can actually write a much shorter test
for a model class, which we’ll see later on, in Chapter 11.

Terminology 2: Unit Tests Versus Integrated Tests, and the Database
Purists will tell you that a “real” unit test should never touch the database, and that the
test I’ve just written should be more properly called an integrated test, because it doesn’t
only test our code, but also relies on an external system, ie a database.

It’s OK to ignore this distinction for now—we have two types of test, the high-level
functional tests which test the application from the user’s point of view, and these lower-
level tests which test it from the programmer’s point of view.

We’ll come back to this and talk about unit tests and integrated tests in Chapter 19,
towards the end of the book.

Let’s try running the unit test. Here comes another unit-test/code cycle:
ImportError: cannot import name 'Item'

Very well, let’s give it something to import from lists/models.py. We’re feeling confident
so we’ll skip the Item = None step, and go straight to creating a class:

lists/models.py.
from django.db import models

class Item(object):
 pass

That gets our test as far as:
 first_item.save()
AttributeError: 'Item' object has no attribute 'save'

To give our Item class a save method, and to make it into a real Django model, we make
it inherit from the Model class:

lists/models.py.
from django.db import models

class Item(models.Model):
 pass

Our First Database Migration
The next thing that happens is a database error:

62 | Chapter 5: Saving User Input

django.db.utils.OperationalError: no such table: lists_item

In Django, the ORM’s job is to model the database, but there’s a second system that’s in
charge of actually building the database called migrations. Its job is to give you the ability
to add and remove tables and columns, based on changes you make to your mod‐
els.py files.

One way to think of it is as a version control system for your database. As we’ll see later,
it comes in particularly useful when we need to upgrade a database that’s deployed on
a live server.

For now all we need to know is how to build our first database migration, which we do
using the makemigrations command:

$ python3 manage.py makemigrations
Migrations for 'lists':
 0001_initial.py:
 - Create model Item
$ ls lists/migrations
0001_initial.py __init__.py __pycache__

If you’re curious, you can go and take a look in the migrations file, and you’ll see it’s a
representation of our additions to models.py.

In the meantime, we should find our tests get a little further.

The Test Gets Surprisingly Far
The test actually gets surprisingly far:

$ python3 manage.py test lists
[...]
 self.assertEqual(first_saved_item.text, 'The first (ever) list item')
AttributeError: 'Item' object has no attribute 'text'

That’s a full eight lines later than the last failure—we’ve been all the way through saving
the two Items, we’ve checked they’re saved in the database, but Django just doesn’t seem
to have remembered the .text attribute.

Incidentally, if you’re new to Python, you might have been surprised we were allowed
to assign the .text attribute at all. In something like Java, that would probably give you
a compilation error. Python is more relaxed about things like that.

Classes that inherit from models.Model map to tables in the database. By default they
get an auto-generated id attribute, which will be a primary key column in the database,
but you have to define any other columns you want explicitly. Here’s how we set up a
text field:

lists/models.py.
class Item(models.Model):
 text = models.TextField()

The Django ORM and Our First Model | 63

Django has many other field types, like IntegerField, CharField, DateField, and so
on. I’ve chosen TextField rather than CharField because the latter requires a length
restriction, which seems arbitrary at this point. You can read more on field types in the
Django tutorial and in the documentation.

A New Field Means a New Migration
Running the tests gives us another database error:

django.db.utils.OperationalError: no such column: lists_item.text

It’s because we’ve added another new field to our database, which means we need to
create another migration. Nice of our tests to let us know!

Let’s try it:
$ python3 manage.py makemigrations
You are trying to add a non-nullable field 'text' to item without a default; we
can't do that (the database needs something to populate existing rows).
Please select a fix:
 1) Provide a one-off default now (will be set on all existing rows)
 2) Quit, and let me add a default in models.py
Select an option:2

Ah. It won’t let us add the column without a default value. Let’s pick option 2 and set a
default in models.py. I think you’ll find the syntax reasonably self-explanatory:

lists/models.py.
class Item(models.Model):
 text = models.TextField(default='')

And now the migration should complete:
$ python3 manage.py makemigrations
Migrations for 'lists':
 0002_item_text.py:
 - Add field text to item

So, two new lines in models.py, two database migrations, and as a result, the .text
attribute on our model objects is now recognised as a special attribute, so it does get
saved to the database, and the tests pass…

$ python3 manage.py test lists
[...]

Ran 4 tests in 0.010s
OK

So let’s do a commit for our first ever model!
$ git status # see tests.py, models.py, and 2 untracked migrations
$ git diff # review changes to tests.py and models.py
$ git add lists
$ git commit -m "Model for list Items and associated migration"

64 | Chapter 5: Saving User Input

http://bit.ly/1slDAGH
https://docs.djangoproject.com/en/1.8/ref/models/fields/

Saving the POST to the Database
Let’s adjust the test for our home page POST request, and say we want the view to save
a new item to the database instead of just passing it through to its response. We can do
that by adding three new lines to the existing test called test_home_page_can_save_
a_POST_request:

lists/tests.py.
def test_home_page_can_save_a_POST_request(self):
 request = HttpRequest()
 request.method = 'POST'
 request.POST['item_text'] = 'A new list item'

 response = home_page(request)

 self.assertEqual(Item.objects.count(), 1) #
 new_item = Item.objects.first() #
 self.assertEqual(new_item.text, 'A new list item') #

 self.assertIn('A new list item', response.content.decode())
 expected_html = render_to_string(
 'home.html',
 {'new_item_text': 'A new list item'}
)
 self.assertEqual(response.content.decode(), expected_html)

We check that one new Item has been saved to the database. objects.count()
is a shorthand for objects.all().count().
objects.first() is the same as doing objects.all()[0].
We check that the item’s text is correct.

This test is getting a little long-winded. It seems to be testing lots of different things.
That’s another code smell—a long unit test either needs to be broken into two, or it may
be an indication that the thing you’re testing is too complicated. Let’s add that to a little
to-do list of our own, perhaps on a piece of scrap paper:

• Code smell: POST test is too long?

Saving the POST to the Database | 65

Writing it down on a scratchpad like this reassures us that we won’t forget, so we are
comfortable getting back to what we were working on. We rerun the tests and see an
expected failure:

 self.assertEqual(Item.objects.count(), 1)
AssertionError: 0 != 1

Let’s adjust our view:
lists/views.py.

from django.shortcuts import render
from lists.models import Item

def home_page(request):
 item = Item()
 item.text = request.POST.get('item_text', '')
 item.save()

 return render(request, 'home.html', {
 'new_item_text': request.POST.get('item_text', ''),
 })

I’ve coded a very naive solution and you can probably spot a very obvious problem,
which is that we’re going to be saving empty items with every request to the home page.
Let’s add that to our list of things to fix later. You know, along with the painfully obvious
fact that we currently have no way at all of having different lists for different people.
That we’ll keep ignoring for now.

Remember, I’m not saying you should always ignore glaring problems like this in “real
life”. Whenever we spot problems in advance, there’s a judgement call to make over
whether to stop what you’re doing and start again, or leave them until later. Sometimes
finishing off what you’re doing is still worth it, and sometimes the problem may be so
major as to warrant a stop and rethink.

Let’s see how the unit tests get on…they pass! Good. We can do a bit of refactoring:
lists/views.py.

 return render(request, 'home.html', {
 'new_item_text': item.text
 })

Let’s have a little look at our scratchpad. I’ve added a couple of the other things that are
on our mind:

66 | Chapter 5: Saving User Input

• Don’t save blank items for every request
• Code smell: POST test is too long?
• Display multiple items in the table
• Support more than one list!

Let’s start with the first one. We could tack on an assertion to an existing test, but it’s
best to keep unit tests to testing one thing at a time, so let’s add a new one:

lists/tests.py.
class HomePageTest(TestCase):
 [...]

 def test_home_page_only_saves_items_when_necessary(self):
 request = HttpRequest()
 home_page(request)
 self.assertEqual(Item.objects.count(), 0)

That gives us a 1 != 0 failure. Let’s fix it. Watch out; although it’s quite a small change
to the logic of the view, there are quite a few little tweaks to the implementation in code:

lists/views.py.
def home_page(request):
 if request.method == 'POST':
 new_item_text = request.POST['item_text'] #
 Item.objects.create(text=new_item_text) #
 else:
 new_item_text = '' #

 return render(request, 'home.html', {
 'new_item_text': new_item_text, #
 })

 We use a variable called new_item_text, which will either hold the POST
contents, or the empty string.
.objects.create is a neat shorthand for creating a new Item, without needing
to call .save().

And that gets the test passing:
Ran 5 tests in 0.010s

OK

Saving the POST to the Database | 67

Redirect After a POST
But, yuck, that whole new_item_text = '' dance is making me pretty unhappy. Thank‐
fully the next item on the list gives us a chance to fix it. Always redirect after a POST,
they say, so let’s do that. Once again we change our unit test for saving a POST request
to say that, instead of rendering a response with the item in it, it should redirect back
to the home page:

lists/tests.py.
 def test_home_page_can_save_a_POST_request(self):
 request = HttpRequest()
 request.method = 'POST'
 request.POST['item_text'] = 'A new list item'

 response = home_page(request)

 self.assertEqual(Item.objects.count(), 1)
 new_item = Item.objects.first()
 self.assertEqual(new_item.text, 'A new list item')

 self.assertEqual(response.status_code, 302)
 self.assertEqual(response['location'], '/')

We no longer expect a response with a .content rendered by a template, so we lose the
assertions that look at that. Instead, the response will represent an HTTP redirect, which
should have status code 302, and points the browser towards a new location.

That gives us the error 200 != 302. We can now tidy up our view substantially:
lists/views.py (ch05l028).

from django.shortcuts import redirect, render
from lists.models import Item

def home_page(request):
 if request.method == 'POST':
 Item.objects.create(text=request.POST['item_text'])
 return redirect('/')

 return render(request, 'home.html')

And the tests should now pass:
Ran 5 tests in 0.010s

OK

Better Unit Testing Practice: Each Test Should Test One Thing
Our view now does a redirect after a POST, which is good practice, and we’ve shortened
the unit test somewhat, but we can still do better. Good unit testing practice says that
each test should only test one thing. The reason is that it makes it easier to track down
bugs. Having multiple assertions in a test means that, if the test fails on an early assertion,

68 | Chapter 5: Saving User Input

https://en.wikipedia.org/wiki/Post/Redirect/Get

you don’t know what the status of the later assertions is. As we’ll see in the next chapter,
if we ever break this view accidentally, we want to know whether it’s the saving of objects
that’s broken, or the type of response.

You may not always write perfect unit tests with single assertions on your first go, but
now feels like a good time to separate out our concerns:

lists/tests.py.
 def test_home_page_can_save_a_POST_request(self):
 request = HttpRequest()
 request.method = 'POST'
 request.POST['item_text'] = 'A new list item'

 response = home_page(request)

 self.assertEqual(Item.objects.count(), 1)
 new_item = Item.objects.first()
 self.assertEqual(new_item.text, 'A new list item')

 def test_home_page_redirects_after_POST(self):
 request = HttpRequest()
 request.method = 'POST'
 request.POST['item_text'] = 'A new list item'

 response = home_page(request)

 self.assertEqual(response.status_code, 302)
 self.assertEqual(response['location'], '/')

And we should now see six tests pass instead of five:
Ran 6 tests in 0.010s

OK

Rendering Items in the Template
Much better! Back to our to-do list:

Rendering Items in the Template | 69

• Don’t save blank items for every request
• Code smell: POST test is too long?
• Display multiple items in the table
• Support more than one list!

Crossing things off the list is almost as satisfying as seeing tests pass!

The third item is the last of the “easy” ones. Let’s have a new unit test that checks that
the template can also display multiple list items:

lists/tests.py.
class HomePageTest(TestCase):
 [...]

 def test_home_page_displays_all_list_items(self):
 Item.objects.create(text='itemey 1')
 Item.objects.create(text='itemey 2')

 request = HttpRequest()
 response = home_page(request)

 self.assertIn('itemey 1', response.content.decode())
 self.assertIn('itemey 2', response.content.decode())

That fails as expected:
AssertionError: 'itemey 1' not found in '<html>\n <head>\n [...]

The Django template syntax has a tag for iterating through lists, {% for .. in .. %};
we can use it like this:

lists/templates/home.html.
<table id="id_list_table">
 {% for item in items %}
 <tr><td>1: {{ item.text }}</td></tr>
 {% endfor %}
</table>

This is one of the major strengths of the templating system. Now the template will render
with multiple <tr> rows, one for each item in the variable items. Pretty neat! I’ll intro‐
duce a few more bits of Django template magic as we go, but at some point you’ll want
to go and read up on the rest of them in the Django docs.

Just changing the template doesn’t get our tests to pass; we need to actually pass the
items to it from our home page view:

70 | Chapter 5: Saving User Input

https://docs.djangoproject.com/en/1.8/topics/templates/

lists/views.py.
def home_page(request):
 if request.method == 'POST':
 Item.objects.create(text=request.POST['item_text'])
 return redirect('/')

 items = Item.objects.all()
 return render(request, 'home.html', {'items': items})

That does get the unit tests to pass…moment of truth, will the functional test pass?
$ python3 functional_tests.py
[...]
AssertionError: 'To-Do' not found in 'OperationalError at /'

Oops, apparently not. Let’s use another functional test debugging technique, and it’s one
of the most straightforward: manually visiting the site! Open up http://localhost:8000
in your web browser, and you’ll see a Django debug page saying “no such table:
lists_item”, as in Figure 5-2.

Figure 5-2. Another helpful debug message

Creating Our Production Database with migrate
Another helpful error message from Django, which is basically complaining that we
haven’t set up the database properly. How come everything worked fine in the unit tests,

Creating Our Production Database with migrate | 71

2. If you get a different error at this point, try restarting your dev server—it may have gotten confused by the
changes to the database happening under its feet.

I hear you ask? Because Django creates a special test database for unit tests; it’s one of
the magical things that Django’s TestCase does.

To set up our “real” database, we need to create it. SQLite databases are just a file on
disk, and you’ll see in settings.py that Django, by default, will just put it in a file called
db.sqlite3 in the base project directory:

superlists/settings.py.
[...]
Database
https://docs.djangoproject.com/en/1.8/ref/settings/#databases

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
 }
}

We’ve told Django everything it needs to create the database, first via models.py and
then when we created the migrations file. To actually apply it to creating a real database,
we use another Django Swiss Army knife manage.py command, migrate:

$ python3 manage.py migrate
Operations to perform:
 Synchronize unmigrated apps: messages, staticfiles
 Apply all migrations: contenttypes, lists, admin, auth, sessions
Synchronizing apps without migrations:
 Creating tables...
 Running deferred SQL...
 Installing custom SQL...
Running migrations:
 Rendering model states... DONE
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK
 Applying admin.0001_initial... OK
 Applying contenttypes.0002_remove_content_type_name... OK
 Applying auth.0002_alter_permission_name_max_length... OK
 Applying auth.0003_alter_user_email_max_length... OK
 Applying auth.0004_alter_user_username_opts... OK
 Applying auth.0005_alter_user_last_login_null... OK
 Applying auth.0006_require_contenttypes_0002... OK
 Applying lists.0001_initial... OK
 Applying lists.0002_item_text... OK
 Applying sessions.0001_initial... OK

Now we can refresh the page on localhost, see that our error is gone, and try running
the functional tests again:2

72 | Chapter 5: Saving User Input

AssertionError: '2: Use peacock feathers to make a fly' not found in ['1: Buy
peacock feathers', '1: Use peacock feathers to make a fly']

So close! We just need to get our list numbering right. Another awesome Django tem‐
plate tag, forloop.counter, will help here:

lists/templates/home.html.
 {% for item in items %}
 <tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
 {% endfor %}

If you try it again, you should now see the FT get to the end:
 self.fail('Finish the test!')
AssertionError: Finish the test!

But, as it’s running, you may notice something is amiss, like in Figure 5-3.

Figure 5-3. There are list items left over from the last run of the test

Oh dear. It looks like previous runs of the test are leaving stuff lying around in our
database. In fact, if you run the tests again, you’ll see it gets worse:

1: Buy peacock feathers
2: Use peacock feathers to make a fly
3: Buy peacock feathers
4: Use peacock feathers to make a fly
5: Buy peacock feathers
6: Use peacock feathers to make a fly

Creating Our Production Database with migrate | 73

Grrr. We’re so close! We’re going to need some kind of automated way of tidying up
after ourselves. For now, if you feel like it, you can do it manually, by deleting the database
and re-creating it fresh with migrate:

$ rm db.sqlite3
$ python3 manage.py migrate --noinput

And then reassure yourself that the FT still passes.

Apart from that little bug in our functional testing, we’ve got some code that’s more or
less working. Let’s do a commit.

Start by doing a git status and a git diff, and you should see changes to home.html,
tests.py, and views.py. Let’s add them:

$ git add lists
$ git commit -m "Redirect after POST, and show all items in template"

You might find it useful to add markers for the end of each chapter,
like git tag end-of-chapter-05.

Where are we?

• We’ve got a form set up to add new items to the list using POST.
• We’ve set up a simple model in the database to save list items.
• We’ve used at least three different FT debugging techniques.

But we’ve got a couple of items on our own to-do list, namely getting the FT to clean
up after itself, and perhaps more critically, adding support for more than one list.

I mean, we could ship the site as it is, but people might find it strange that the entire
human population has to share a single to-do list. I suppose it might get people to stop
and think about how connected we all are to one another, how we all share a common
destiny here on Spaceship Earth, and how we must all work together to solve the global
problems that we face.

But in practical terms, the site wouldn’t be very useful.

Ah well.

74 | Chapter 5: Saving User Input

Useful TDD Concepts
Regression

When new code breaks some aspect of the application which used to work.

Unexpected failure
When a test fails in a way we weren’t expecting. This either means that we’ve made
a mistake in our tests, or that the tests have helped us find a regression, and we need
to fix something in our code.

Red/Green/Refactor
Another way of describing the TDD process. Write a test and see it fail (Red), write
some code to get it to pass (Green), then Refactor to improve the implementation.

Triangulation
Adding a test case with a new specific example for some existing code, to justify
generalising the implementation (which may be a “cheat” until that point).

Three strikes and refactor
A rule of thumb for when to remove duplication from code. When two pieces of
code look very similar, it often pays to wait until you see a third use case, so that
you’re more sure about what part of the code really is the common, re-usable part
to refactor out.

The scratchpad to-do list
A place to write down things that occur to us as we’re coding, so that we can finish
up what we’re doing and come back to them later.

Creating Our Production Database with migrate | 75

CHAPTER 6
Getting to the Minimum Viable Site

In this chapter we’re going to address the problems we discovered at the end of the last
chapter. In the immediate, the problem of cleaning up after functional test runs. Later,
the more general problem, which is that our design only allows for one global list. I’ll
demonstrate a critical TDD technique: how to adapt existing code using an incremental,
step-by-step process which takes you from working code to working code. Testing Goat,
not Refactoring Cat.

Ensuring Test Isolation in Functional Tests
We ended the last chapter with a classic testing problem: how to ensure isolation between
tests. Each run of our functional tests was leaving list items lying around in the database,
and that would interfere with the test results when you next ran the tests.

When we run unit tests, the Django test runner automatically creates a brand new test
database (separate from the real one), which it can safely reset before each individual
test is run, and then throw away at the end. But our functional tests currently run against
the “real” database, db.sqlite3.

One way to tackle this would be to “roll our own” solution, and add some code to
functional_tests.py which would do the cleaning up. The setUp and tearDown methods
are perfect for this sort of thing.

Since Django 1.4 though, there’s a new class called LiveServerTestCase which can do
this work for you. It will automatically create a test database (just like in a unit test run),
and start up a development server for the functional tests to run against. Although as a
tool it has some limitations which we’ll need to work around later, it’s dead useful at this
stage, so let’s check it out.

LiveServerTestCase expects to be run by the Django test runner using manage.py. As
of Django 1.6, the test runner will find any files whose name begins with test. To keep

77

things neat and tidy, let’s make a folder for our functional tests, so that it looks a bit like
an app. All Django needs is for it to be a valid Python package directory (i.e., one with
a __init__.py in it):

$ mkdir functional_tests
$ touch functional_tests/__init__.py

Then we move our functional tests, from being a standalone file called function‐
al_tests.py, to being the tests.py of the functional_tests app. We use git mv so that
Git notices that we’ve moved the file:

$ git mv functional_tests.py functional_tests/tests.py
$ git status # shows the rename to functional_tests/tests.py and __init__.py

At this point your directory tree should look like this:
.
├── db.sqlite3
├── functional_tests
│ ├── __init__.py
│ └── tests.py
├── lists
│ ├── admin.py
│ ├── __init__.py
│ ├── migrations
│ │ ├── 0001_initial.py
│ │ ├── 0002_item_text.py
│ │ ├── __init__.py
│ │ └── __pycache__
│ ├── models.py
│ ├── __pycache__
│ ├── templates
│ │ └── home.html
│ ├── tests.py
│ └── views.py
├── manage.py
└── superlists
 ├── __init__.py
 ├── __pycache__
 ├── settings.py
 ├── urls.py
 └── wsgi.py

functional_tests.py is gone, and has turned into functional_tests/tests.py. Now, whenever
we want to run our functional tests, instead of running python3 function
al_tests.py, we will use python3 manage.py test functional_tests.

78 | Chapter 6: Getting to the Minimum Viable Site

1. Are you unable to move on because you’re wondering what those ch06l0xx things are, next to some of the
code listings? They refer to specific commits in the book’s example repo. It’s all to do with my book’s correctness
tests. You know, the tests for the tests in the book about testing. They have tests of their own, incidentally.

You could mix your functional tests into the tests for the lists app.
I tend to prefer to keep them separate, because functional tests usu‐
ally have cross-cutting concerns that run across different apps. FTs
are meant to see things from the point of view of your users, and your
users don’t care about how you’ve split work between different apps!

Now let’s edit functional_tests/tests.py and change our NewVisitorTest class to make it
use LiveServerTestCase:

functional_tests/tests.py (ch06l001).
from django.test import LiveServerTestCase
from selenium import webdriver
from selenium.webdriver.common.keys import Keys

class NewVisitorTest(LiveServerTestCase):

 def setUp(self):
 [...]

Next,1 instead of hardcoding the visit to localhost port 8000, LiveServerTestCase gives
us an attribute called live_server_url:

functional_tests/tests.py (ch06l002).
 def test_can_start_a_list_and_retrieve_it_later(self):
 # Edith has heard about a cool new online to-do app. She goes
 # to check out its homepage
 self.browser.get(self.live_server_url)

We can also remove the if __name__ == '__main__' from the end if we want, since
we’ll be using the Django test runner to launch the FT.

Now we are able to run our functional tests using the Django test runner, by telling it
to run just the tests for our new functional_tests app:

$ python3 manage.py test functional_tests
Creating test database for alias 'default'...
F
==
FAIL: test_can_start_a_list_and_retrieve_it_later
(functional_tests.tests.NewVisitorTest)

Traceback (most recent call last):
 File "/workspace/superlists/functional_tests/tests.py", line 61, in
test_can_start_a_list_and_retrieve_it_later
 self.fail('Finish the test!')
AssertionError: Finish the test!

Ensuring Test Isolation in Functional Tests | 79

https://github.com/hjwp/book-example/commits/chapter_06

Ran 1 test in 6.378s

FAILED (failures=1)
Destroying test database for alias 'default'...

The FT gets through to the self.fail, just like it did before the refactor. You’ll also
notice that if you run the tests a second time, there aren’t any old list items lying around
from the previous test—it has cleaned up after itself. Success! We should commit it as
an atomic change:

$ git status # functional_tests.py renamed + modified, new __init__.py
$ git add functional_tests
$ git diff --staged -M
$ git commit # msg eg "make functional_tests an app, use LiveServerTestCase"

The -M flag on the git diff is a useful one. It means “detect moves”, so it will notice
that functional_tests.py and functional_tests/tests.py are the same file, and show you a
more sensible diff (try it without the flag!).

Running Just the Unit Tests
Now if we run manage.py test, Django will run both the functional and the unit tests:

$ python3 manage.py test
Creating test database for alias 'default'...
.......F
==
FAIL: test_can_start_a_list_and_retrieve_it_later
[...]
AssertionError: Finish the test!

Ran 8 tests in 3.132s

FAILED (failures=1)
Destroying test database for alias 'default'...

In order to run just the unit tests, we can specify that we want to only run the tests for
the lists app:

$ python3 manage.py test lists
Creating test database for alias 'default'...
.......

Ran 7 tests in 0.009s

OK
Destroying test database for alias 'default'...

80 | Chapter 6: Getting to the Minimum Viable Site

Useful Commands Updated
To run the functional tests

python3 manage.py test functional_tests

To run the unit tests
python3 manage.py test lists

What to do if I say “run the tests”, and you’re not sure which ones I mean? Have another
look at the flowchart at the end of Chapter 4, and try and figure out where we are. As a
rule of thumb, we usually only run the functional tests once all the unit tests are passing,
so if in doubt, try both!

Now let’s move on to thinking about how we want support for multiple lists to work.
Currently the FT (which is the closest we have to a design document) says this:

functional_tests/tests.py.
 # Edith wonders whether the site will remember her list. Then she sees
 # that the site has generate a unique URL for her -- there is some
 # explanatory text to that effect.
 self.fail('Finish the test!')

 # She visits that URL - her to-do list is still there.

 # Satisfied, she goes back to sleep

But really we want to expand on this, by saying that different users don’t see each other’s
lists, and each get their own URL as a way of going back to their saved lists. Let’s think
about this a bit more.

Small Design When Necessary
TDD is closely associated with the agile movement in software development, which
includes a reaction against Big Design Up Front the traditional software engineering
practice whereby, after a lengthy requirements gathering exercise, there is an equally
lengthy design stage where the software is planned out on paper. The agile philosophy
is that you learn more from solving problems in practice than in theory, especially when
you confront your application with real users as soon as possible. Instead of a long up-
front design phase, we try and put a minimum viable application out there early, and let
the design evolve gradually based on feedback from real-world usage.

But that doesn’t mean that thinking about design is outright banned! In the last chapter
we saw how just blundering ahead without thinking can eventually get us to the right
answer, but often a little thinking about design can help us get there faster. So, let’s think
about our minimum viable lists app, and what kind of design we’ll need to deliver it.

Small Design When Necessary | 81

• We want each user to be able to store their own list—at least one, for now.
• A list is made up of several items, whose primary attribute is a bit of descriptive

text.
• We need to save lists from one visit to the next. For now, we can give each user a

unique URL for their list. Later on we may want some way of automatically recog‐
nising users and showing them their lists.

To deliver the “for now” items, it sounds like we’re going to store lists and their items
in a database. Each list will have a unique URL, and each list item will be a bit of de‐
scriptive text, associated with a particular list.

YAGNI!
Once you start thinking about design, it can be hard to stop. All sorts of other thoughts
are occurring to us—we might want to give each list a name or title, we might want to
recognise users using usernames and passwords, we might want to add a longer notes
field as well as short descriptions to our list, we might want to store some kind of or‐
dering, and so on. But we obey another tenet of the agile gospel: “YAGNI” (pronounced
yag-knee), which stands for “You aint gonna need it!” As software developers, we have
fun creating things, and sometimes it’s hard to resist the urge to build things just because
an idea occurred to us and we might need it. The trouble is that more often than not,
no matter how cool the idea was, you won’t end up using it. Instead you have a load of
unused code, adding to the complexity of your application. YAGNI is the mantra we
use to resist our overenthusiastic creative urges.

REST
We have an idea of the data structure we want—the Model part of Model-View-
Controller (MVC). What about the View and Controller parts? How should the user
interact with Lists and their Items using a web browser?

Representational State Transfer (REST) is an approach to web design that’s usually used
to guide the design of web-based APIs. When designing a user-facing site, it’s not pos‐
sible to stick strictly to the REST rules, but they still provide some useful inspiration.

REST suggests that we have a URL structure that matches our data structure, in this case
lists and list items. Each list can have its own URL:

 /lists/<list identifier>/

That will fulfill the requirement we’ve specified in our FT. To view a list, we use a GET
request (a normal browser visit to the page).

To create a brand new list, we’ll have a special URL that accepts POST requests:
 /lists/new

82 | Chapter 6: Getting to the Minimum Viable Site

To add a new item to an existing list, we’ll have a separate URL, to which we can send
POST requests:

 /lists/<list identifier>/add_item

(Again, we’re not trying to perfectly follow the rules of REST, which would use a PUT
request here—we’re just using REST for inspiration.)

In summary, our scratchpad for this chapter looks something like this:

• Get FTs to clean up after themselves
• Adjust model so that items are associated

with different lists
• Add unique URLs for each list
• Add a URL for creating a new list via POST
• Add URLs for adding a new item to an

existing list via POST

Implementing the New Design Using TDD
How do we use TDD to implement the new design? Let’s take another look at the flow‐
chart for the TDD process in Figure 6-1.

At the top level, we’re going to use a combination of adding new functionality (by ex‐
tending the FT and writing new application code), and refactoring our application—
i.e., rewriting some of the existing implementation so that it delivers the same func‐
tionality to the user but using aspects of our new design. At the unit test level, we’ll be
adding new tests or modifying existing ones to test for the changes we want, and we’ll
be able to use the untouched unit tests to make sure we don’t break anything in the
process.

Implementing the New Design Using TDD | 83

Figure 6-1. The TDD process with functional and unit tests

Let’s translate our scratchpad into our functional test. As soon as Edith submits a first
list item, we’ll want to create a new list, adding one item to it, and take her to the URL
for her list. Look for the point at which we say inputbox.send_keys('Buy peacock
feathers'), and amend the next block of code like this:

functional_tests/tests.py.
 inputbox.send_keys('Buy peacock feathers')

 # When she hits enter, she is taken to a new URL,
 # and now the page lists "1: Buy peacock feathers" as an item in a
 # to-do list table
 inputbox.send_keys(Keys.ENTER)
 edith_list_url = self.browser.current_url
 self.assertRegex(edith_list_url, '/lists/.+') #
 self.check_for_row_in_list_table('1: Buy peacock feathers')

 # There is still a text box inviting her to add another item. She
 [...]

84 | Chapter 6: Getting to the Minimum Viable Site

assertRegex is a helper function from unittest that checks whether a string
matches a regular expression. We use it to check that our new REST-ish design
has been implemented. Find out more in the unittest documentation.

Let’s also change the end of the test and imagine a new user coming along. We want to
check that they don’t see any of Edith’s items when they visit the home page, and that
they get their own unique URL for their list.

Delete everything from the comments just before the self.fail (they say “Edith won‐
ders whether the site will remember her list …”) and replace them with a new ending
to our FT:

functional_tests/tests.py.
 [...]
 # The page updates again, and now shows both items on her list
 self.check_for_row_in_list_table('2: Use peacock feathers to make a fly')
 self.check_for_row_in_list_table('1: Buy peacock feathers')

 # Now a new user, Francis, comes along to the site.

 ## We use a new browser session to make sure that no information
 ## of Edith's is coming through from cookies etc #
 self.browser.quit()
 self.browser = webdriver.Firefox()

 # Francis visits the home page. There is no sign of Edith's
 # list
 self.browser.get(self.live_server_url)
 page_text = self.browser.find_element_by_tag_name('body').text
 self.assertNotIn('Buy peacock feathers', page_text)
 self.assertNotIn('make a fly', page_text)

 # Francis starts a new list by entering a new item. He
 # is less interesting than Edith...
 inputbox = self.browser.find_element_by_id('id_new_item')
 inputbox.send_keys('Buy milk')
 inputbox.send_keys(Keys.ENTER)

 # Francis gets his own unique URL
 francis_list_url = self.browser.current_url
 self.assertRegex(francis_list_url, '/lists/.+')
 self.assertNotEqual(francis_list_url, edith_list_url)

 # Again, there is no trace of Edith's list
 page_text = self.browser.find_element_by_tag_name('body').text
 self.assertNotIn('Buy peacock feathers', page_text)
 self.assertIn('Buy milk', page_text)

 # Satisfied, they both go back to sleep

Implementing the New Design Using TDD | 85

http://docs.python.org/3/library/unittest.html

I’m using the convention of double-hashes (##) to indicate “meta-comments”—
comments about how the test is working and why—so that we can distinguish
them from regular comments in FTs which explain the User Story. They’re a
message to our future selves, which might otherwise be wondering why the heck
we’re quitting the browser and starting a new one…

Other than that, the changes are fairly self-explanatory. Let’s see how they do when we
run our FTs:

[...]
 self.assertRegex(edith_list_url, '/lists/.+')
AssertionError: Regex didn't match: '/lists/.+' not found in
'http://localhost:8081/'

As expected. Let’s do a commit, and then go and build some new models and views:
$ git commit -a

I found the FTs hung when I tried to run them today. It turns out I
needed to upgrade Selenium, with a pip3 install --upgrade sele
nium. You may remember from the preface that it’s important to have
the latest version of Selenium installed—it’s only been a couple of
months since I last upgraded, and Selenium had gone up by six point
versions. If something weird is happening, always try upgrading
Selenium!

Iterating Towards the New Design
Being all excited about our new design, I had an overwhelming urge to dive in at this
point and start changing models.py, which would have broken half the unit tests, and
then pile in and change almost every single line of code, all in one go. That’s a natural
urge, and TDD, as a discipline, is a constant fight against it. Obey the Testing Goat, not
Refactoring Cat! We don’t need to implement our new, shiny design in a single big bang.
Let’s make small changes that take us from a working state to a working state, with our
design guiding us gently at each stage.

There are four items on our to-do list. The FT, with its Regexp didn't match, is telling
us that the second item—giving lists their own URL and identifier—is the one we should
work on next. Let’s have a go at fixing that, and only that.

The URL comes from the redirect after POST. In lists/tests.py, find test_home_page_re
directs_after_POST, and change the expected redirect location:

lists/tests.py.
self.assertEqual(response.status_code, 302)
self.assertEqual(response['location'], '/lists/the-only-list-in-the-world/')

86 | Chapter 6: Getting to the Minimum Viable Site

Does that seem slightly strange? Clearly, /lists/the-only-list-in-the-world isn’t a URL that’s
going to feature in the final design of our application. But we’re committed to changing
one thing at a time. While our application only supports one list, this is the only URL
that makes sense. We’re still moving forwards, in that we’ll have a different URL for our
list and our home page, which is a step along the way to a more REST-ful design. Later,
when we have multiple lists, it will be easy to change.

Another way of thinking about it is as a problem-solving technique:
our new URL design is currently not implemented, so it works for 0
items. Ultimately, we want to solve for n items, but solving for 1 item
is a good step along the way.

Running the unit tests gives us an expected fail:
$ python3 manage.py test lists
[...]
AssertionError: '/' != '/lists/the-only-list-in-the-world/'

We can go adjust our home_page view in lists/views.py:
lists/views.py.

def home_page(request):
 if request.method == 'POST':
 Item.objects.create(text=request.POST['item_text'])
 return redirect('/lists/the-only-list-in-the-world/')

 items = Item.objects.all()
 return render(request, 'home.html', {'items': items})

Of course, that will now totally break the functional tests, because there is no such URL
on our site yet. Sure enough, if you run them, you’ll find they fail just after trying to
submit the first item, saying that they can’t find the list table; it’s because URL /the-only-
list-in-the-world/ doesn’t exist yet!

 self.check_for_row_in_list_table('1: Buy peacock feathers')
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"id_list_table"}

So, let’s build a special URL for our one and only list.

Testing Views, Templates, and URLs Together with the
Django Test Client
In previous chapters we’ve used unit tests that check the URL resolution explicitly, that
test view functions by actually calling them, and that check that views render templates
correctly too. Django actually provides us with a little tool that can do all three at once,
which we’ll use now.

Testing Views, Templates, and URLs Together with the Django Test Client | 87

I wanted to show you how to “roll your own” first, partially because it’s a better intro‐
duction to how Django works, but also because those techniques are portable—you may
not always use Django, but you’ll almost always have view functions, templates, and
URL mappings, and now you know how to test them.

A New Test Class
So let’s use the Django test client. Open up lists/tests.py, and add a new test class called
ListViewTest. Then copy the method called test_home_page_displays_all_
list_items across from HomePageTest into our new class, rename it, and adapt it
slightly:

lists/tests.py (ch06l009).
class ListViewTest(TestCase):

 def test_displays_all_items(self):
 Item.objects.create(text='itemey 1')
 Item.objects.create(text='itemey 2')

 response = self.client.get('/lists/the-only-list-in-the-world/') #

 self.assertContains(response, 'itemey 1') #
 self.assertContains(response, 'itemey 2') #

Instead of calling the view function directly, we use the Django test client, which
is an attribute of the Django TestCase called self.client. We tell it to .get the
URL we’re testing—it’s actually a very similar API to the one that Selenium uses.

 Instead of using the slightly annoying assertIn/response.content.decode()
dance, Django provides the assertContains method which knows how to deal
with responses and the bytes of their content.

Some people really don’t like the Django test client. They say it pro‐
vides too much magic, and involves too much of the stack to be used
in a real “unit” test—you end up writing what are more properly called
integrated tests. They also complain that it is relatively slow (and
relatively is measured in milliseconds). We’ll explore this argument
further in a later chapter. For now we’ll use it because it’s extremely
convenient!

Let’s try running the test now:
AssertionError: 404 != 200 : Couldn't retrieve content: Response code was 404

A New URL
Our singleton list URL doesn’t exist yet. We fix that in superlists/urls.py.

88 | Chapter 6: Getting to the Minimum Viable Site

Watch out for trailing slashes in URLs, both here in the tests and in
urls.py—They’re a common source of bugs.

superlists/urls.py.
urlpatterns = [
 url(r'^$', views.home_page, name='home'),
 url(r'^lists/the-only-list-in-the-world/$', views.view_list, name='view_list'),
 # url(r'^admin/', include(admin.site.urls)),
]

Running the tests again, we get:
AttributeError: 'module' object has no attribute 'view_list'
[...]
FAILED (errors=4)

A New View Function
Nicely self-explanatory. Let’s create a dummy view function in lists/views.py:

lists/views.py.
def view_list(request):
 pass

Now we get:
ValueError: The view lists.views.view_list didn't return an HttpResponse
object. It returned None instead.

Let’s copy the two last lines from the home_page view and see if they’ll do the trick:
lists/views.py.

def view_list(request):
 items = Item.objects.all()
 return render(request, 'home.html', {'items': items})

Rerun the tests and they should pass:
Ran 8 tests in 0.016s
OK

And the FTs should get a little further on:
AssertionError: '2: Use peacock feathers to make a fly' not found in ['1: Buy
peacock feathers']

Green? Refactor
Time for a little tidying up.

In the Red/Green/Refactor dance, we’ve arrived at green, so we should see what needs
a refactor. We now have two views, one for the home page, and one for an individual

Testing Views, Templates, and URLs Together with the Django Test Client | 89

list. Both are currently using the same template, and passing it all the list items currently
in the database. If we look through our unit test methods, we can see some stuff we
probably want to change:

$ grep -E "class|def" lists/tests.py
class HomePageTest(TestCase):
 def test_root_url_resolves_to_home_page_view(self):
 def test_home_page_returns_correct_html(self):
 def test_home_page_displays_all_list_items(self):
 def test_home_page_can_save_a_POST_request(self):
 def test_home_page_redirects_after_POST(self):
 def test_home_page_only_saves_items_when_necessary(self):
class ListViewTest(TestCase):
 def test_displays_all_items(self):
class ItemModelTest(TestCase):
 def test_saving_and_retrieving_items(self):

We can definitely delete the test_home_page_displays_all_list_items method, it’s
no longer needed. If you run manage.py test lists now, it should say it ran 7 tests
instead of 8:

Ran 7 tests in 0.016s
OK

Next, we don’t actually need the home page to display all list items any more; it should
just show a single input box inviting you to start a new list.

A Separate Template for Viewing Lists
Since the home page and the list view are now quite distinct pages, they should be using
different HTML templates; home.html can have the single input box, whereas a new
template, list.html, can take care of showing the table of existing items.

Let’s add a new test to check that it’s using a different template:
lists/tests.py.

class ListViewTest(TestCase):

 def test_uses_list_template(self):
 response = self.client.get('/lists/the-only-list-in-the-world/')
 self.assertTemplateUsed(response, 'list.html')

 def test_displays_all_items(self):
 [...]

assertTemplateUsed is one of the more useful functions that the Django test client
gives us. Let’s see what it says:

AssertionError: False is not true : Template 'list.html' was not a template
used to render the response. Actual template(s) used: home.html

90 | Chapter 6: Getting to the Minimum Viable Site

Great! Let’s change the view:
lists/views.py.

def view_list(request):
 items = Item.objects.all()
 return render(request, 'list.html', {'items': items})

But, obviously, that template doesn’t exist yet. If we run the unit tests, we get:
django.template.base.TemplateDoesNotExist: list.html

Let’s create a new file at lists/templates/list.html:
$ touch lists/templates/list.html

A blank template, which gives us this error—good to know the tests are there to make
sure we fill it in:

AssertionError: False is not true : Couldn't find 'itemey 1' in response

The template for an individual list will reuse quite a lot of the stuff we currently have in
home.html, so we can start by just copying that:

$ cp lists/templates/home.html lists/templates/list.html

That gets the tests back to passing (green). Now let’s do a little more tidying up (refac‐
toring). We said the home page doesn’t need to list items, it only needs the new list input
field, so we can remove some lines from lists/templates/home.html, and maybe slightly
tweak the h1 to say “Start a new To-Do list”:

lists/templates/home.html.
<body>
 <h1>Start a new To-Do list</h1>
 <form method="POST">
 <input name="item_text" id="id_new_item" placeholder="Enter a to-do item" />
 {% csrf_token %}
 </form>
</body>

We rerun the unit tests to check that hasn’t broken anything—good…

There’s actually no need to pass all the items to the home.html template in our home_page
view, so we can simplify that:

lists/views.py.
def home_page(request):
 if request.method == 'POST':
 Item.objects.create(text=request.POST['item_text'])
 return redirect('/lists/the-only-list-in-the-world/')
 return render(request, 'home.html')

Rerun the unit tests; they still pass. Let’s run the functional tests:
AssertionError: '2: Use peacock feathers to make a fly' not found in ['1: Buy
peacock feathers']

We’re still failing to input the second item. What’s going on here? Well, it’s not imme‐
diately obvious, but it looks like our POST requests aren’t working the way they should.

Testing Views, Templates, and URLs Together with the Django Test Client | 91

After a bit of head-scratching and digging through the various views and templates, we
will eventually uncover the problem: both our forms are missing the action= attribute,
which means that, by default, they submit to the same URL they were rendered from.
That works for the home page, because it’s the only one that knows how to deal with
POST requests currently, but it won’t work for our view_list function, which is just
ignoring the POST.

We can fix that in lists/templates/list.html:
lists/templates/list.html (ch06l019).

 <form method="POST" action="/">

And try running the FT again:
 self.assertNotEqual(francis_list_url, edith_list_url)
AssertionError: 'http://localhost:8081/lists/the-only-list-in-the-world/' ==
'http://localhost:8081/lists/the-only-list-in-the-world/'

Hooray! We’re back to where we were earlier, which means our refactoring is complete
—we now have a unique URL for our one list. It may feel like we haven’t made much
headway since, functionally, the site still behaves almost exactly like it did when we
started the chapter, but this really is progress. We’ve started on the road to our new
design, and we’ve implemented a number of stepping stones without making anything
worse than it was before. Let’s commit our progress so far:

$ git status # should show 4 changed files and 1 new file, list.html
$ git add lists/templates/list.html
$ git diff # should show we've simplified home.html,
 # moved one test to a new class in lists/tests.py added a new view
 # in views.py, and simplified home_page and made one addition to
 # urls.py
$ git commit -a # add a message summarising the above, maybe something like
 # "new URL, view and template to display lists"

Another URL and View for Adding List Items
Where are we with our own to-do list?

92 | Chapter 6: Getting to the Minimum Viable Site

• Get FTs to clean up after themselves
• Adjust model so that items are associated

with different lists
• Add unique URLs for each list
• Add a URL for creating a new list via POST
• Add URLs for adding a new item to an

existing list via POST

We’ve sort of made progress on the third item, even if there’s still only one list in the
world. Item 2 is a bit scary. Can we do something about items 4 or 5?

Let’s have a new URL for adding new list items. If nothing else, it’ll simplify the home
page view.

A Test Class for New List Creation
Open up lists/tests.py, and move the test_home_page_can_save_a_POST_request and
test_home_page_redirects_after_POST methods into a new class, then change their
names:

lists/tests.py (ch06l021-1).
class NewListTest(TestCase):

 def test_saving_a_POST_request(self):
 request = HttpRequest()
 request.method = 'POST'
 [...]

 def test_redirects_after_POST(self):
 [...]

Now let’s use the Django test client:
lists/tests.py (ch06l021-2).

class NewListTest(TestCase):

 def test_saving_a_POST_request(self):
 self.client.post(
 '/lists/new',
 data={'item_text': 'A new list item'}
)
 self.assertEqual(Item.objects.count(), 1)
 new_item = Item.objects.first()
 self.assertEqual(new_item.text, 'A new list item')

 def test_redirects_after_POST(self):

Another URL and View for Adding List Items | 93

 response = self.client.post(
 '/lists/new',
 data={'item_text': 'A new list item'}
)
 self.assertEqual(response.status_code, 302)
 self.assertEqual(response['location'], '/lists/the-only-list-in-the-world/')

This is another place to pay attention to trailing slashes, incidentally. It’s /new, with no
trailing slash. The convention I’m using is that URLs without a trailing slash are “action”
URLs which modify the database.

Try running that:
 self.assertEqual(Item.objects.count(), 1)
AssertionError: 0 != 1
[...]
 self.assertEqual(response.status_code, 302)
AssertionError: 404 != 302

The first failure tells us we’re not saving a new item to the database, and the second says
that, instead of returning a 302 redirect, our view is returning a 404. That’s because we
haven’t built a URL for /lists/new, so the client.post is just getting a 404 response.

Do you remember how we split this out into two tests in the last
chapter? If we only had one test that checked both the saving and the
redirect, it would have failed on the 0 != 1 failure, which would have
been much harder to debug. Ask me how I know this.

A URL and View for New List Creation
Let’s build our new URL now:

superlists/urls.py.
urlpatterns = [
 url(r'^$', views.home_page, name='home'),
 url(r'^lists/new$', views.new_list, name='new_list'),
 url(r'^lists/the-only-list-in-the-world/$', views.view_list, name='view_list'),
 # url(r'^admin/', include(admin.site.urls)),
]

Next we get a no attribute 'new_list', so let’s fix that, in lists/views.py:
lists/views.py.

def new_list(request):
 pass

Then we get “The view lists.views.new_list didn’t return an HttpResponse object”. (This
is getting rather familiar!) We could return a raw HttpResponse, but since we know we’ll
need a redirect, let’s borrow a line from home_page:

94 | Chapter 6: Getting to the Minimum Viable Site

lists/views.py.
def new_list(request):
 return redirect('/lists/the-only-list-in-the-world/')

That gives:
 self.assertEqual(Item.objects.count(), 1)
AssertionError: 0 != 1
[...]
AssertionError: 'http://testserver/lists/the-only-list-in-the-world/' !=
'/lists/the-only-list-in-the-world/'

Let’s start with the first failure, because it’s reasonably straightforward. We borrow an‐
other line from home_page:

lists/views.py.
def new_list(request):
 Item.objects.create(text=request.POST['item_text'])
 return redirect('/lists/the-only-list-in-the-world/')

And that takes us down to just the second, unexpected failure:
 self.assertEqual(response['location'],
'/lists/the-only-list-in-the-world/')
AssertionError: 'http://testserver/lists/the-only-list-in-the-world/' !=
'/lists/the-only-list-in-the-world/'

It’s happening because the Django test client behaves slightly differently to our pure view
function; it’s using the full Django stack which adds the domain to our relative URL.
Let’s use another of Django’s test helper functions, instead of our two-step check for the
redirect:

lists/tests.py.
 def test_redirects_after_POST(self):
 response = self.client.post(
 '/lists/new',
 data={'item_text': 'A new list item'}
)
 self.assertRedirects(response, '/lists/the-only-list-in-the-world/')

That now passes:
Ran 8 tests in 0.030s

OK

Removing Now-Redundant Code and Tests
We’re looking good. Since our new views are now doing most of the work that home_page
used to do, we should be able to massively simplify it. Can we remove the whole if
request.method == 'POST' section, for example?

Another URL and View for Adding List Items | 95

lists/views.py.
def home_page(request):
 return render(request, 'home.html')

Yep!
OK

And while we’re at it, we can remove the now-redundant test_home_page_on
ly_saves_ items_when_necessary test too!

Doesn’t that feel good? The view functions are looking much simpler. We rerun the tests
to make sure…

Ran 7 tests in 0.016s
OK

Pointing Our Forms at the New URL
Finally, let’s wire up our two forms to use this new URL. In both home.html and lists.html:

lists/templates/home.html, lists/templates/list.html.
 <form method="POST" action="/lists/new">

And we rerun our FTs to make sure everything still works, or works at least as well as
it did earlier…

AssertionError: 'http://localhost:8081/lists/the-only-list-in-the-world/' ==
'http://localhost:8081/lists/the-only-list-in-the-world/'

Yup, we get to the same point we did before. That’s a nicely self-contained commit, in
that we’ve made a bunch of changes to our URLs, our views.py is looking much neater
and tidier, and we’re sure the application is still working as well as it did before. We’re
getting good at this refactoring malarkey!

$ git status # 5 changed files
$ git diff # URLs for forms x2, moved code in views + tests, new URL
$ git commit -a

And we can cross out an item on the to-do list:

96 | Chapter 6: Getting to the Minimum Viable Site

• Get FTs to clean up after themselves
• Adjust model so that items are associated

with different lists
• Add unique URLs for each list
• Add a URL for creating a new list via POST
• Add URLs for adding a new item to an

existing list via POST

Adjusting Our Models
Enough housekeeping with our URLs. It’s time to bite the bullet and change our models.
Let’s adjust the model unit test. Just for a change, I’ll present the changes in the form of
a diff:

lists/tests.py.
@@ -3,7 +3,7 @@ from django.http import HttpRequest
 from django.template.loader import render_to_string
 from django.test import TestCase

-from lists.models import Item
+from lists.models import Item, List
 from lists.views import home_page

 class HomePageTest(TestCase):
@@ -60,22 +60,32 @@ class ListViewTest(TestCase):

-class ItemModelTest(TestCase):
+class ListAndItemModelsTest(TestCase):

 def test_saving_and_retrieving_items(self):
+ list_ = List()
+ list_.save()
+
 first_item = Item()
 first_item.text = 'The first (ever) list item'
+ first_item.list = list_
 first_item.save()

 second_item = Item()
 second_item.text = 'Item the second'
+ second_item.list = list_
 second_item.save()

Adjusting Our Models | 97

+ saved_list = List.objects.first()
+ self.assertEqual(saved_list, list_)
+
 saved_items = Item.objects.all()
 self.assertEqual(saved_items.count(), 2)

 first_saved_item = saved_items[0]
 second_saved_item = saved_items[1]
 self.assertEqual(first_saved_item.text, 'The first (ever) list item')
+ self.assertEqual(first_saved_item.list, list_)
 self.assertEqual(second_saved_item.text, 'Item the second')
+ self.assertEqual(second_saved_item.list, list_)

We create a new List object, and then we assign each item to it by assigning it as
its .list property. We check the list is properly saved, and we check that the two items
have also saved their relationship to the list. You’ll also notice that we can compare list
objects with each other directly (saved_list and list)—behind the scenes, these will
compare themselves by checking their primary key (the .id attribute) is the same.

I’m using the variable name list_ to avoid “shadowing” the Python
built-in list function. It’s ugly, but all the other options I tried were
equally ugly or worse (my_list, the_list, list1, listey…).

Time for another unit-test/code cycle.

For the first couple of iterations, rather than explicitly showing you what code to enter
in between every test run, I’m only going to show you the expected error messages from
running the tests. I’ll let you figure out what each minimal code change should be on
your own:

Your first error should be:
ImportError: cannot import name 'List'

Fix that, then you should see:
AttributeError: 'List' object has no attribute 'save'

Next you should see:
django.db.utils.OperationalError: no such table: lists_list

So we run a makemigrations:
$ python3 manage.py makemigrations
Migrations for 'lists':
 0003_list.py:
 - Create model List

And then you should see:

98 | Chapter 6: Getting to the Minimum Viable Site

 self.assertEqual(first_saved_item.list, list_)
AttributeError: 'Item' object has no attribute 'list'

A Foreign Key Relationship
How do we give our Item a list attribute? Let’s just try naively making it like the text
attribute:

lists/models.py.
from django.db import models

class List(models.Model):
 pass

class Item(models.Model):
 text = models.TextField(default='')
 list = models.TextField(default='')

As usual, the tests tell us we need a migration:
$ python3 manage.py test lists
[...]
django.db.utils.OperationalError: no such column: lists_item.list

$ python3 manage.py makemigrations
Migrations for 'lists':
 0004_item_list.py:
 - Add field list to item

Let’s see what that gives us:
AssertionError: 'List object' != <List: List object>

We’re not quite there. Look closely at each side of the !=. Django has only saved the
string representation of the List object. To save the relationship to the object itself, we
tell Django about the relationship between the two classes using a ForeignKey:

lists/models.py.
from django.db import models

class List(models.Model):
 pass

class Item(models.Model):
 text = models.TextField(default='')
 list = models.ForeignKey(List, default=None)

That’ll need a migration too. Since the last one was a red herring, let’s delete it and replace
it with a new one:

$ rm lists/migrations/0004_item_list.py
$ python3 manage.py makemigrations
Migrations for 'lists':

Adjusting Our Models | 99

 0004_item_list.py:
 - Add field list to item

Deleting migrations is dangerous. If you delete a migration that’s
already been applied to a database somewhere, Django will be con‐
fused about what state it’s in, and how to apply future migrations.
You should only do it when you’re sure the migration hasn’t been
used. A good rule of thumb is that you should never delete a migra‐
tion that’s been committed to your VCS.

Adjusting the Rest of the World to Our New Models
Back in our tests, now what happens?

$ python3 manage.py test lists
[...]
ERROR: test_displays_all_items (lists.tests.ListViewTest)
django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id
[...]
ERROR: test_redirects_after_POST (lists.tests.NewListTest)
django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id
[...]
ERROR: test_saving_a_POST_request (lists.tests.NewListTest)
django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id

Ran 7 tests in 0.021s

FAILED (errors=3)

Oh dear!

There is some good news. Although it’s hard to see, our model tests are passing. But
three of our view tests are failing nastily.

The reason is because of the new relationship we’ve introduced between Items and Lists,
which requires each item to have a parent list, which our old tests weren’t prepared for.

Still, this is exactly why we have tests. Let’s get them working again. The easiest is the
ListViewTest; we just create a parent list for our two test items:

lists/tests.py (ch06l031).
class ListViewTest(TestCase):

 def test_displays_all_items(self):
 list_ = List.objects.create()
 Item.objects.create(text='itemey 1', list=list_)
 Item.objects.create(text='itemey 2', list=list_)

That gets us down to two failing tests, both on tests that try to POST to our new_list
view. Decoding the tracebacks using our usual technique, working back from error, to
line of test code, to the line of our own code that caused the failure, we identify:

100 | Chapter 6: Getting to the Minimum Viable Site

File "/workspace/superlists/lists/views.py", line 14, in new_list
Item.objects.create(text=request.POST['item_text'])

It’s when we try and create an item without a parent list. So we make a similar change
in the view:

lists/views.py.
from lists.models import Item, List
[...]
def new_list(request):
 list_ = List.objects.create()
 Item.objects.create(text=request.POST['item_text'], list=list_)
 return redirect('/lists/the-only-list-in-the-world/')

And that gets our tests passing again:
OK

Are you cringing internally at this point? Arg! This feels so wrong, we create a new list
for every single new item submission, and we’re still just displaying all items as if they
belong to the same list! I know, I feel the same. The step-by-step approach, in which you
go from working code to working code, is counterintuitive. I always feel like just diving
in and trying to fix everything all in one go, instead of going from one weird half-finished
state to another. But remember the Testing Goat! When you’re up a mountain, you want
to think very carefully about where you put each foot, and take one step at a time,
checking at each stage that the place you’ve put it hasn’t caused you to fall off a cliff.

So just to reassure ourselves that things have worked, we rerun the FT. Sure enough, it
gets all the way through to where we were before. We haven’t broken anything, and we’ve
made a change to the database. That’s something to be pleased with! Let’s commit:

$ git status # 3 changed files, plus 2 migrations
$ git add lists
$ git diff --staged
$ git commit

And we can cross out another item on the to-do list:

Adjusting Our Models | 101

• Get FTs to clean up after themselves
• Adjust model so that items are associated

with different lists
• Add unique URLs for each list
• Add a URL for creating a new list via POST
• Add URLs for adding a new item to an

existing list via POST

Each List Should Have Its Own URL
What shall we use as the unique identifier for our lists? Probably the simplest thing, for
now, is just to use the auto-generated id field from the database. Let’s change List
ViewTest so that the two tests point at new URLs.

We’ll also change the old test_displays_all_items test and call it test_displays_on
ly_items_for_that_list instead, and make it check that only the items for a specific
list are displayed:

lists/tests.py (ch06l033-1).
class ListViewTest(TestCase):

 def test_uses_list_template(self):
 list_ = List.objects.create()
 response = self.client.get('/lists/%d/' % (list_.id,))
 self.assertTemplateUsed(response, 'list.html')

 def test_displays_only_items_for_that_list(self):
 correct_list = List.objects.create()
 Item.objects.create(text='itemey 1', list=correct_list)
 Item.objects.create(text='itemey 2', list=correct_list)
 other_list = List.objects.create()
 Item.objects.create(text='other list item 1', list=other_list)
 Item.objects.create(text='other list item 2', list=other_list)

 response = self.client.get('/lists/%d/' % (correct_list.id,))

 self.assertContains(response, 'itemey 1')
 self.assertContains(response, 'itemey 2')
 self.assertNotContains(response, 'other list item 1')
 self.assertNotContains(response, 'other list item 2')

102 | Chapter 6: Getting to the Minimum Viable Site

If you’re not familiar with Python string substitutions, or the printf
function from C, maybe that %d is a little confusing? Dive Into Python
has a good overview, if you want to go look them up quickly. We’ll
see an alternative string substitution syntax later in the book too.

Running the unit tests gives an expected 404, and another related error:
FAIL: test_displays_only_items_for_that_list (lists.tests.ListViewTest)
AssertionError: 404 != 200 : Couldn't retrieve content: Response code was 404
(expected 200)
[...]
FAIL: test_uses_list_template (lists.tests.ListViewTest)
AssertionError: No templates used to render the response

Capturing Parameters from URLs
It’s time to learn how we can pass parameters from URLs to views:

superlists/urls.py.
urlpatterns = [
 url(r'^$', views.home_page, name='home'),
 url(r'^lists/new$', 'lists.views.new_list', name='new_list'),
 url(r'^lists/(.+)/$', 'lists.views.view_list', name='view_list'),
 # url(r'^admin/', include(admin.site.urls)),
]

We adjust the regular expression for our URL to include a capture group, (.+), which
will match any characters, up to the following /. The captured text will get passed to the
view as an argument.

In other words, if we go to the URL /lists/1/, view_list will get a second argument after
the normal request argument, namely the string "1". If we go to /lists/foo/, we get
view_list(request, "foo").

But our view doesn’t expect an argument yet! Sure enough, this causes problems:
ERROR: test_displays_only_items_for_that_list (lists.tests.ListViewTest)
ERROR: test_uses_list_template (lists.tests.ListViewTest)
ERROR: test_redirects_after_POST (lists.tests.NewListTest)
[...]
TypeError: view_list() takes 1 positional argument but 2 were given

We can fix that easily with a dummy parameter in views.py:
lists/views.py.

def view_list(request, list_id):
 [...]

Now we’re down to our expected failure:
FAIL: test_displays_only_items_for_that_list (lists.tests.ListViewTest)
AssertionError: 1 != 0 : Response should not contain 'other list item 1'

Each List Should Have Its Own URL | 103

http://www.diveintopython.net/

Let’s make our view discriminate over which items it sends to the template:
lists/views.py.

def view_list(request, list_id):
 list_ = List.objects.get(id=list_id)
 items = Item.objects.filter(list=list_)
 return render(request, 'list.html', {'items': items})

Adjusting new_list to the New World
Now we get errors in another test:

ERROR: test_redirects_after_POST (lists.tests.NewListTest)
ValueError: invalid literal for int() with base 10:
'the-only-list-in-the-world'

Let’s take a look at this test then, since it’s whining:
lists/tests.py.

class NewListTest(TestCase):
 [...]

 def test_redirects_after_POST(self):
 response = self.client.post(
 '/lists/new',
 data={'item_text': 'A new list item'}
)
 self.assertRedirects(response, '/lists/the-only-list-in-the-world/')

It looks like it hasn’t been adjusted to the new world of Lists and Items. The test should
be saying that this view redirects to the URL of the new list it just created:

lists/tests.py (ch06l036-1).
 def test_redirects_after_POST(self):
 response = self.client.post(
 '/lists/new',
 data={'item_text': 'A new list item'}
)
 new_list = List.objects.first()
 self.assertRedirects(response, '/lists/%d/' % (new_list.id,))

That still gives us the invalid literal error. We take a look at the view itself, and change
it so it redirects to a valid place:

lists/views.py (ch06l036-2).
def new_list(request):
 list_ = List.objects.create()
 Item.objects.create(text=request.POST['item_text'], list=list_)
 return redirect('/lists/%d/' % (list_.id,))

That gets us back to passing unit tests. What about the functional tests? We must be
almost there?

AssertionError: '2: Use peacock feathers to make a fly' not found in ['1: Use
peacock feathers to make a fly']

104 | Chapter 6: Getting to the Minimum Viable Site

The functional tests have warned us of a regression in our application: because we’re
now creating a new list for every single POST submission, we have broken the ability
to add multiple items to a list. This is exactly what we have functional tests for!

And it correlates nicely with the last item on our to-do list:

• Get FTs to clean up after themselves
• Adjust model so that items are associated

with different lists
• Add unique URLs for each list
• Add a URL for creating a new list via POST
• Add URLs for adding a new item to an

existing list via POST

One More View to Handle Adding Items to an Existing List
We need a URL and view to handle adding a new item to an existing list (/lists/<list_id>/
add_item). We’re getting pretty good at these now, so let’s knock one together quickly:

lists/tests.py.
class NewItemTest(TestCase):

 def test_can_save_a_POST_request_to_an_existing_list(self):
 other_list = List.objects.create()
 correct_list = List.objects.create()

 self.client.post(
 '/lists/%d/add_item' % (correct_list.id,),
 data={'item_text': 'A new item for an existing list'}
)

 self.assertEqual(Item.objects.count(), 1)
 new_item = Item.objects.first()
 self.assertEqual(new_item.text, 'A new item for an existing list')
 self.assertEqual(new_item.list, correct_list)

 def test_redirects_to_list_view(self):
 other_list = List.objects.create()
 correct_list = List.objects.create()

One More View to Handle Adding Items to an Existing List | 105

 response = self.client.post(
 '/lists/%d/add_item' % (correct_list.id,),
 data={'item_text': 'A new item for an existing list'}
)

 self.assertRedirects(response, '/lists/%d/' % (correct_list.id,))

We get:
AssertionError: 0 != 1
[...]
AssertionError: 301 != 302 : Response didn't redirect as expected: Response
code was 301 (expected 302)

Beware of Greedy Regular Expressions!
That’s a little strange. We haven’t actually specified a URL for /lists/1/add_item yet, so
our expected failure is 404 != 302. Why are we getting a 301?

This was a bit of a puzzler, but it’s because we’ve used a very “greedy” regular expression
in our URL:

 url(r'^lists/(.+)/$', 'lists.views.view_list', name='view_list'),

Django has some built-in code to issue a permanent redirect (301) whenever someone
asks for a URL which is almost right, except for a missing slash. In this case, /lists/1/
add_item/ would be a match for lists/(.+)/, with the (.+) capturing 1/add_item. So
Django “helpfully” guesses that we actually wanted the URL with a trailing slash.

We can fix that by making our URL pattern explicitly capture only numerical digits, by
using the regular expression \d:

superlists/urls.py.
 url(r'^lists/(\d+)/$', views.view_list, name='view_list'),

That gives:
AssertionError: 0 != 1
[...]
AssertionError: 404 != 302 : Response didn't redirect as expected: Response
code was 404 (expected 302)

The Last New URL
Now we’ve got our expected 404, let’s add a new URL for adding new items to existing
lists:

superlists/urls.py.
urlpatterns = [
 url(r'^$', views.home_page, name='home'),
 url(r'^lists/new$', views.new_list, name='new_list'),
 url(r'^lists/(\d+)/$', views.view_list, name='view_list'),
 url(r'^lists/(\d+)/add_item$', views.add_item, name='add_item'),

106 | Chapter 6: Getting to the Minimum Viable Site

 # url(r'^admin/', include(admin.site.urls)),
]

Three very similar-looking URLs there. Let’s make a note on our to-do list; they look
like good candidates for a refactoring.

• Get FTs to clean up after themselves
• Adjust model so that items are associated

with different lists
• Add unique URLs for each list
• Add a URL for creating a new list via POST
• Add URLs for adding a new item to an

existing list via POST
• Refactor away some duplication in urls.py

Back to the tests, we get the usual missing module objects:
AttributeError: 'module' object has no attribute 'add_item'

The Last New View
Let’s try:

lists/views.py.
def add_item(request):
 pass

Aha:
TypeError: add_item() takes 1 positional argument but 2 were given

lists/views.py.
def add_item(request, list_id):
 pass

And then:
ValueError: The view lists.views.add_item didn't return an HttpResponse object.
It returned None instead.

One More View to Handle Adding Items to an Existing List | 107

We can copy the redirect from new_list and the List.objects.get from view_list:
lists/views.py.

def add_item(request, list_id):
 list_ = List.objects.get(id=list_id)
 return redirect('/lists/%d/' % (list_.id,))

That takes us to:
 self.assertEqual(Item.objects.count(), 1)
AssertionError: 0 != 1

Finally we make it save our new list item:
lists/views.py.

def add_item(request, list_id):
 list_ = List.objects.get(id=list_id)
 Item.objects.create(text=request.POST['item_text'], list=list_)
 return redirect('/lists/%d/' % (list_.id,))

And we’re back to passing tests.
Ran 9 tests in 0.050s

OK

But How to Use That URL in the Form?
Now we just need to use this URL in our list.html template. Open it up and adjust the
form tag…

lists/templates/list.html.
 <form method="POST" action="but what should we put here?">

... oh. To get the URL for adding to the current list, the template needs to know what
list it’s rendering, as well as what the items are. We want to be able to do something like
this:

lists/templates/list.html.
 <form method="POST" action="/lists/{{ list.id }}/add_item">

For that to work, the view will have to pass the list to the template. Let’s create a new
unit test in ListViewTest:

lists/tests.py (ch06l041).
 def test_passes_correct_list_to_template(self):
 other_list = List.objects.create()
 correct_list = List.objects.create()
 response = self.client.get('/lists/%d/' % (correct_list.id,))
 self.assertEqual(response.context['list'], correct_list)

response.context represents the context we’re going to pass into the render function
—the Django test client puts it on the response object for us, to help with testing. That
gives us:

KeyError: 'list'

108 | Chapter 6: Getting to the Minimum Viable Site

because we’re not passing list into the template. It actually gives us an opportunity to
simplify a little:

lists/views.py.
def view_list(request, list_id):
 list_ = List.objects.get(id=list_id)
 return render(request, 'list.html', {'list': list_})

That, of course, will break because the template is expecting items:
AssertionError: False is not true : Couldn't find 'itemey 1' in response

But we can fix it in list.html, as well as adjusting the form’s POST action:
lists/templates/list.html (ch06l043).

 <form method="POST" action="/lists/{{ list.id }}/add_item">

 [...]

 {% for item in list.item_set.all %}
 <tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
 {% endfor %}

.item_set is called a “reverse lookup”—it’s one of Django’s incredibly useful bits of
ORM that lets you look up an object’s related items from a different table…

So that gets the unit tests to pass:
Ran 10 tests in 0.060s

OK

How about the FT?
$ python3 manage.py test functional_tests
Creating test database for alias 'default'...
.

Ran 1 test in 5.824s

OK
Destroying test database for alias 'default'...

Yes! And a quick check on our to-do list:

One More View to Handle Adding Items to an Existing List | 109

• Get FTs to clean up after themselves
• Adjust model so that items are associated

with different lists
• Add unique URLs for each list
• Add a URL for creating a new list via POST
• Add URLs for adding a new item to an

existing list via POST
• Refactor away some duplication in urls.py

Irritatingly, the Testing Goat is a stickler for tying up loose ends too, so we’ve got to do
this one final thing.

Before we start, we’ll do a commit—always make sure you’ve got a commit of a working
state before embarking on a refactor:

$ git diff
$ git commit -am "new URL + view for adding to existing lists. FT passes :-)"

A Final Refactor Using URL includes
superlists/urls.py is really meant for URLs that apply to your entire site. For URLs that
only apply to the lists app, Django encourages us to use a separate lists/urls.py, to make
the app more self-contained. The simplest way to make one is to use a copy of the existing
urls.py:

$ cp superlists/urls.py lists/

Then we replace three lines in superlists/urls.py with an include. Notice that include
can take a part of a URL regex as a prefix, which will be applied to all the included URLs
(this is the bit where we reduce duplication, as well as giving our code a better structure):

superlists/urls.py.
from django.conf.urls import include, url
from lists import views as list_views #
from lists import urls as list_urls #

urlpatterns = [
 url(r'^$', list_views.home_page, name='home'),
 url(r'^lists/', include(list_urls)),
 # url(r'^admin/', include(admin.site.urls)),
]

110 | Chapter 6: Getting to the Minimum Viable Site

 While we’re at it, we use the import x as y syntax to alias views and urls. This
is good practice in your top-level urls.py, because it will let us import views and
urls from multiple apps if we need to—and indeed we will need to later on in
the book.

Back in lists/urls.py we can trim down to only include the latter part of our three URLs,
and none of the other stuff from the parent urls.py:

lists/urls.py (ch06l045).
from django.conf.urls import url
from lists import views

urlpatterns = [
 url(r'^new$', views.new_list, name='new_list'),
 url(r'^(\d+)/$', views.view_list, name='view_list'),
 url(r'^(\d+)/add_item$', views.add_item, name='add_item'),
]

Rerun the unit tests to check everything worked. When I did it, I couldn’t quite believe
I did it correctly on the first go. It always pays to be skeptical of your own abilities, so I
deliberately changed one of the URLs slightly, just to check if it broke a test. It did. We’re
covered.

Feel free to try it yourself! Remember to change it back, check the tests all pass again,
and then commit:

$ git status
$ git add lists/urls.py
$ git add superlists/urls.py
$ git diff --staged
$ git commit

Phew. A marathon chapter. But we covered a number of important topics, starting with
test isolation, and then some thinking about design. We covered some rules of thumb
like “YAGNI” and “three strikes then refactor”. But, most importantly, we saw how to
adapt an existing site step by step, going from working state to working state, in order
to iterate towards a new design.

I’d say we’re pretty close to being able to ship this site, as the very first beta of the superlists
website that’s going to take over the world. Maybe it needs a little prettification first…
let’s look at what we need to do to deploy it in the next couple of chapters.

A Final Refactor Using URL includes | 111

Useful TDD Concepts and Rules Of Thumb
Test Isolation and Global State

Different tests shouldn’t affect one another. This means we need to reset any per‐
manent state at the end of each test. Django’s test runner helps us do this by creating
a test database, which it wipes clean in between each test. (See also Chapter 19.)

Working State to Working State (aka The Testing Goat vs. Refactoring Cat)
Our natural urge is often to dive in and fix everything at once…but if we’re not
careful, we’ll end up like Refactoring Cat, in a situation with loads of changes to
our code and nothing working. The Testing Goat encourages us to take one step at
a time, and go from working state to working state.

YAGNI
You ain’t gonna need it! Avoid the temptation to write code that you think might
be useful, just because it suggests itself at the time. Chances are, you won’t use it, or
you won’t have anticipated your future requirements correctly. See Chapter 18 for
one methodology that helps us avoid this trap.

112 | Chapter 6: Getting to the Minimum Viable Site

PART II
Web Development Sine Qua Nons

Real developers ship.
— Jeff Atwood

If this were just a guide to TDD in a normal programming field, we might be able to
congratulate ourselves about now. After all, we’ve got some solid basics of TDD and
Django under our belts; we’ve got all we need to start building a website.

But, real developers ship, and in order to ship, we’re going to have to tackle some of the
trickier but unavoidable aspects of web development: static files, form data validation,
the dreaded JavaScript, but most hairy of all, deployment to a production server.

At every stage, TDD can help us to get these things right too.

In this section, I’m still trying to keep the learning curve relatively soft, but we will meet
several major new concepts and technologies. I’ll only be able to dip lightly into each
one—I hope to demonstrate enough of each to get you started when you get to your
own project, but you will also need to do your own reading around when you start to
apply these topics in “real life”.

For example, if you weren’t familiar with Django before starting on the book, you may
find that taking a little time to run through the official Django tutorial at this point
would complement what you’ve learned so far nicely, and will leave you more confident
with the Django stuff over the next few chapters, so you can focus on the core concepts.

Oh, but there’s lots of fun stuff coming up! Just you wait!

CHAPTER 7
Prettification: Layout and Styling,

and What to Test About It

We’re starting to think about releasing the first version of our site, but we’re a bit em‐
barrassed by how ugly it looks at the moment. In this chapter, we’ll cover some of the
basics of styling, including integrating an HTML/CSS framework called Bootstrap. We’ll
learn how static files work in Django, and what we need to do about testing them.

What to Functionally Test About Layout and Style
Our site is undeniably a bit unattractive at the moment (Figure 7-1).

If you spin up your dev server with manage.py runserver, you may
run into a database error “table lists_item has no column named
list_id”. You need to update your local database to reflect the changes
we made in models.py. Use manage.py migrate.

We can’t be adding to Python’s reputation for being ugly, so let’s do a tiny bit of polishing.
Here’s a few things we might want:

• A nice large input field for adding new and existing lists
• A large, attention-grabbing, centered box to put it in

How do we apply TDD to these things? Most people will tell you you shouldn’t test
aesthetics, and they’re right. It’s a bit like testing a constant, in that tests usually wouldn’t
add any value.

115

http://grokcode.com/746/dear-python-why-are-you-so-ugly/

Figure 7-1. Our homepage, looking a little ugly…

But we can test the implementation of our aesthetics—just enough to reassure ourselves
that things are working. For example, we’re going to use Cascading Style Sheets (CSS)
for our styling, and they are loaded as static files. Static files can be a bit tricky to con‐
figure (especially, as we’ll see later, when you move off your own PC and onto a hosting
site), so we’ll want some kind of simple “smoke test” that the CSS has loaded. We don’t
have to test fonts and colours and every single pixel, but we can do a quick check that
the main input box is aligned the way we want it on each page, and that will give us
confidence that the rest of the styling for that page is probably loaded too.

We start with a new test method inside our functional test:
functional_tests/tests.py (ch07l001).

class NewVisitorTest(LiveServerTestCase):
 [...]

 def test_layout_and_styling(self):
 # Edith goes to the home page
 self.browser.get(self.live_server_url)
 self.browser.set_window_size(1024, 768)

 # She notices the input box is nicely centered
 inputbox = self.browser.find_element_by_id('id_new_item')
 self.assertAlmostEqual(
 inputbox.location['x'] + inputbox.size['width'] / 2,
 512,
 delta=5
)

116 | Chapter 7: Prettification: Layout and Styling, and What to Test About It

A few new things here. We start by setting the window size to a fixed size. We then find
the input element, look at its size and location, and do a little maths to check whether
it seems to be positioned in the middle of the page. assertAlmostEqual helps us to deal
with rounding errors by letting us specify that we want our arithmetic to work to within
plus or minus five pixels.

If we run the functional tests, we get:
$ python3 manage.py test functional_tests
Creating test database for alias 'default'...
.F
==
FAIL: test_layout_and_styling (functional_tests.tests.NewVisitorTest)

Traceback (most recent call last):
 File "/workspace/superlists/functional_tests/tests.py", line 104, in
test_layout_and_styling
 delta=5
AssertionError: 111.0 != 512 within 5 delta

Ran 2 tests in 9.188s

FAILED (failures=1)
Destroying test database for alias 'default'...

That’s the expected failure. Still, this kind of FT is easy to get wrong, so let’s use a quick-
and-dirty “cheat” solution, to check that the FT also passes when the input box is cen‐
tered. We’ll delete this code again almost as soon as we’ve used it to check the FT:

lists/templates/home.html (ch07l002).
<form method="POST" action="/lists/new">
 <p style="text-align: center;">
 <input name="item_text" id="id_new_item" placeholder="Enter a to-do item" />
 </p>
 {% csrf_token %}
</form>

That passes, which means the FT works. Let’s extend it to make sure that the input box
is also center-aligned on the page for a new list:

functional_tests/tests.py (ch07l003).
 # She starts a new list and sees the input is nicely
 # centered there too
 inputbox.send_keys('testing\n')
 inputbox = self.browser.find_element_by_id('id_new_item')
 self.assertAlmostEqual(
 inputbox.location['x'] + inputbox.size['width'] / 2,
 512,
 delta=5
)

That gives us another test failure:

What to Functionally Test About Layout and Style | 117

1. On Windows, you may not have wget and unzip, but I’m sure you can figure out how to download Bootstrap,
unzip it, and put the contents of the dist folder into the lists/static/bootstrap folder.

 File "/workspace/superlists/functional_tests/tests.py", line 114, in
test_layout_and_styling
 delta=5
AssertionError: 111.0 != 512 within 5 delta

Let’s commit just the FT:
$ git add functional_tests/tests.py
$ git commit -m "first steps of FT for layout + styling"

Now it feels like we’re justified in finding a “proper” solution to our need for some better
styling for our site. We can back out our hacky <p style="text-align: center">:

$ git reset --hard

git reset --hard is the “take off and nuke the site from orbit” Git
command, so be careful with it—it blows away all your un-
committed changes. Unlike almost everything else you can do with
Git, there’s no way of going back after this one.

Prettification: Using a CSS Framework
Design is hard, and doubly so now that we have to deal with mobile, tablets, and so
forth. That’s why many programmers, particularly lazy ones like me, are turning to CSS
frameworks to solve some of those problems for them. There are lots of frameworks
out there, but one of the earliest and most popular is Twitter’s Bootstrap. Let’s use that.

You can find bootstrap at http://getbootstrap.com/.

We’ll download it and put it in a new folder called static inside the lists app:1

$ wget -O bootstrap.zip https://github.com/twbs/bootstrap/releases/download/\
v3.3.4/bootstrap-3.3.4-dist.zip
$ unzip bootstrap.zip
$ mkdir lists/static
$ mv bootstrap-3.3.4-dist lists/static/bootstrap
$ rm bootstrap.zip

Bootstrap comes with a plain, uncustomised installation in the dist folder. We’re going
to use that for now, but you should really never do this for a real site—vanilla Bootstrap
is instantly recognisable, and a big signal to anyone in the know that you couldn’t be
bothered to style your site. Learn how to use LESS and change the font, if nothing else!
There is info in Bootstrap’s docs, or there’s a good guide here.

Our lists folder will end up looking like this:

118 | Chapter 7: Prettification: Layout and Styling, and What to Test About It

http://getbootstrap.com/
http://coding.smashingmagazine.com/2013/03/12/customizing-bootstrap/

$ tree lists
lists
├── __init__.py
├── __pycache__
│ └── [...]
├── admin.py
├── models.py
├── static
│ └── bootstrap
│ ├── css
│ │ ├── bootstrap.css
│ │ ├── bootstrap.css.map
│ │ ├── bootstrap.min.css
│ │ ├── bootstrap-theme.css
│ │ ├── bootstrap-theme.css.map
│ │ └── bootstrap-theme.min.css
│ ├── fonts
│ │ ├── glyphicons-halflings-regular.eot
│ │ ├── glyphicons-halflings-regular.svg
│ │ ├── glyphicons-halflings-regular.ttf
│ │ ├── glyphicons-halflings-regular.woff
│ │ └── glyphicons-halflings-regular.woff2
│ └── js
│ ├── bootstrap.js
│ ├── bootstrap.min.js
│ └── npm.js
├── templates
│ ├── home.html
│ └── list.html
├── tests.py
├── urls.py
└── views.py

If we have a look at the “Getting Started” section of the Bootstrap documentation, you’ll
see it wants our HTML template to include something like this:

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Bootstrap 101 Template</title>
 <!-- Bootstrap -->
 <link href="css/bootstrap.min.css" rel="stylesheet">
 </head>
 <body>
 <h1>Hello, world!</h1>
 <script src="http://code.jquery.com/jquery.js"></script>
 <script src="js/bootstrap.min.js"></script>
 </body>
 </html>

Prettification: Using a CSS Framework | 119

http://getbootstrap.com/getting-started/#template

We already have two HTML templates. We don’t want to be adding a whole load of
boilerplate code to each, so now feels like the right time to apply the “Don’t repeat
yourself ” rule, and bring all the common parts together. Thankfully, the Django tem‐
plate language makes that easy using something called template inheritance.

Django Template Inheritance
Let’s have a little review of what the differences are between home.html and list.html:

$ diff lists/templates/home.html lists/templates/list.html
7,8c7,8
< <h1>Start a new To-Do list</h1>
< <form method="POST" action="/lists/new">

> <h1>Your To-Do list</h1>
> <form method="POST" action="/lists/{{ list.id }}/add_item">
11a12,18
>
> <table id="id_list_table">
> {% for item in list.item_set.all %}
> <tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
> {% endfor %}
> </table>
>

They have different header texts, and their forms use different URLs. On top of that,
list.html has the additional <table> element.

Now that we’re clear on what’s in common and what’s not, we can make the two templates
inherit from a common “superclass” template. We’ll start by making a copy of
home.html:

$ cp lists/templates/home.html lists/templates/base.html

We make this into a base template which just contains the common boilerplate, and
mark out the “blocks”, places where child templates can customise it:

lists/templates/base.html.
<html>
<head>
 <title>To-Do lists</title>
</head>

<body>
 <h1>{% block header_text %}{% endblock %}</h1>
 <form method="POST" action="{% block form_action %}{% endblock %}">
 <input name="item_text" id="id_new_item" placeholder="Enter a to-do item" />
 {% csrf_token %}
 </form>
 {% block table %}
 {% endblock %}
</body>
</html>

120 | Chapter 7: Prettification: Layout and Styling, and What to Test About It

The base template defines a series of areas called “blocks”, which will be places that other
templates can hook in and add their own content. Let’s see how that works in practice,
by changing home.html so that it “inherits from” base.html:

lists/templates/home.html.
{% extends 'base.html' %}

{% block header_text %}Start a new To-Do list{% endblock %}

{% block form_action %}/lists/new{% endblock %}

You can see that lots of the boilerplate HTML disappears, and we just concentrate on
the bits we want to customise. We do the same for list.html:

lists/templates/list.html.
{% extends 'base.html' %}

{% block header_text %}Your To-Do list{% endblock %}

{% block form_action %}/lists/{{ list.id }}/add_item{% endblock %}

{% block table %}
 <table id="id_list_table">
 {% for item in list.item_set.all %}
 <tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
 {% endfor %}
 </table>
{% endblock %}

That’s a refactor of the way our templates work. We rerun the FTs to make sure we haven’t
broken anything…

AssertionError: 111.0 != 512 within 5 delta

Sure enough, they’re still getting to exactly where they were before. That’s worthy of a
commit:

$ git diff -b
the -b means ignore whitespace, useful since we've changed some html indenting
$ git status
$ git add lists/templates # leave static, for now
$ git commit -m "refactor templates to use a base template"

Integrating Bootstrap
Now it’s much easier to integrate the boilerplate code that Bootstrap wants—we won’t
add the JavaScript yet, just the CSS:

lists/templates/base.html (ch07l006).
<!DOCTYPE html>
<html lang="en">

<head>

Integrating Bootstrap | 121

 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>To-Do lists</title>
 <link href="css/bootstrap.min.css" rel="stylesheet">
</head>
[...]

Rows and Columns
Finally, let’s actually use some of the Bootstrap magic! You’ll have to read the docu‐
mentation yourself, but should be able to use a combination of the grid system and the
text-center class to get what we want:

lists/templates/base.html (ch07l007).
<body>
<div class="container">

 <div class="row">
 <div class="col-md-6 col-md-offset-3">
 <div class="text-center">
 <h1>{% block header_text %}{% endblock %}</h1>
 <form method="POST" action="{% block form_action %}{% endblock %}">
 <input name="item_text" id="id_new_item"
 placeholder="Enter a to-do item"
 />
 {% csrf_token %}
 </form>
 </div>
 </div>
 </div>

 <div class="row">
 <div class="col-md-6 col-md-offset-3">
 {% block table %}
 {% endblock %}
 </div>
 </div>

</div>
</body>

(If you’ve never seen an HTML tag broken up over several lines, that <input> may be
a little shocking. It is definitely valid, but you don’t have to use it if you find it offensive. ;)

Take the time to browse through the Bootstrap documentation, if
you’ve never seen it before. It’s a shopping trolley brimming full of
useful tools to use in your site.

122 | Chapter 7: Prettification: Layout and Styling, and What to Test About It

http://getbootstrap.com/

Does that work?
AssertionError: 111.0 != 512 within 5 delta

Hmm. No. Why isn’t our CSS loading?

Static Files in Django
Django, and indeed any web server, needs to know two things to deal with static files:

1. How to tell when a URL request is for a static file, as opposed to for some HTML
that’s going to be served via a view function

2. Where to find the static file the user wants

In other words, static files are a mapping from URLs to files on disk.

For item 1, Django lets us define a URL “prefix” to say that any URLs which start with
that prefix should be treated as requests for static files. By default, the prefix is /stat
ic/. It’s defined in settings.py:

superlists/settings.py.
[...]

Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/1.8/howto/static-files/

STATIC_URL = '/static/'

The rest of the settings we will add to this section are all to do with item 2: finding the
actual static files on disk.

While we’re using the Django development server (manage.py runserver), we can rely
on Django to magically find static files for us—it’ll just look in any subfolder of one of
our apps called static.

You now see why we put all the Bootstrap static files into lists/static. So why are they not
working at the moment? It’s because we’re not using the /static/ URL prefix. Have
another look at the link to the CSS in base.html:

lists/templates/base.html.
<link href="css/bootstrap.min.css" rel="stylesheet">

To get this to work, we need to change it to:
lists/templates/base.html.

<link href="/static/bootstrap/css/bootstrap.min.css" rel="stylesheet">

When runserver sees the request, it knows that it’s for a static file because it begins
with /static/. It then tries to find a file called bootstrap/css/bootstrap.min.css,
looking in each of our app folders for subfolders called static, and it should find it at
lists/static/bootstrap/css/bootstrap.min.css.

Static Files in Django | 123

So if you take a look manually, you should see it works, as in Figure 7-2.

Figure 7-2. Our site starts to look a little better…

Switching to StaticLiveServerTestCase
If you run the FT though, it won’t pass:

AssertionError: 111.0 != 512 within 5 delta

That’s because, although runserver automagically finds static files, LiveServerTest
Case doesn’t. Never fear though, the Django developers have made a more magical test
class called StaticLiveServerTestCase (see the docs).

Let’s switch to that:
functional_tests/tests.py.

@@ -1,8 +1,8 @@
-from django.test import LiveServerTestCase
+from django.contrib.staticfiles.testing import StaticLiveServerTestCase
 from selenium import webdriver
 from selenium.webdriver.common.keys import Keys

-class NewVisitorTest(LiveServerTestCase):
+class NewVisitorTest(StaticLiveServerTestCase):

And now it will now find the new CSS, which will get our test to pass:

124 | Chapter 7: Prettification: Layout and Styling, and What to Test About It

http://bit.ly/Suv4Ip

$ python3 manage.py test functional_tests
Creating test database for alias 'default'...
..

Ran 2 tests in 9.764s

At this point, Windows users may see some (harmless, but distract‐
ing) error messages that say socket.error: [WinError 10054] An
existing connection was forcibly closed by the remote host.
Add a self.browser.refresh() just before the self.brows
er.quit() in tearDown to get rid of them. The issue is being tracked
in this bug on the Django tracker.

Hooray!

Using Bootstrap Components to Improve the Look of the
Site
Let’s see if we can do even better, using some of the other tools in Bootstrap’s panoply.

Jumbotron!
Bootstrap has a class called jumbotron for things that are meant to be particularly
prominent on the page. Let’s use that to embiggen the main page header and the input
form:

lists/templates/base.html (ch07l009).
 <div class="col-md-6 col-md-offset-3 jumbotron">
 <div class="text-center">
 <h1>{% block header_text %}{% endblock %}</h1>
 <form method="POST" action="{% block form_action %}{% endblock %}">
 [...]

When hacking about with design and layout, it’s best to have a win‐
dow open that we can hit refresh on, frequently. Use python3 man
age.py runserver to spin up the dev server, and then browse to
http://localhost:8000 to see your work as we go.

Large Inputs
The jumbotron is a good start, but now the input box has tiny text compared to every‐
thing else. Thankfully, Bootstrap’s form control classes offer an option to set an input
to be “large”:

Using Bootstrap Components to Improve the Look of the Site | 125

https://code.djangoproject.com/ticket/21227

lists/templates/base.html (ch07l010).
<input name="item_text" id="id_new_item"
 class="form-control input-lg"
 placeholder="Enter a to-do item"
/>

Table Styling
The table text also looks too small compared to the rest of the page now. Adding the
Bootstrap table class improves things:

lists/templates/list.html (ch07l011).
 <table id="id_list_table" class="table">

Using Our Own CSS
Finally I’d like to just offset the input from the title text slightly. There’s no ready-made
fix for that in Bootstrap, so we’ll make one ourselves. That will require specifying our
own CSS file:

lists/templates/base.html.
[...]
 <title>To-Do lists</title>
 <link href="/static/bootstrap/css/bootstrap.min.css" rel="stylesheet">
 <link href="/static/base.css" rel="stylesheet">
</head>

We create a new file at lists/static/base.css, with our new CSS rule. We’ll use the id of the
input element, id_new_item, to find it and give it some styling:

lists/static/base.css.
#id_new_item {
 margin-top: 2ex;
}

All that took me a few goes, but I’m reasonably happy with it now (Figure 7-3).

If you want to go further with customising Bootstrap, you need to get into compiling
LESS. I definitely recommend taking the time to do that some day. LESS and other
pseudo-CSS-alikes like SCSS are a great improvement on plain old CSS, and a useful
tool even if you don’t use Bootstrap. I won’t cover it in this book, but you can find
resources on the Internets. Here’s one, for example.

A last run of the functional tests, to see if everything still works OK?
$ python3 manage.py test functional_tests
Creating test database for alias 'default'...
..

Ran 2 tests in 10.084s

OK
Destroying test database for alias 'default'...

126 | Chapter 7: Prettification: Layout and Styling, and What to Test About It

http://coding.smashingmagazine.com/2013/03/12/customizing-bootstrap/

Figure 7-3. The lists page, with all big chunks…

That’s it! Definitely time for a commit:
$ git status # changes tests.py, base.html, list.html + untracked lists/static
$ git add .
$ git status # will now show all the bootstrap additions
$ git commit -m "Use Bootstrap to improve layout"

What We Glossed Over: collectstatic and Other Static
Directories
We saw earlier that the Django dev server will magically find all your static files inside
app folders, and serve them for you. That’s fine during development, but when you’re
running on a real web server, you don’t want Django serving your static content—using
Python to serve raw files is slow and inefficient, and a web server like Apache or Nginx
can do this all for you. You might even decide to upload all your static files to a CDN,
instead of hosting them yourself.

For these reasons, you want to be able to gather up all your static files from inside their
various app folders, and copy them into a single location, ready for deployment. This
is what the collectstatic command is for.

The destination, the place where the collected static files go, is defined in settings.py as
STATIC_ROOT. In the next chapter we’ll be doing some deployment, so let’s actually ex‐

What We Glossed Over: collectstatic and Other Static Directories | 127

periment with that now. We’ll change its value to a folder just outside our repo—I’m
going to make it a folder just next to the main source folder:

workspace
│ ├── superlists
│ │ ├── lists
│ │ │ ├── models.py
│ │ │
│ │ ├── manage.py
│ │ ├── superlists
│ │
│ ├── static
│ │ ├── base.css
│ │ ├── etc...

The logic is that the static files folder shouldn’t be a part of your repository—we don’t
want to put it under source control, because it’s a duplicate of all the files that are inside
lists/static.

Here’s a neat way of specifying that folder, making it relative to the location of project
base directory:

superlists/settings.py (ch07l018).
Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/1.8/howto/static-files/

STATIC_URL = '/static/'
STATIC_ROOT = os.path.abspath(os.path.join(BASE_DIR, '../static'))

Take a look at the top of the settings file, and you’ll see how that BASE_DIR variable is
helpfully defined for us, using __file__ (which itself is a really, really useful Python
built-in).

Anyway, let’s try running collectstatic:
$ python3 manage.py collectstatic

You have requested to collect static files at the destination
location as specified in your settings:

/workspace/static

This will overwrite existing files!
Are you sure you want to do this?

Type 'yes' to continue, or 'no' to cancel:
yes

[...]
Copying '/workspace/superlists/lists/static/bootstrap/js/bootstrap.js'
Copying '/workspace/superlists/lists/static/bootstrap/js/bootstrap.min.js'
Copying '/workspace/superlists/lists/static/bootstrap/js/npm.js'

128 | Chapter 7: Prettification: Layout and Styling, and What to Test About It

77 static files copied to '/workspace/static'.

And if we look in ../static, we’ll find all our CSS files:
$ tree ../static/
../static/
├── admin
│ ├── css
│ │ ├── base.css

[...]

│ └── urlify.js
├── base.css
└── bootstrap
 ├── css
 │ ├── bootstrap.css
 │ ├── bootstrap.min.css
 │ ├── bootstrap-theme.css
 │ └── bootstrap-theme.min.css
 ├── fonts
 │ ├── glyphicons-halflings-regular.eot
 │ ├── glyphicons-halflings-regular.svg
 │ ├── glyphicons-halflings-regular.ttf
 │ ├── glyphicons-halflings-regular.woff
 │ └── glyphicons-halflings-regular.woff2
 └── js
 ├── bootstrap.js
 ├── bootstrap.min.js
 └── npm.js

10 directories, 77 files

collectstatic has also picked up all the CSS for the admin site. It’s one of Django’s
powerful features, and we’ll find out all about it one day, but we’re not ready to use that
yet, so let’s disable it for now:

superlists/settings.py.
INSTALLED_APPS = (
 #'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'lists',
)

What We Glossed Over: collectstatic and Other Static Directories | 129

And we try again:
$ rm -rf ../static/
$ python3 manage.py collectstatic --noinput
Copying '/workspace/superlists/lists/static/base.css'
[...]
Copying '/workspace/superlists/lists/static/bootstrap/js/bootstrap.js'
Copying '/workspace/superlists/lists/static/bootstrap/js/bootstrap.min.js'
Copying '/workspace/superlists/lists/static/bootstrap/js/npm.js'

15 static files copied to '/workspace/static'.

Much better.

Anyway, now we know how to collect all the static files into a single folder, where it’s
easy for a web server to find them. We’ll find out all about that, including how to test
it, in the next chapter!

For now let’s save our changes to settings.py:
$ git diff # should show changes in settings.py*
$ git commit -am "set STATIC_ROOT in settings and disable admin"

A Few Things That Didn’t Make It
Inevitably this was only a whirlwind tour of styling and CSS, and there were several
topics that I’d hoped to cover in more depth that didn’t make it. Here’s a few candidates
for further study:

• Customising bootstrap with LESS
• The {% static %} template tag, for more DRY and less hard-coded URLs
• Client-side packaging tools, like bower

Recap: On Testing Design and Layout
The short answer is: you shouldn’t write tests for design and layout. It’s too much like
testing a constant, and any tests you write are likely to be brittle.

With that said, the implementation of design and layout involves something quite tricky:
CSS and static files. As a result, it is valuable to have some kind of minimal “smoke test”
which checks that your static files and CSS are working. As we’ll see in the next chapter,
it can help pick up problems when you deploy your code to production.

Similarly, if a particular piece of styling required a lot of client-side JavaScript code to
get it to work (dynamic resizing is one I’ve spent a bit of time on), you’ll definitely want
some tests for that.

130 | Chapter 7: Prettification: Layout and Styling, and What to Test About It

So be aware that this is a dangerous area. Try and write the minimal tests that will give
you confidence that your design and layout is working, without testing what it actually
is. Try and leave yourself in a position where you can freely make changes to the design
and layout, without having to go back and adjust tests all the time.

A Few Things That Didn’t Make It | 131

CHAPTER 8
Testing Deployment Using a Staging Site

Is all fun and game until you are need of put it in production.
— Devops Borat

It’s time to deploy the first version of our site and make it public. They say that if you
wait until you feel ready to ship, then you’ve waited too long.

Is our site usable? Is it better than nothing? Can we make lists on it? Yes, yes, yes.

No, you can’t log in yet. No, you can’t mark tasks as completed. But do we really need
any of that stuff? Not really—and you can never be sure what your users are actually
going to do with your site once they get their hands on it. We think our users want to
use the site for to-do lists, but maybe they actually want to use it to make “top 10 best
fly-fishing spots” lists, for which you don’t need any kind of “mark completed” function.
We won’t know until we put it out there.

In this chapter we’re going to go through and actually deploy our site to a real, live web
server.

You might be tempted to skip this chapter—there’s lots of daunting stuff in it, and maybe
you think this isn’t what you signed up for. But I strongly urge you to give it a go. This
is one of the chapters I’m most pleased with, and it’s one that people often write to me
saying they were really glad they stuck through it.

If you’ve never done a server deployment before, it will demystify a whole world for
you, and there’s nothing like the feeling of seeing your site live on the actual Internet.
Give it a buzzword name like “DevOps” if that’s what it takes to convince you it’s
worth it.

133

https://twitter.com/DEVOPS_BORAT/status/192271992253190144

1. What I’m calling a “staging” server, some people would call a “development” server, and some others would
also like to distinguish “preproduction” servers. Whatever we call it, the point is to have somewhere we can
try our code out in an environment that’s as similar as possible to the real production server.

Why not ping me a note once your site is live on the web, and send
me the URL? It always gives me a warm and fuzzy feeling… obeythe
testinggoat@gmail.com.

TDD and the Danger Areas of Deployment
Deploying a site to a live web server can be a tricky topic. Oft-heard is the forlorn cry
—”but it works on my machine!“.
Some of the danger areas of deployment include:
Static files (CSS, JavaScript, images, etc.)

Web servers usually need special configuration for serving these.

The database
There can be permissions and path issues, and we need to be careful about pre‐
serving data between deploys.

Dependencies
We need to make sure that the packages our software relies on are installed on the
server, and have the correct versions.

But there are solutions to all of these. In order:

• Using a staging site, on the same infrastructure as the production site, can help us
test out our deployments and get things right before we go to the “real” site.

• We can also run our functional tests against the staging site. That will reassure us
that we have the right code and packages on the server, and since we now have a
“smoke test” for our site layout, we’ll know that the CSS is loaded correctly.

• Virtualenvs are a useful tool for managing packages and dependencies on a machine
that might be running more than one Python application.

• And finally, automation, automation, automation. By using an automated script to
deploy new versions, and by using the same script to deploy to staging and pro‐
duction, we can reassure ourselves that staging is as much like live as possible.1

Over the next few pages I’m going to go through a deployment procedure. It isn’t meant
to be the perfect deployment procedure, so please don’t take it as being best practice, or
a recommendation—it’s meant to be an illustration, to show the kinds of issues involved
in deployment and where testing fits in.

134 | Chapter 8: Testing Deployment Using a Staging Site

mailto:obeythetestinggoat@gmail.com
mailto:obeythetestinggoat@gmail.com

Chapter Overview
There’s lots of stuff in this chapter, so here’s an overview to help you keep your bearings:

1. Adapt our FTs so they can run against a staging server.
2. Spin up a server, install all the required software on it, and point our staging and

live domains at it.
3. Upload our code to the server using Git.
4. Try and get a quick & dirty version of our site running on the staging domain using

the Django dev server.
5. Learn how to use a virtualenv to manage our project’s Python dependencies on the

server.
6. As we go, we’ll keep running our FT, to tell us what’s working and what’s not.
7. Move from our quick & dirty version to a production-ready configuration, using

Gunicorn, Upstart, and domain sockets.
8. Once we have a working config, we’ll write a script to automate the process we’ve

just been through manually, so that we can deploy our site automatically in future.
9. Finally we’ll use this script to deploy the production version of our site on its real

domain.

As Always, Start with a Test
Let’s adapt our functional tests slightly so that it can be run against a staging site. We’ll
do it by slightly hacking an argument that is normally used to change the address which
the test’s temporary server gets run on:

functional_tests/tests.py (ch08l001).
import sys
[...]

class NewVisitorTest(StaticLiveServerTestCase):

 @classmethod
 def setUpClass(cls): #
 for arg in sys.argv: #
 if 'liveserver' in arg: #
 cls.server_url = 'http://' + arg.split('=')[1] #
 return #
 super().setUpClass() #
 cls.server_url = cls.live_server_url

 @classmethod
 def tearDownClass(cls):

As Always, Start with a Test | 135

 if cls.server_url == cls.live_server_url:
 super().tearDownClass()

 def setUp(self):
 [...]

OK, when I said slightly hacking, I meant seriously hacking. Do you remember I said
that LiveServerTestCase had certain limitations? Well, one is that it always assumes
you want to use its own test server. I still want to be able to do that sometimes, but I also
want to be able to selectively tell it not to bother, and to use a real server instead.

setUpClass is a similar method to setUp, also provided by unittest, which is
used to do test setup for the whole class—that means it only gets executed once,
rather than before every test method. This is where LiveServerTestCase/Stat
icLiveServerTestCase usually starts up its test server.

 We look for the liveserver command-line argument (which is found in
sys.argv).

 If we find it, we tell our test class to skip the normal setUpClass, and just store
away our staging server URL in a variable called server_url instead.
And if the for loop completes without finding a liveserver argument on the
command-line, we do the normal superclass setup, and use the normal
live_server_url. Be careful with the indentation here!

This means we also need to change the three places we used to use self.live_serv
er_url:

functional_tests/tests.py (ch08l002).
 def test_can_start_a_list_and_retrieve_it_later(self):
 # Edith has heard about a cool new online to-do app. She goes
 # to check out its homepage
 self.browser.get(self.server_url)
 [...]
 # Francis visits the home page. There is no sign of Edith's
 # list
 self.browser.get(self.server_url)
 [...]

 def test_layout_and_styling(self):
 # Edith goes to the home page
 self.browser.get(self.server_url)

We test that our little hack hasn’t broken anything by running the functional tests
“normally”:

$ python3 manage.py test functional_tests
[...]
Ran 2 tests in 8.544s

136 | Chapter 8: Testing Deployment Using a Staging Site

OK

And now we can try them against our staging server URL. I’m hosting my staging server
at superlists-staging.ottg.eu:

$ python3 manage.py test functional_tests --liveserver=superlists-staging.ottg.eu
Creating test database for alias 'default'...
FE
==
FAIL: test_can_start_a_list_and_retrieve_it_later
(functional_tests.tests.NewVisitorTest)

Traceback (most recent call last):
 File "/workspace/superlists/functional_tests/tests.py", line 42, in
test_can_start_a_list_and_retrieve_it_later
 self.assertIn('To-Do', self.browser.title)
AssertionError: 'To-Do' not found in 'Domain name registration | Domain names
| Web Hosting | 123-reg'

==
FAIL: test_layout_and_styling (functional_tests.tests.NewVisitorTest)

Traceback (most recent call last):
 File
"/workspace/superlists/functional_tests/tests.py", line 114, in
test_layout_and_styling
 inputbox = self.browser.find_element_by_id('id_new_item')
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"id_new_item"}
[...]

Ran 2 tests in 16.480s

FAILED (failures=2)
Destroying test database for alias 'default'...

You can see that both tests are failing, as expected, since I haven’t actually set up my
staging site yet. In fact, you can see from the first traceback that the test is actually ending
up on the home page of my domain registrar.

The FT seems to be testing the right things though, so let’s commit:
$ git diff # should show changes to functional_tests.py
$ git commit -am "Hack FT runner to be able to test staging"

Getting a Domain Name
We’re going to need a couple of domain names at this point in the book—they can both
be subdomains of a single domain. I’m going to use superlists.ottg.eu and superlists-
staging.ottg.eu. If you don’t already own a domain, this is the time to register one! Again,

Getting a Domain Name | 137

this is something I really want you to actually do. If you’ve never registered a domain
before, just pick any old registrar and buy a cheap one—it should only cost you $5 or
so, and you can even find free ones. I promise seeing your site on a “real” web site will
be a thrill.

Manually Provisioning a Server to Host Our Site
We can separate out “deployment” into two tasks:

• Provisioning a new server to be able to host the code
• Deploying a new version of the code to an existing server

Some people like to use a brand new server for every deployment—it’s what we do at
PythonAnywhere. That’s only necessary for larger, more complex sites though, or major
changes to an existing site. For a simple site like ours, it makes sense to separate the two
tasks. And, although we eventually want both to be completely automated, we can
probably live with a manual provisioning system for now.

As you go through this chapter, you should be aware that provisioning is something
that varies a lot, and that as a result there are few universal best practices for deployment.
So, rather than trying to remember the specifics of what I’m doing here, you should be
trying to understand the rationale, so that you can apply the same kind of thinking in
the specific future circumstances you encounter.

Choosing Where to Host Our Site
There are loads of different solutions out there these days, but they broadly fall into two
camps:

• Running your own (possibly virtual) server
• Using a Platform-As-A-Service (PaaS) offering like Heroku, DotCloud, OpenShift,

or PythonAnywhere

Particularly for small sites, a PaaS offers a lot of advantages, and I would definitely
recommend looking into them. We’re not going to use a PaaS in this book however, for
several reasons. Firstly, I have a conflict of interest, in that I think PythonAnywhere is
the best, but then again I would say that because I work there. Secondly, all the PaaS
offerings are quite different, and the procedures to deploy to each vary a lot—learning
about one doesn’t necessarily tell you about the others. Any one of them might change
their process radically, or simply go out of business by the time you get to read this book.

Instead, we’ll learn just a tiny bit of good old-fashioned server admin, including SSH
and web server config. They’re unlikely to ever go away, and knowing a bit about them
will get you some respect from all the grizzled dinosaurs out there.

138 | Chapter 8: Testing Deployment Using a Staging Site

What I have done is to try and set up a server in such a way that it’s a lot like the
environment you get from a PaaS, so you should be able to apply the lessons we learn
in the deployment section, no matter what provisioning solution you choose.

Spinning Up a Server
I’m not going to dictate how you do this—whether you choose Amazon AWS, Rack‐
space, Digital Ocean, your own server in your own data centre or a Raspberry Pi in a
cupboard behind the stairs, any solution should be fine, as long as:

• Your server is running Ubuntu 14.04 (aka “Trusty/LTS”)
• You have root access to it.
• It’s on the public Internet.
• You can SSH into it.

I’m recommending Ubuntu as a distro because it has Python 3.4 and it has some specific
ways of configuring Nginx, which I’m going to make use of next. If you know what
you’re doing, you can probably get away with using something else, but you’re on your
own.

Some people get to this chapter, and are tempted to skip the do‐
main bit, and the “getting a real server” bit, and just use a VM on their
own PC. Don’t do this. It’s not the same, and you’ll have more diffi‐
culty following the instructions, which are complicated enough as it
is. If you’re worried about cost, dig around and you’ll find free op‐
tions for both. Email me if you need further pointers, I’m always
happy to help.

User Accounts, SSH, and Privileges
In these instructions, I’m assuming that you have a nonroot user account set up that
has “sudo” privileges, so whenever we need to do something that requires root access,
we use sudo, and I’m explicit about that in the various instructions below. If you need
to create a nonroot user, here’s how:

these commands must be run as root
root@server:$ useradd -m -s /bin/bash elspeth # add user named elspeth
-m creates a home folder, -s sets elspeth to use bash by default
root@server:$ usermod -a -G sudo elspeth # add elspeth to the sudoers group
root@server:$ passwd elspeth # set password for elspeth
root@server:$ su - elspeth # switch-user to being elspeth!
elspeth@server:$

Name your own user whatever you like! I also recommend learning up how to use
private key authentication rather than passwords for SSH. It’s a matter of taking the

Manually Provisioning a Server to Host Our Site | 139

public key from your own PC, and appending it to ~/.ssh/authorized_keys in the user
account on the server. You probably went through a similar procedure if you signed up
for Bitbucket or Github.

There are some good instructions here (note that ssh-keygen is available as part of Git-
Bash on Windows).

Look out for that elspeth@server in the command-line listings in
this chapter. It indicates commands that must be run on the server,
as opposed to commands you run on your own PC.

Installing Nginx
We’ll need a web server, and all the cool kids are using Nginx these days, so we will too.
Having fought with Apache for many years, I can tell you it’s a blessed relief in terms of
the readability of its config files, if nothing else!

Installing Nginx on my server was a matter of doing an apt-get, and I could then see
the default Nginx “Hello World” screen:

elspeth@server:$ sudo apt-get install nginx
elspeth@server:$ sudo service nginx start

(You may need to do an apt-get update and/or an apt-get upgrade first.)

You should be able to go to the IP address of your server, and see the “Welcome to nginx”
page at this point, as in Figure 8-1.

If you don’t see it, it may be because your firewall does not open port 80 to the world.
On AWS for example, you may need to configure the “security group” for your server
to open port 80.

While we’ve got root access, let’s make sure the server has the key pieces of software we
need at the system level: Python, Git, pip, and virtualenv.

elspeth@server:$ sudo apt-get install git python3 python3-pip
elspeth@server:$ sudo pip3 install virtualenv

140 | Chapter 8: Testing Deployment Using a Staging Site

https://library.linode.com/security/ssh-keys

Figure 8-1. Nginx—it works!

Configuring Domains for Staging and Live
We don’t want to be messing about with IP addresses all the time, so we should point
our staging and live domains to the server. At my registrar, the control screens looked
a bit like Figure 8-2.

Figure 8-2. Domain setup

Manually Provisioning a Server to Host Our Site | 141

In the DNS system, pointing a domain at a specific IP address is called an “A-Record”.
All registrars are slightly different, but a bit of clicking around should get you to the
right screen in yours.

Using the FT to Confirm the Domain Works and Nginx Is Running
To confirm this works, we can rerun our functional tests and see that their failure mes‐
sages have changed slightly—one of them in particular should now mention Nginx:

$ python3 manage.py test functional_tests --liveserver=superlists-staging.ottg.eu
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"id_new_item"}
[...]
AssertionError: 'To-Do' not found in 'Welcome to nginx!'

Progress!

Deploying Our Code Manually
The next step is to get a copy of the staging site up and running, just to check whether
we can get Nginx and Django to talk to each other. As we do so, we’re starting to move
into doing “deployment” rather than provisioning, so we should be thinking about how
we can automate the process, as we go.

One rule of thumb for distinguishing provisioning from deploy‐
ment is that you tend to need root permissions for the former, but we
don’t for the latter.

We need a directory for the source to live in. Let’s assume we have a home folder for a
nonroot user; in my case it would be at /home/elspeth (this is likely to be the setup on
any shared hosting system, but you should always run your web apps as a nonroot user,
in any case). I’m going to set up my sites like this:

/home/elspeth
├── sites
│ ├── www.live.my-website.com
│ │ ├── database
│ │ │ └── db.sqlite3
│ │ ├── source
│ │ │ ├── manage.py
│ │ │ ├── superlists
│ │ │ ├── etc...
│ │ │
│ │ ├── static
│ │ │ ├── base.css

142 | Chapter 8: Testing Deployment Using a Staging Site

│ │ │ ├── etc...
│ │ │
│ │ └── virtualenv
│ │ ├── lib
│ │ ├── etc...
│ │
│ ├── www.staging.my-website.com
│ │ ├── database
│ │ ├── etc...

Each site (staging, live, or any other website) has its own folder. Within that we have a
separate folder for the source code, the database, and the static files. The logic is that,
while the source code might change from one version of the site to the next, the database
will stay the same. The static folder is in the same relative location, ../static, that we set
up at the end of the last chapter. Finally, the virtualenv gets its own subfolder too. What’s
a virtualenv, I hear you ask? We’ll find out shortly.

Adjusting the Database Location
First let’s change the location of our database in settings.py, and make sure we can get
that working on our local PC:

superlists/settings.py (ch08l003).
Build paths inside the project like this: os.path.join(BASE_DIR, ...)
import os
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
[...]

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, '../database/db.sqlite3'),
 }
}

Check out the way BASE_DIR is defined, further up in settings.py.
Notice the abspath gets done first (i.e., innermost). Always follow this
pattern when path-wrangling, otherwise you can see strange things
happening depending on how the file is imported. Thanks to Green
Nathan for that tip!

Now let’s try it locally:
$ mkdir ../database
$ python3 manage.py migrate --noinput
Creating tables ...
[...]
$ ls ../database/
db.sqlite3

Deploying Our Code Manually | 143

https://github.com/CleanCut/green
https://github.com/CleanCut/green

That seems to work. Let’s commit it:
$ git diff # should show changes in settings.py
$ git commit -am "move sqlite database outside of main source tree"

To get our code onto the server, we’ll use Git and go via one of the code sharing sites. If
you haven’t already, push your code up to GitHub, BitBucket, or similar. They all have
excellent instructions for beginners on how to do that.

Here’s some bash commands that will set this all up. If you’re not familiar with it, note
the export command which lets me set up a “local variable” in bash:

elspeth@server:$ export SITENAME=superlists-staging.ottg.eu
elspeth@server:$ mkdir -p ~/sites/$SITENAME/database
elspeth@server:$ mkdir -p ~/sites/$SITENAME/static
elspeth@server:$ mkdir -p ~/sites/$SITENAME/virtualenv
you should replace the URL in the next line with the URL for your own repo
elspeth@server:$ git clone https://github.com/hjwp/book-example.git \
~/sites/$SITENAME/source
Resolving deltas: 100% [...]

A bash variable defined using export only lasts as long as that con‐
sole session. If you log out of the server and log back in again, you’ll
need to redefine it. It’s devious because Bash won’t error, it will just
substitute the empty string for the variable, which will lead to weird
results…if in doubt, do a quick echo $SITENAME.

Now we’ve got the site installed, let’s just try running the dev server—this is a smoke
test, to see if all the moving parts are connected:

elspeth@server:$ $ cd ~/sites/$SITENAME/source
$ python3 manage.py runserver
Traceback (most recent call last):
 File "manage.py", line 8, in <module>
 from django.core.management import execute_from_command_line
ImportError: No module named django.core.management

Ah. Django isn’t installed on the server.

Creating a Virtualenv
We could install it at this point, but that would leave us with a problem: if we ever wanted
to upgrade Django when a new version comes out, it would be impossible to test the
staging site with a different version from live. Similarly, if there are other users on the
server, we’d all be forced to use the same version of Django.

The solution is a “virtualenv”—a neat way of having different versions of Python pack‐
ages installed in different places, in their own “virtual environments”.

Let’s try it out locally, on our own PC first:

144 | Chapter 8: Testing Deployment Using a Staging Site

$ pip3 install virtualenv # will need a sudo on linux/macos.

We’ll follow the same folder structure as we’re planning for the server:
$ virtualenv --python=python3 ../virtualenv
$ ls ../virtualenv/
bin include lib

That will create a folder at ../virtualenv which will contain its own copy of Python and
pip, as well as a location to install Python packages to. It’s a self-contained “virtual”
Python environment. To start using it, we run a script called activate, which will change
the system path and the Python path in such a way as to use the virtualenv’s executables
and packages:

$ which python3
/usr/bin/python3
$ source ../virtualenv/bin/activate
$ which python # note switch to virtualenv Python
/workspace/virtualenv/bin/python
(virtualenv)$ python3 manage.py test lists
[...]
ImportError: No module named 'django'

It’s not required, but you might want to look into a tool called vir
tualenvwrapper for managing virtualenvs on your own PC.

Virtualenvs on Windows
On Windows, things are slightly different. There are two main things to watch out for:

• The virtualenv/bin folder is called virtualenv/Scripts, so you should substitute that
in as appropriate.

• When using Git-Bash, do not try and run activate.bat—it is written for the DOS
shell. Use source ..\virtualenv\Scripts\activate. The source is important.

We’re seeing that ImportError: No module named django because Django isn’t in‐
stalled inside the virtualenv. So, we can install it, and see that it ends up inside the
virtualenv’s site-packages folder:

(virtualenv)$ pip install django==1.8
[...]
Successfully installed django
Cleaning up...
(virtualenv)$ python3 manage.py test lists
[...]

Deploying Our Code Manually | 145

OK
$ ls ../virtualenv/lib/python3.4/site-packages/
django pip setuptools
Django-1.8.dist-info pip-1.5.6.dist-info setuptools-3.6.dist-info
easy_install.py pkg_resources.py
_markerlib __pycache__

To “save” the list of packages we need in our virtualenv, and be able to re-create it later,
we create a requirements.txt file, using pip freeze, and add that to our repository:

(virtualenv)$ pip freeze > requirements.txt
(virtualenv)$ deactivate
$ cat requirements.txt
Django==1.8
$ git add requirements.txt
$ git commit -m "Add requirements.txt for virtualenv"

And now we do a git push to send our updates up to our code-sharing site:
$ git push

And we can pull those changes down to the server, create a virtualenv on the server, and
use requirements.txt along with pip install -r to make the server virtualenv just like
our local one:

elspeth@server:$ git pull # may ask you to do some git config first
elspeth@server:$ virtualenv --python=python3 ../virtualenv/
elspeth@server:$../virtualenv/bin/pip install -r requirements.txt
Downloading/unpacking Django==1.8 (from -r requirements.txt (line 1))
[...]
Successfully installed Django
Cleaning up...
elspeth@server:$../virtualenv/bin/python3 manage.py runserver
Validating models...
0 errors found
[...]

That looks like it’s running happily. We can Ctrl-C it for now.

Notice you don’t have to use the activate to use the virtualenv. Directly specifying the
path to the virtualenv copies of python or pip works too. We’ll use the direct paths on
the server.

Most people like to create a virtualenv for a project as soon as they
start it. I only waited until now because I wanted to keep the first few
chapters as simple as possible.

146 | Chapter 8: Testing Deployment Using a Staging Site

2. Not sure how to edit a file on the server? There’s always vi, which I’ll keep encouraging you to learn a bit of.
Alternatively, try the relatively beginner-friendly nano. Note you’ll also need to use sudo because the file is
in a system folder.

Simple Nginx Configuration
Next we create an Nginx config file to tell it to send requests for our staging site along
to Django. A minimal config looks like this:

server: /etc/nginx/sites-available/superlists-staging.ottg.eu.
server {
 listen 80;
 server_name superlists-staging.ottg.eu;

 location / {
 proxy_pass http://localhost:8000;
 }
}

This config says it will only work for our staging domain, and will “proxy” all requests
to the local port 8000 where it expects to find Django waiting to respond to requests.

I saved2 this to a file called superlists-staging.ottg.eu inside /etc/nginx/sites-available
folder, and then added it to the enabled sites for the server by creating a symlink to it:

elspeth@server:$ echo $SITENAME # check this still has our site in
superlists-staging.ottg.eu
elspeth@server:$ sudo ln -s ../sites-available/$SITENAME \
/etc/nginx/sites-enabled/$SITENAME
elspeth@server:$ ls -l /etc/nginx/sites-enabled # check our symlink is there

That’s the Debian/Ubuntu preferred way of saving Nginx configurations—the real con‐
fig file in sites-available, and a symlink in sites-enabled; the idea is that it makes it easier
to switch sites on or off.

We also may as well remove the default “Welcome to nginx” config, to avoid any
confusion:

elspeth@server:$ sudo rm /etc/nginx/sites-enabled/default

And now to test it:
elspeth@server:$ sudo service nginx reload
elspeth@server:$../virtualenv/bin/python3 manage.py runserver

I also had to edit /etc/nginx/nginx.conf and uncomment a line
saying server_names_hash_bucket_size 64; to get my long do‐
main name to work. You may not have this problem; Nginx will
warn you when you do a reload if it has any trouble with its config
files.

Deploying Our Code Manually | 147

A quick visual inspection confirms—the site is up (Figure 8-3)!

Figure 8-3. The staging site is up!

If you ever find Nginx isn’t behaving as expected, try the command
sudo nginx -t, which does a config test, and will warn you of any
problems in your configuration files.

Let’s see what our functional tests say:
$ python3 manage.py test functional_tests --liveserver=superlists-staging.ottg.eu
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
[...]
AssertionError: 0.0 != 512 within 3 delta

The tests are failing as soon as they try and submit a new item, because we haven’t set
up the database. You’ll probably have spotted the yellow Django debug page (Figure 8-4)
telling us as much as the tests went through, or if you tried it manually.

148 | Chapter 8: Testing Deployment Using a Staging Site

The tests saved us from potential embarrassment there. The site
looked fine when we loaded its front page. If we’d been a little hasty,
we might have thought we were done, and it would have been the first
users that discovered that nasty Django DEBUG page. Okay, slight
exaggeration for effect, maybe we would have checked, but what hap‐
pens as the site gets bigger and more complex? You can’t check
everything. The tests can.

Figure 8-4. But the database isn’t

Creating the Database with migrate
We run migrate using the --noinput argument to suppress the two little “are you sure”
prompts:

elspeth@server:$../virtualenv/bin/python3 manage.py migrate --noinput
Creating tables ...
[...]
elspeth@server:$ ls ../database/
db.sqlite3
elspeth@server:$../virtualenv/bin/python3 manage.py runserver

Let’s try the FTs again:

Deploying Our Code Manually | 149

$ python3 manage.py test functional_tests --liveserver=superlists-staging.ottg.eu
Creating test database for alias 'default'...
..

Ran 2 tests in 10.718s

OK
Destroying test database for alias 'default'...

It’s great to see the site up and running! We might reward ourselves with a well-earned
tea break at this point, before moving on to the next section…

If you see a “502 - Bad Gateway”, it’s probably because you forgot to
restart the dev server with manage.py runserver after the migrate.

Getting to a Production-Ready Deployment
We’re at least reassured that the basic piping works, but we really can’t be using the
Django dev server in production. We also can’t be relying on manually starting it up
with runserver.

Switching to Gunicorn
Do you know why the Django mascot is a pony? The story is that Django comes with
so many things you want: an ORM, all sorts of middleware, the admin site… “What else
do you want, a pony?” Well, Gunicorn stands for “Green Unicorn”, which I guess is what
you’d want next if you already had a pony…

elspeth@server:$../virtualenv/bin/pip install gunicorn

Gunicorn will need to know a path to a WSGI server, which is usually a function called
application. Django provides one in superlists/wsgi.py:

elspeth@server:$../virtualenv/bin/gunicorn superlists.wsgi:application
2013-05-27 16:22:01 [10592] [INFO] Starting gunicorn 0.18.0
2013-05-27 16:22:01 [10592] [INFO] Listening at: http://127.0.0.1:8000 (10592)
[...]

If you now take a look at the site, you’ll find the CSS is all broken, as in Figure 8-5.

And if we run the functional tests, you’ll see they confirm that something is wrong. The
test for adding list items passes happily, but the test for layout + styling fails. Good job
tests!

$ python3 manage.py test functional_tests --liveserver=superlists-staging.ottg.eu
[...]

150 | Chapter 8: Testing Deployment Using a Staging Site

AssertionError: 125.0 != 512 within 3 delta
FAILED (failures=1)

The reason that the CSS is broken is that although the Django dev server will serve static
files magically for you, Gunicorn doesn’t. Now is the time to tell Nginx to do it instead.

Figure 8-5. Broken CSS

Getting Nginx to Serve Static Files
First we run collectstatic to copy all the static files to a folder where Nginx can find
them:

elspeth@server:$../virtualenv/bin/python3 manage.py collectstatic --noinput
elspeth@server:$ ls ../static/
base.css bootstrap

Note that, again, instead of using the virtualenv activate command, we can use the
direct path to the virtualenv’s copy of Python instead.

Now we tell Nginx to start serving those static files for us:
server: /etc/nginx/sites-available/superlists-staging.ottg.eu.

server {
 listen 80;
 server_name superlists-staging.ottg.eu;

Getting to a Production-Ready Deployment | 151

 location /static {
 alias /home/elspeth/sites/superlists-staging.ottg.eu/static;
 }

 location / {
 proxy_pass http://localhost:8000;
 }
}

Reload Nginx and restart Gunicorn…
elspeth@server:$ sudo service nginx reload
elspeth@server:$../virtualenv/bin/gunicorn superlists.wsgi:application

And if we take another look at the site, things are looking much healthier. We can rerun
our FTs:

$ python3 manage.py test functional_tests --liveserver=superlists-staging.ottg.eu
Creating test database for alias 'default'...
..

Ran 2 tests in 10.718s

OK
Destroying test database for alias 'default'...

Switching to Using Unix Sockets
When we want to serve both staging and live, we can’t have both servers trying to use
port 8000. We could decide to allocate different ports, but that’s a bit arbitrary, and it
would be dangerously easy to get it wrong and start the staging server on the live port,
or vice versa.

A better solution is to use Unix domain sockets—they’re like files on disk, but can be
used by Nginx and Gunicorn to talk to each other. We’ll put our sockets in /tmp. Let’s
change the proxy settings in Nginx:

server: /etc/nginx/sites-available/superlists-staging.ottg.eu.
[...]
 location / {
 proxy_set_header Host $host;
 proxy_pass http://unix:/tmp/superlists-staging.ottg.eu.socket;
 }
}

proxy_set_header is used to make sure Gunicorn and Django know what domain it’s
running on. We need that for the ALLOWED_HOSTS security feature, which we’re about to
switch on.

Now we restart Gunicorn, but this time telling it to listen on a socket instead of on the
default port:

152 | Chapter 8: Testing Deployment Using a Staging Site

elspeth@server:$ sudo service nginx reload
elspeth@server:$../virtualenv/bin/gunicorn --bind \
 unix:/tmp/superlists-staging.ottg.eu.socket superlists.wsgi:application

And again, we rerun the functional test again, to make sure things still pass:
$ python3 manage.py test functional_tests --liveserver=superlists-staging.ottg.eu
OK

A couple more steps!

Switching DEBUG to False and Setting ALLOWED_HOSTS
Django’s DEBUG mode is all very well for hacking about on your own server, but leaving
those pages full of tracebacks available isn’t secure.

You’ll find the DEBUG setting at the top of settings.py. When we set this to False, we also
need to set another setting called ALLOWED_HOSTS. This was added as a security feature
in Django 1.5. Unfortunately it doesn’t have a helpful comment in the default set‐
tings.py, but we can add one ourselves. Do this on the server:

server: superlists/settings.py.
SECURITY WARNING: don't run with debug turned on in production!
DEBUG = False

TEMPLATE_DEBUG = DEBUG

Needed when DEBUG=False
ALLOWED_HOSTS = ['superlists-staging.ottg.eu']
[...]

And, once again, we restart Gunicorn and run the FT to check things still work.

Don’t commit these changes on the server. At the moment this is just
a hack to get things working, not a change we want to keep in our
repo. In general, to keep things simple, I’m only going to do Git
commits from the local PC, using git push and git pull when I
need to sync them up to the server.

Using Upstart to Make Sure Gunicorn Starts on Boot
Our final step is to make sure that the server starts up Gunicorn automatically on boot,
and reloads it automatically if it crashes. On Ubuntu, the way to do this is using Upstart:

server: /etc/init/gunicorn-superlists-staging.ottg.eu.conf.
description "Gunicorn server for superlists-staging.ottg.eu"

start on net-device-up
stop on shutdown

respawn

Getting to a Production-Ready Deployment | 153

http://bit.ly/SuvluV
https://docs.djangoproject.com/en/1.8/ref/settings/#std:setting-ALLOWED_HOSTS

setuid elspeth
chdir /home/elspeth/sites/superlists-staging.ottg.eu/source

exec ../virtualenv/bin/gunicorn \
 --bind unix:/tmp/superlists-staging.ottg.eu.socket \
 superlists.wsgi:application

Upstart is joyously simple to configure (especially if you’ve ever had the dubious pleasure
of writing an init.d script), and is fairly self-explanatory.

start on net-device-up makes sure Gunicorn only runs once the server has
connected up to the Internet.
respawn will restart the process automatically if it crashes.
setuid makes the process run as the “elspeth” user.
chdir sets the working directory.
exec is the actual process to execute.

Upstart scripts live in /etc/init, and their names must end in .conf.

Now we can start Gunicorn with the start command:
elspeth@server:$ sudo start gunicorn-superlists-staging.ottg.eu

And we can rerun the FTs to see that everything still works. You can even test that the
site comes back up if you reboot the server!

Debugging Tips
Deployments are tricky! If ever things don’t go exactly as expected, here are a few tips
and things to look out for:

• I’m sure you already have, but double-check that each file is exactly where it should
be and has the right contents—a single stray character can make all the difference.

• Nginx error logs go into /var/log/error.log.
• You can ask Nginx to “check” its config using the -t flag:

nginx -t

• Check the /var/log/upstart/ folder for logs from Upstart and Gunicorn.
• Remember to restart both services whenever you make changes.
• Make sure your browser isn’t caching an out-of-date response. Use Ctrl+Refresh,

or start a new private browser window.

154 | Chapter 8: Testing Deployment Using a Staging Site

• This may be clutching at straws, but I’ve sometimes seen inexplicable behaviour on
the server that’s only been resolved when I fully restarted it with a sudo reboot.

If you ever get completely stuck, there’s always the option of blowing away your server
and starting again from scratch! It should go faster the second time…

Saving Our Changes: Adding Gunicorn to Our requirements.txt
Back in the local copy of your repo, we should add Gunicorn to the list of packages we
need in our virtualenvs:

$ source ../virtualenv/bin/activate # if necessary
(virtualenv)$ pip install gunicorn
(virtualenv)$ pip freeze > requirements.txt
(virtualenv)$ deactivate
$ git commit -am "Add gunicorn to virtualenv requirements"
$ git push

On Windows, at the time of writing, Gunicorn would pip install quite
happily, but it wouldn’t actually work if you tried to use it. Thankful‐
ly we only ever run it on the server, so that’s not a problem. And,
Windows support is being discussed…

Automating
Let’s recap our provisioning and deployment procedures:
Provisioning

1. Assume we have a user account and home folder
2. apt-get install nginx git python-pip

3. pip install virtualenv

4. Add Nginx config for virtual host
5. Add Upstart job for Gunicorn

Deployment
1. Create directory structure in ~/sites
2. Pull down source code into folder named source
3. Start virtualenv in ../virtualenv
4. pip install -r requirements.txt

5. manage.py migrate for database

Automating | 155

http://stackoverflow.com/questions/11087682/does-gunicorn-run-on-windows

6. collectstatic for static files
7. Set DEBUG = False and ALLOWED_HOSTS in settings.py
8. Restart Gunicorn job
9. Run FTs to check everything works

Assuming we’re not ready to entirely automate our provisioning process, how should
we save the results of our investigation so far? I would say that the Nginx and Upstart
config files should probably be saved somewhere, in a way that makes it easy to reuse
them later. Let’s save them in a new subfolder in our repo:

$ mkdir deploy_tools

deploy_tools/nginx.template.conf.
server {
 listen 80;
 server_name SITENAME;

 location /static {
 alias /home/elspeth/sites/SITENAME/static;
 }

 location / {
 proxy_set_header Host $host;
 proxy_pass http://unix:/tmp/SITENAME.socket;
 }
}

deploy_tools/gunicorn-upstart.template.conf.
description "Gunicorn server for SITENAME"

start on net-device-up
stop on shutdown

respawn

setuid elspeth
chdir /home/elspeth/sites/SITENAME/source

exec ../virtualenv/bin/gunicorn \
 --bind unix:/tmp/SITENAME.socket \
 superlists.wsgi:application

Then it’s easy for us to use those two files to generate a new site, by doing a find & replace
on SITENAME.

For the rest, just keeping a few notes is OK. Why not keep them in a file in the repo too?

156 | Chapter 8: Testing Deployment Using a Staging Site

deploy_tools/provisioning_notes.md.
Provisioning a new site
=======================

Required packages:

* nginx
* Python 3
* Git
* pip
* virtualenv

e.g.,, on Ubuntu:

 sudo apt-get install nginx git python3 python3-pip
 sudo pip3 install virtualenv

Nginx Virtual Host config

* see nginx.template.conf
* replace SITENAME with, e.g., staging.my-domain.com

Upstart Job

* see gunicorn-upstart.template.conf
* replace SITENAME with, e.g., staging.my-domain.com

Folder structure:
Assume we have a user account at /home/username

/home/username
└── sites
 └── SITENAME
 ├── database
 ├── source
 ├── static
 └── virtualenv

We can do a commit for those:
$ git add deploy_tools
$ git status # see three new files
$ git commit -m "Notes and template config files for provisioning"

Our source tree will now look something like this:
$ tree -I __pycache__
.
├── deploy_tools
│ ├── gunicorn-upstart.template.conf
│ ├── nginx.template.conf
│ └── provisioning_notes.md
├── functional_tests
│ ├── __init__.py

Automating | 157

│ ├── [...]
├── lists
│ ├── __init__.py
│ ├── models.py
│ ├── static
│ │ ├── base.css
│ │ ├── [...]
│ ├── templates
│ │ ├── base.html
│ │ ├── [...]
├── manage.py
├── requirements.txt
└── superlists
 ├── [...]

Test-Driving Server Configuration and Deployment
Tests take some of the uncertainty out of deployment

As developers, server administration is always “fun”, by which I mean, a process full
of uncertainty and surprises. My aim during this chapter was to show a functional
test suite can take some of the uncertainty out of the process.

Typical pain points—database, static files, dependencies, custom settings
The things that you need to keep an eye out on any deployment include your da‐
tabase configuration, static files, software dependencies, and custom settings that
differ between development and production. You’ll need to think through each of
these for your own deployments.

Tests allow us to experiment
Whenever we make a change to our server configuration, we can rerun the test
suite, and be confident that everything works as well as it did before. It allows us to
experiment with our setup with less fear.

“Saving Your Progress”
Being able to run our FTs against a staging server can be very reassuring. But, in most
cases, you don’t want to run your FTs against your “real” server. In order to “save our
work”, and reassure ourselves that the production server will work just as well as the
real server, we need to make our deployment process repeatable.

Automation is the answer, and it’s the topic of the next chapter.

158 | Chapter 8: Testing Deployment Using a Staging Site

1. Author of the Mock library and maintainer of unittest; if the Python testing world has a rock star, it is he.

CHAPTER 9
Automating Deployment with Fabric

Automate, automate, automate.
— Cay Horstman

Automating deployment is critical for our staging tests to mean anything. By making
sure the deployment procedure is repeatable, we give ourselves assurances that every‐
thing will go well when we deploy to production.

Fabric is a tool which lets you automate commands that you want to run on servers.
You can install fabric systemwide—it’s not part of the core functionality of our site, so
it doesn’t need to go into our virtualenv and requirements.txt. So, on your local PC:

$ pip2 install fabric

At the time of writing, Fabric had not been ported to Python 3, so we
have to use the Python 2 version. Thankfully, the Fabric code is to‐
tally separate from the rest of our codebase, so it’s not a problem.

Installing Fabric on Windows
Fabric depends on pycrypto, which is a package that needs compiling. Compiling on
Windows is a rather fraught process; it’s often quicker to try and get hold of precompiled
binaries put out there by some kindly soul. In this case the excellent Michael Foord1 has
provided some Windows binaries. (Don’t forget to giggle at the mention of absurd US
munitions export controls.)

So the instructions, for Windows, are:

159

http://bit.ly/Suxt67

1. Download and install pycrypto from the previous URL.
2. pip install Fabric.

Another amazing source of precompiled Python packages for Windows is maintained
by Christoph Gohlke.

The usual setup is to have a file called fabfile.py, which will contain one or more functions
that can later be invoked from a command-line tool called fab, like this:

fab function_name,host=SERVER_ADDRESS

That will invoke the function called function_name, passing in a connection to the
server at SERVER_ADDRESS. There are many other options for specifying usernames and
passwords, which you can find out about using fab --help.

Breakdown of a Fabric Script for Our Deployment
The best way to see how it works is with an example. Here’s one I made earlier, auto‐
mating all the deployment steps we’ve been going through. The main function is called
deploy; that’s the one we’ll invoke from the command line. It uses several helper func‐
tions. env.host will contain the server address that we’ve passed in:

deploy_tools/fabfile.py.
from fabric.contrib.files import append, exists, sed
from fabric.api import env, local, run
import random

REPO_URL = 'https://github.com/hjwp/book-example.git' #

def deploy():
 site_folder = '/home/%s/sites/%s' % (env.user, env.host) #
 source_folder = site_folder + '/source'
 _create_directory_structure_if_necessary(site_folder)
 _get_latest_source(source_folder)
 _update_settings(source_folder, env.host)
 _update_virtualenv(source_folder)
 _update_static_files(source_folder)
 _update_database(source_folder)

You’ll want to update the REPO_URL variable with the URL of your own Git repo
on its code sharing site.
env.host will contain the address of the server we’ve specified at the command
line, e.g., superlists.ottg.eu.
env.user will contain the username you’re using to log in to the server.

160 | Chapter 9: Automating Deployment with Fabric

http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.bbc.co.uk/cult/classic/bluepeter/valpetejohn/trivia.shtml

2. If you’re wondering why we’re building up paths manually with %s instead of the os.path.join command
we saw earlier, it’s because path.join will use backslashes if you run the script from Windows, but we
definitely want forward slashes on the server

3. There is a Fabric “cd” command, but I figured it was one thing too many to add in this chapter.

Hopefully each of those helper functions have fairly self-descriptive names. Because any
function in a fabfile can theoretically be invoked from the command line, I’ve used the
convention of a leading underscore to indicate that they’re not meant to be part of the
“public API” of the fabfile. Here they are in chronological order.

Here’s how we build our directory structure, in a way that doesn’t fall down if it already
exists:

deploy_tools/fabfile.py.
def _create_directory_structure_if_necessary(site_folder):
 for subfolder in ('database', 'static', 'virtualenv', 'source'):
 run('mkdir -p %s/%s' % (site_folder, subfolder)) #

run is the most common Fabric command. It says “run this shell command on
the server”.
mkdir -p is a useful flavor of mkdir, which is better in two ways: it can create
directories several levels deep, and it only creates them if necessary. So, mkdir -
p /tmp/foo/bar will create the directory bar but also its parent directory foo if
it needs to. It also won’t complain if bar already exists.2

Next we want to pull down our source code:
deploy_tools/fabfile.py.

def _get_latest_source(source_folder):
 if exists(source_folder + '/.git'): #
 run('cd %s && git fetch' % (source_folder,)) #
 else:
 run('git clone %s %s' % (REPO_URL, source_folder)) #
 current_commit = local("git log -n 1 --format=%H", capture=True) #
 run('cd %s && git reset --hard %s' % (source_folder, current_commit)) #

exists checks whether a directory or file already exists on the server. We look
for the .git hidden folder to check whether the repo has already been cloned in
that folder.
Many commands start with a cd in order to set the current working directory.
Fabric doesn’t have any state, so it doesn’t remember what directory you’re in
from one run to the next.3

git fetch inside an existing repository pulls down all the latest commits from
the Web.
Alternatively we use git clone with the repo URL to bring down a fresh source
tree.

Breakdown of a Fabric Script for Our Deployment | 161

Fabric’s local command runs a command on your local machine—it’s just a
wrapper around subprocess.Popen really, but it’s quite convenient. Here we
capture the output from that git log invocation to get the hash of the current
commit that’s in your local tree. That means the server will end up with whatever
code is currently checked out on your machine (as long as you’ve pushed it up
to the server).
We reset --hard to that commit, which will blow away any current changes in
the server’s code directory.

For this script to work, you need to have done a git push of your
current local commit, so that the server can pull it down and reset
to it. If you see an error saying Could not parse object, try doing
a git push.

Next we update our settings file, to set the ALLOWED_HOSTS and DEBUG, and to create a
new secret key:

deploy_tools/fabfile.py.
def _update_settings(source_folder, site_name):
 settings_path = source_folder + '/superlists/settings.py'
 sed(settings_path, "DEBUG = True", "DEBUG = False") #
 sed(settings_path,
 'ALLOWED_HOSTS =.+$',
 'ALLOWED_HOSTS = ["%s"]' % (site_name,) #
)
 secret_key_file = source_folder + '/superlists/secret_key.py'
 if not exists(secret_key_file): #
 chars = 'abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)'
 key = ''.join(random.SystemRandom().choice(chars) for _ in range(50))
 append(secret_key_file, "SECRET_KEY = '%s'" % (key,))
 append(settings_path, '\nfrom .secret_key import SECRET_KEY') #

The Fabric sed command does a string substitution in a file; here it’s changing
DEBUG from True to False.
And here it is adjusting ALLOWED_HOSTS, using a regex to match the right line.
Django uses SECRET_KEY for some of its crypto—cookies and CSRF protection.
It’s good practice to make sure the secret key on the server is different from the
one in your (possibly public) source code repo. This code will generate a new
key to import into settings, if there isn’t one there already (once you have a secret
key, it should stay the same between deploys). Find out more in the Django docs.
append just adds a line to the end of a file. (It’s clever enough not to bother if
the line is already there, but not clever enough to automatically add a newline
if the file doesn’t end in one. Hence the back-n.)

162 | Chapter 9: Automating Deployment with Fabric

https://docs.djangoproject.com/en/1.8/topics/signing/

I’m using a relative import (from .secret key instead of from secret_key) to
be absolutely sure we’re importing the local module, rather than one from
somewhere else on sys.path. I’ll talk a bit more about relative imports in the
next chapter.

Other people, such as the eminent authors of the excellent Two Scoops
of Django, suggest using environment variables to set things like se‐
cret keys; you should use whatever you feel is most secure in your
environment.

Next we create or update the virtualenv:
deploy_tools/fabfile.py.

def _update_virtualenv(source_folder):
 virtualenv_folder = source_folder + '/../virtualenv'
 if not exists(virtualenv_folder + '/bin/pip'): #
 run('virtualenv --python=python3 %s' % (virtualenv_folder,))
 run('%s/bin/pip install -r %s/requirements.txt' % (#
 virtualenv_folder, source_folder
))

We look inside the virtualenv folder for the pip executable as a way of checking
whether it already exists.
Then we use pip install -r like we did earlier.

Updating static files is a single command:
deploy_tools/fabfile.py.

def _update_static_files(source_folder):
 run('cd %s && ../virtualenv/bin/python3 manage.py collectstatic --noinput' % (#
 source_folder,
))

We use the virtualenv binaries folder whenever we need to run a Django
manage.py command, to make sure we get the virtualenv version of Django, not
the system one.

Finally, we update the database with manage.py migrate:
deploy_tools/fabfile.py.

def _update_database(source_folder):
 run('cd %s && ../virtualenv/bin/python3 manage.py migrate --noinput' % (
 source_folder,
))

Breakdown of a Fabric Script for Our Deployment | 163

Trying It Out
We can try this command out on our existing staging site—the script should work for
an existing site as well as for a new one. If you like words with Latin roots, you might
describe it as idempotent, which means it does nothing if run twice…

$ cd deploy_tools
$ fab deploy:host=elspeth@superlists-staging.ottg.eu

[superlists-staging.ottg.eu] Executing task 'deploy'
[superlists-staging.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists-stagin
[superlists-staging.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists-stagin
[superlists-staging.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists-stagin
[superlists-staging.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists-stagin
[superlists-staging.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists-stagin
[superlists-staging.ottg.eu] run: cd /home/elspeth/sites/superlists-staging.ottg
[localhost] local: git log -n 1 --format=%H
[superlists-staging.ottg.eu] run: cd /home/elspeth/sites/superlists-staging.ottg
[superlists-staging.ottg.eu] out: HEAD is now at 85a6c87 Add a fabfile for autom
[superlists-staging.ottg.eu] out:

[superlists-staging.ottg.eu] run: sed -i.bak -r -e 's/DEBUG = True/DEBUG = False
[superlists-staging.ottg.eu] run: echo 'ALLOWED_HOSTS = ["superlists-staging.ott
[superlists-staging.ottg.eu] run: echo 'SECRET_KEY = '\\''4p2u8fi6)bltep(6nd_3tt
[superlists-staging.ottg.eu] run: echo 'from .secret_key import SECRET_KEY' >> "

[superlists-staging.ottg.eu] run: /home/elspeth/sites/superlists-staging.ottg.eu
[superlists-staging.ottg.eu] out: Requirement already satisfied (use --upgrade t
[superlists-staging.ottg.eu] out: Requirement already satisfied (use --upgrade t
[superlists-staging.ottg.eu] out: Cleaning up...
[superlists-staging.ottg.eu] out:

[superlists-staging.ottg.eu] run: cd /home/elspeth/sites/superlists-staging.ottg
[superlists-staging.ottg.eu] out:
[superlists-staging.ottg.eu] out: 0 static files copied, 11 unmodified.
[superlists-staging.ottg.eu] out:

[superlists-staging.ottg.eu] run: cd /home/elspeth/sites/superlists-staging.ottg
[superlists-staging.ottg.eu] out: Creating tables ...
[superlists-staging.ottg.eu] out: Installing custom SQL ...
[superlists-staging.ottg.eu] out: Installing indexes ...
[superlists-staging.ottg.eu] out: Installed 0 object(s) from 0 fixture(s)
[superlists-staging.ottg.eu] out:
Done.
Disconnecting from superlists-staging.ottg.eu... done.

Awesome. I love making computers spew out pages and pages of output like that (in
fact I find it hard to stop myself from making little ’70s computer <brrp, brrrp, brrrp>
noises like Mother in Alien). If we look through it we can see it is doing our bidding:
the mkdir -p commands go through happily, even though the directories already exist.
Next git pull pulls down the couple of commits we just made. The sed and echo >>

164 | Chapter 9: Automating Deployment with Fabric

modify our settings.py. Then pip3 install -r requirements.txt, completes happily,
noting that the existing virtualenv already has all the packages we need. collectstat
ic also notices that the static files are all already there, and finally the migrate completes
without a hitch.

Fabric Configuration
If you are using an SSH key to log in, are storing it in the default location, and are using
the same username on the server as locally, then Fabric should “just work”. If you aren’t
there are several tweaks you may need to apply in order to get the fab command to do
your bidding. They revolve around the username, the location of the SSH key to use, or
the password.

You can pass these in to Fabric at the command line. Check out:
$ fab --help

Or see the Fabric documentation for more info.

Deploying to Live
So, let’s try using it for our live site!

$ fab deploy:host=elspeth@superlists.ottg.eu

$ fab deploy --host=superlists.ottg.eu
[superlists.ottg.eu] Executing task 'deploy'
[superlists.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists.ottg.eu
[superlists.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists.ottg.eu/databa
[superlists.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists.ottg.eu/static
[superlists.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists.ottg.eu/virtua
[superlists.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists.ottg.eu/source
[superlists.ottg.eu] run: git clone https://github.com/hjwp/book-example.git /ho
[superlists.ottg.eu] out: Cloning into '/home/elspeth/sites/superlists.ottg.eu/s
[superlists.ottg.eu] out: remote: Counting objects: 3128, done.
[superlists.ottg.eu] out: Receiving objects: 0% (1/3128)
[...]
[superlists.ottg.eu] out: Receiving objects: 100% (3128/3128), 2.60 MiB | 829 Ki
[superlists.ottg.eu] out: Resolving deltas: 100% (1545/1545), done.
[superlists.ottg.eu] out:

[localhost] local: git log -n 1 --format=%H
[superlists.ottg.eu] run: cd /home/elspeth/sites/superlists.ottg.eu/source && gi
[superlists.ottg.eu] out: HEAD is now at 6c8615b use a secret key file
[superlists.ottg.eu] out:

[superlists.ottg.eu] run: sed -i.bak -r -e 's/DEBUG = True/DEBUG = False/g' "$(e
[superlists.ottg.eu] run: echo 'ALLOWED_HOSTS = ["superlists.ottg.eu"]' >> "$(ec
[superlists.ottg.eu] run: echo 'SECRET_KEY = '\\''mqu(ffwid5vleol%ke^jil*x1mkj-4

Trying It Out | 165

http://docs.fabfile.org
https://github.com/hjwp/book-example.git

[superlists.ottg.eu] run: echo 'from .secret_key import SECRET_KEY' >> "$(echo /
[superlists.ottg.eu] run: virtualenv --python=python3 /home/elspeth/sites/superl
[superlists.ottg.eu] out: Already using interpreter /usr/bin/python3
[superlists.ottg.eu] out: Using base prefix '/usr'
[superlists.ottg.eu] out: New python executable in /home/elspeth/sites/superlist
[superlists.ottg.eu] out: Also creating executable in /home/elspeth/sites/superl
[superlists.ottg.eu] out: Installing Setuptools............................done.
[superlists.ottg.eu] out: Installing Pip...................................done.
[superlists.ottg.eu] out:

[superlists.ottg.eu] run: /home/elspeth/sites/superlists.ottg.eu/source/../virtu
[superlists.ottg.eu] out: Downloading/unpacking Django==1.8 (from -r /home/elspe
[superlists.ottg.eu] out: Downloading Django-1.8.tar.gz (8.0MB):
[...]
[superlists.ottg.eu] out: Downloading Django-1.8.tar.gz (8.0MB): 100% 8.0MB
[superlists.ottg.eu] out: Running setup.py egg_info for package Django
[superlists.ottg.eu] out:
[superlists.ottg.eu] out: warning: no previously-included files matching '__
[superlists.ottg.eu] out: warning: no previously-included files matching '*.
[superlists.ottg.eu] out: Downloading/unpacking gunicorn==17.5 (from -r /home/el
[superlists.ottg.eu] out: Downloading gunicorn-17.5.tar.gz (367kB): 100% 367k
[...]
[superlists.ottg.eu] out: Downloading gunicorn-17.5.tar.gz (367kB): 367kB down
[superlists.ottg.eu] out: Running setup.py egg_info for package gunicorn
[superlists.ottg.eu] out:
[superlists.ottg.eu] out: Installing collected packages: Django, gunicorn
[superlists.ottg.eu] out: Running setup.py install for Django
[superlists.ottg.eu] out: changing mode of build/scripts-3.3/django-admin.py
[superlists.ottg.eu] out:
[superlists.ottg.eu] out: warning: no previously-included files matching '__
[superlists.ottg.eu] out: warning: no previously-included files matching '*.
[superlists.ottg.eu] out: changing mode of /home/elspeth/sites/superlists.ot
[superlists.ottg.eu] out: Running setup.py install for gunicorn
[superlists.ottg.eu] out:
[superlists.ottg.eu] out: Installing gunicorn_paster script to /home/elspeth
[superlists.ottg.eu] out: Installing gunicorn script to /home/elspeth/sites/
[superlists.ottg.eu] out: Installing gunicorn_django script to /home/elspeth
[superlists.ottg.eu] out: Successfully installed Django gunicorn
[superlists.ottg.eu] out: Cleaning up...
[superlists.ottg.eu] out:

[superlists.ottg.eu] run: cd /home/elspeth/sites/superlists.ottg.eu/source && ..
[superlists.ottg.eu] out: Copying '/home/elspeth/sites/superlists.ottg.eu/source
[superlists.ottg.eu] out: Copying '/home/elspeth/sites/superlists.ottg.eu/source
[...]
[superlists.ottg.eu] out: Copying '/home/elspeth/sites/superlists.ottg.eu/source
[superlists.ottg.eu] out:
[superlists.ottg.eu] out: 11 static files copied.
[superlists.ottg.eu] out:

[superlists.ottg.eu] run: cd /home/elspeth/sites/superlists.ottg.eu/source && ..
[superlists.ottg.eu] out: Creating tables ...

166 | Chapter 9: Automating Deployment with Fabric

[superlists.ottg.eu] out: Creating table auth_permission
[...]
[superlists.ottg.eu] out: Creating table lists_item
[superlists.ottg.eu] out: Installing custom SQL ...
[superlists.ottg.eu] out: Installing indexes ...
[superlists.ottg.eu] out: Installed 0 object(s) from 0 fixture(s)
[superlists.ottg.eu] out:

Done.
Disconnecting from superlists.ottg.eu... done.

Brrp brrp brpp. You can see the script follows a slightly different path, doing a git
clone to bring down a brand new repo instead of a git pull. It also needs to set up a
new virtualenv from scratch, including a fresh install of pip and Django. The collect
static actually creates new files this time, and the migrate seems to have worked too.

Nginx and Gunicorn Config Using sed
What else do we need to do to get our live site into production? We refer to our provi‐
sioning notes, which tell us to use the template files to create our Nginx virtual host and
the Upstart script. How about a little Unix command-line magic?

elspeth@server:$ sed "s/SITENAME/superlists.ottg.eu/g" \
 deploy_tools/nginx.template.conf | sudo tee \
 /etc/nginx/sites-available/superlists.ottg.eu

sed (“stream editor”) takes a stream of text and performs edits on it. It’s no accident that
the fabric string substitution command has the same name. In this case we ask it to
substitute the string SITENAME for the address of our site, with the s/replaceme/
withthis/g syntax. We pipe (|) the output of that to a root-user process (sudo), which
uses tee to write what’s piped to it to a file, in this case the Nginx sites-available vir‐
tualhost config file.

We can now activate that file:
elspeth@server:$ sudo ln -s ../sites-available/superlists.ottg.eu \
 /etc/nginx/sites-enabled/superlists.ottg.eu

Then we write the upstart script:
elspeth@server: sed "s/SITENAME/superlists.ottg.eu/g" \
 deploy_tools/gunicorn-upstart.template.conf | sudo tee \
 /etc/init/gunicorn-superlists.ottg.eu.conf

Finally we start both services:
elspeth@server:$ sudo service nginx reload
elspeth@server:$ sudo start gunicorn-superlists.ottg.eu

And we take a look at our site. It works, hooray!

Trying It Out | 167

Let’s add the fabfile to our repo:
$ git add deploy_tools/fabfile.py
$ git commit -m "Add a fabfile for automated deploys"

Git Tag the Release
One final bit of admin. In order to preserve a historical marker, we’ll use Git tags to
mark the state of the codebase that reflects what’s currently live on the server:

$ git tag LIVE
$ export TAG=`date +DEPLOYED-%F/%H%M` # this generates a timestamp
$ echo $TAG # should show "DEPLOYED-" and then the timestamp
$ git tag $TAG
$ git push origin LIVE $TAG # pushes the tags up

Now it’s easy, at any time, to check what the difference is between our current codebase
and what’s live on the servers. This will come in useful in a few chapters, when we look
at database migrations. Have a look at the tag in the history:

$ git log --graph --oneline --decorate

Anyway, you now have a live website! Tell all your friends! Tell your mum, if no one else
is interested! And, in the next chapter, it’s back to coding again.

Further Reading
There’s no such thing as the One True Way in deployment, and I’m no grizzled expert
in any case. I’ve tried to set you off on a reasonably sane path, but there’s plenty of things
you could do differently, and lots, lots more to learn besides. Here are some resources
I used for inspiration:

• Solid Python Deployments for Everybody by Hynek Schlawack
• Git-based fabric deployments are awesome by Dan Bravender
• The deployment chapter of Two Scoops of Django by Dan Greenfeld and Audrey

Roy
• The 12-factor App by the Heroku team

For some ideas on how you might go about automating the provisioning step, and an
alternative to Fabric called Ansible, go check out Appendix C.

168 | Chapter 9: Automating Deployment with Fabric

http://hynek.me/talks/python-deployments
http://bit.ly/U6tUo5
http://12factor.net/

Automated Deployments
Fabric

Fabric lets you run commands on servers from inside Python scripts. This is a great
tool for automating server admin tasks.

Idempotency
If your deployment script is deploying to existing servers, you need to design them
so that they work against a fresh installation and against a server that’s already
configured.

Keep config files under source control
Make sure your only copy of a config file isn’t on the server! They are critical to
your application, and should be under version control like anything else.

Automating provisioning
Ultimately, everything should be automated, and that includes spinning up brand
new servers and ensuring they have all the right software installed. This will involve
interacting with the API of your hosting provider.

Configuration management tools
Fabric is very flexible, but its logic is still based on scripting. More advanced tools
take a more “declarative” approach, and can make your life even easier. Ansible and
Vagrant are two worth checking out (see Appendix C), but there are many more
(Chef, Puppet, Salt, Juju…).

Further Reading | 169

CHAPTER 10
Input Validation and Test Organisation

Over the next few chapters we’ll talk about testing and implementing validation of user
inputs. We’ll also take the opportunity to do a little tidying up—both in our application
code, and also in our tests.

Validation FT: Preventing Blank Items
As our first few users start using the site, we’ve noticed they sometimes make mistakes
that mess up their lists, like accidentally submitting blank list items, or accidentally
inputting two identical items to a list. Computers are meant to help stop us from making
silly mistakes, so let’s see if we can get our site to help.

Here’s the outline of an FT:
functional_tests/tests.py (ch10l001).

def test_cannot_add_empty_list_items(self):
 # Edith goes to the home page and accidentally tries to submit
 # an empty list item. She hits Enter on the empty input box

 # The home page refreshes, and there is an error message saying
 # that list items cannot be blank

 # She tries again with some text for the item, which now works

 # Perversely, she now decides to submit a second blank list item

 # She receives a similar warning on the list page

 # And she can correct it by filling some text in
 self.fail('write me!')

That’s all very well, but before we go any further—our functional tests file is beginning
to get a little crowded. Let’s split it out into several files, in which each has a single test
method.

171

Remember that functional tests are closely linked to “user stories”. If you were using
some sort of project management tool like an issue tracker, you might make it so that
each file matched one issue or ticket, and its filename contained the ticket ID. Or, if you
prefer to think about things in terms of “features”, where one feature may have several
user stories, then you might have one file and class for the feature, and several methods
for each of its user stories.

We’ll also have one base test class which they can all inherit from. Here’s how to get
there step by step.

Skipping a Test
It’s always nice, when doing refactoring, to have a fully passing test suite. We’ve just
written a test with a deliberate failure. Let’s temporarily switch it off, using a decorator
called “skip” from unittest:

functional_tests/tests.py (ch10l001-1).
from unittest import skip
[...]

 @skip
 def test_cannot_add_empty_list_items(self):

This tells the test runner to ignore this test. You can see it works—if we rerun the tests,
it’ll say it passes:

$ python3 manage.py test functional_tests
[...]
Ran 3 tests in 11.577s
OK

Skips are dangerous—you need to remember to remove them be‐
fore you commit your changes back to the repo. This is why line-by-
line reviews of each of your diffs are a good idea!

Don’t Forget the “Refactor” in “Red, Green, Refactor”
A criticism that’s sometimes levelled at TDD is that it leads to badly architected code,
as the developer just focuses on getting tests to pass rather than stopping to think about
how the whole system should be designed. I think it’s slightly unfair.

TDD is no silver bullet. You still have to spend time thinking about good design. But
what often happens is that people forget the “Refactor” in “Red, Green, Refactor”. The
methodology allows you to throw together any old code to get your tests to pass, but it
also asks you to then spend some time refactoring it to improve its design.

172 | Chapter 10: Input Validation and Test Organisation

Often, however, the best ideas for how to refactor code don’t occur to you straight away.
They may occur to you days, weeks, even months after you wrote a piece of code, when
you’re working on something totally unrelated and you happen to see some old code
again with fresh eyes. But if you’re halfway through something else, should you stop to
refactor the old code?

The answer is that it depends. In the case at the beginning of the chapter, we haven’t
even started writing our new code. We know we are in a working state, so we can justify
putting a skip on our new FT (to get back to fully passing tests) and do a bit of refactoring
straight away.

Later in the chapter we’ll spot other bits of code we want to alter. In those cases, rather
than taking the risk of refactoring an application that’s not in a working state, we’ll make
a note of the thing we want to change on our scratchpad and wait until we’re back to a
fully passing test suite before refactoring.

Splitting Functional Tests out into Many Files
We start putting each test into its own class, still in the same file:

functional_tests/tests.py (ch10l002).
class FunctionalTest(StaticLiveServerTestCase):

 @classmethod
 def setUpClass(cls):
 [...]
 @classmethod
 def tearDownClass(cls):
 [...]
 def setUp(self):
 [...]
 def tearDown(self):
 [...]
 def check_for_row_in_list_table(self, row_text):
 [...]

class NewVisitorTest(FunctionalTest):

 def test_can_start_a_list_and_retrieve_it_later(self):
 [...]

class LayoutAndStylingTest(FunctionalTest):

 def test_layout_and_styling(self):
 [...]

Validation FT: Preventing Blank Items | 173

class ItemValidationTest(FunctionalTest):

 @skip
 def test_cannot_add_empty_list_items(self):
 [...]

At this point we can rerun the FTs and see they all still work:
Ran 3 tests in 11.577s

OK

That’s labouring it a little bit, and we could probably get away doing this stuff in fewer
steps, but, as I keep saying, practising the step-by-step method on the easy cases makes
it that much easier when we have a complex case.

Now we switch from a single tests file to using one for each class, and one “base” file to
contain the base class all the tests will inherit from. We’ll make four copies of tests.py,
naming them appropriately, and then delete the parts we don’t need from each:

$ git mv functional_tests/tests.py functional_tests/base.py
$ cp functional_tests/base.py functional_tests/test_simple_list_creation.py
$ cp functional_tests/base.py functional_tests/test_layout_and_styling.py
$ cp functional_tests/base.py functional_tests/test_list_item_validation.py

base.py can be cut down to just the FunctionalTest class. We leave the helper method
on the base class, because we suspect we’re about to reuse it in our new FT:

functional_tests/base.py (ch10l003).
from django.contrib.staticfiles.testing import StaticLiveServerTestCase
from selenium import webdriver
import sys

class FunctionalTest(StaticLiveServerTestCase):

 @classmethod
 def setUpClass(cls):
 [...]
 def tearDownClass(cls):
 [...]
 def setUp(self):
 [...]
 def tearDown(self):
 [...]
 def check_for_row_in_list_table(self, row_text):
 [...]

Keeping helper methods in a base FunctionalTest class is one use‐
ful way of preventing duplication in FTs. Later in the book (in Chap‐
ter 21) we’ll use the “Page pattern”, which is related, but prefers com‐
position over inheritance.

174 | Chapter 10: Input Validation and Test Organisation

Our first FT is now in its own file, and should be just one class and one test method:
functional_tests/test_simple_list_creation.py (ch10l004).

from .base import FunctionalTest
from selenium import webdriver
from selenium.webdriver.common.keys import Keys

class NewVisitorTest(FunctionalTest):

 def test_can_start_a_list_and_retrieve_it_later(self):
 [...]

I used a relative import (from .base). Some people like to use them a lot in Django
code (e.g., your views might import models using from .models import List, instead
of from list.models). Ultimately this is a matter of personal preference. I prefer to use
relative imports only when I’m super-super sure that the relative position of the thing
I’m importing won’t change. That applies in this case because I know for sure all the
tests will sit next to base.py, which they inherit from.

The layout and styling FT should now be one file and one class:
functional_tests/test_layout_and_styling.py (ch10l005).

from .base import FunctionalTest

class LayoutAndStylingTest(FunctionalTest):
 [...]

Lastly our new validation test is in a file of its own too:
functional_tests/test_list_item_validation.py (ch10l006).

from unittest import skip
from .base import FunctionalTest

class ItemValidationTest(FunctionalTest):

 @skip
 def test_cannot_add_empty_list_items(self):
 [...]

And we can test everything worked by rerunning manage.py test function
al_tests, and checking once again that all three tests are run:

Ran 3 tests in 11.577s

OK

Now we can remove our skip:
functional_tests/test_list_item_validation.py (ch10l007).

class ItemValidationTest(FunctionalTest):

 def test_cannot_add_empty_list_items(self):
 [...]

Validation FT: Preventing Blank Items | 175

Running a Single Test File
As a side bonus, we’re now able to run an individual test file, like this:

$ python3 manage.py test functional_tests.test_list_item_validation
[...]
AssertionError: write me!

Brilliant, no need to sit around waiting for all the FTs when we’re only interested in a
single one. Although we need to remember to run all of them now and again, to check
for regressions. Later in the book we’ll see how to give that task over to an automated
Continuous Integration loop. For now let’s commit!

$ git status
$ git add functional_tests
$ git commit -m "Moved Fts into their own individual files"

Fleshing Out the FT
Now let’s start implementing the test, or at least the beginning of it:

functional_tests/test_list_item_validation.py (ch10l008).
def test_cannot_add_empty_list_items(self):
 # Edith goes to the home page and accidentally tries to submit
 # an empty list item. She hits Enter on the empty input box
 self.browser.get(self.server_url)
 self.browser.find_element_by_id('id_new_item').send_keys('\n')

 # The home page refreshes, and there is an error message saying
 # that list items cannot be blank
 error = self.browser.find_element_by_css_selector('.has-error') #
 self.assertEqual(error.text, "You can't have an empty list item")

 # She tries again with some text for the item, which now works
 self.browser.find_element_by_id('id_new_item').send_keys('Buy milk\n')
 self.check_for_row_in_list_table('1: Buy milk') #

 # Perversely, she now decides to submit a second blank list item
 self.browser.find_element_by_id('id_new_item').send_keys('\n')

 # She receives a similar warning on the list page
 self.check_for_row_in_list_table('1: Buy milk')
 error = self.browser.find_element_by_css_selector('.has-error')
 self.assertEqual(error.text, "You can't have an empty list item")

 # And she can correct it by filling some text in
 self.browser.find_element_by_id('id_new_item').send_keys('Make tea\n')
 self.check_for_row_in_list_table('1: Buy milk')
 self.check_for_row_in_list_table('2: Make tea')

176 | Chapter 10: Input Validation and Test Organisation

A couple of things to note about this test:

We specify we’re going to use a CSS class from Bootstrap called .has-error to
mark our error text. We’ll see that Bootstrap has some useful styling for those
As predicted, we are reusing the check_for_row_in_list_table helper
function when we want to confirm that list item submission does work.

The technique of keeping helper methods in a parent class is meant to prevent dupli‐
cation across your functional test code. The day we decide to change the implementation
of how our list table works, we want to make sure we only have to change our FT code
in one place, not in dozens of places across loads of FTs…

And we’re off!
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"css selector","selector":".has-error"}

I’ll let you do your own “first-cut FT” commit.

Using Model-Layer Validation
There are two levels at which you can do validation in Django. One is at the model level,
and the other is higher up at the forms level. I like to use the lower level whenever
possible, partially because I’m a bit too fond of databases and database integrity rules,
and partially because it’s safer—you can sometimes forget which form you use to validate
input, but you’re always going to use the same database.

Refactoring Unit Tests into Several Files
We’re going to want to add another test for our model, but before we do so, it’s time to
tidy up our unit tests in a similar way to the functional tests. A difference will be that,
because the lists app contains real application code as well as tests, we’ll separate out
the tests into their own folder:

$ mkdir lists/tests
$ touch lists/tests/__init__.py
$ git mv lists/tests.py lists/tests/test_all.py
$ git status
$ git add lists/tests
$ python3 manage.py test lists
[...]
Ran 10 tests in 0.034s

OK
$ git commit -m "Move unit tests into a folder with single file"

Using Model-Layer Validation | 177

1. “Dunder” is shorthand for double-underscore, so “dunderinit” means __init__.py.

If you get a message saying “Ran 0 tests”, you probably forgot to add the dunderinit—
it needs to be there or else the tests folder isn’t a valid Python package…1

Now we turn test_all.py into two files, one called test_views.py, which only contains view
tests, and one called test_models.py:

$ git mv lists/tests/test_all.py lists/tests/test_views.py
$ cp lists/tests/test_views.py lists/tests/test_models.py

We strip test_models.py down to being just the one test—it means it needs far fewer
imports:

lists/tests/test_models.py (ch10l009).
from django.test import TestCase
from lists.models import Item, List

class ListAndItemModelsTest(TestCase):
 [...]

Whereas test_views.py just loses one class:
lists/tests/test_views.py (ch10l010).

--- a/lists/tests/test_views.py
+++ b/lists/tests/test_views.py
@@ -103,34 +104,3 @@ class ListViewTest(TestCase):
 self.assertNotContains(response, 'other list item 1')
 self.assertNotContains(response, 'other list item 2')

-
-
-class ListAndItemModelsTest(TestCase):
-
- def test_saving_and_retrieving_items(self):
[...]

We rerun the tests to check everything is still there:
$ python3 manage.py test lists
[...]
Ran 10 tests in 0.040s

OK

Great!
$ git add lists/tests
$ git commit -m "Split out unit tests into two files"

178 | Chapter 10: Input Validation and Test Organisation

Some people like to make their unit tests into a tests folder straight
away, as soon as they start a project, with the addition of another file,
test_forms.py. That’s a perfectly good idea; I just thought I’d wait until
it became necessary, to avoid doing too much housekeeping all in the
first chapter!

Unit Testing Model Validation and the self.assertRaises Context
Manager
Let’s add a new test method to ListAndItemModelsTest, which tries to create a blank
list item:

lists/tests/test_models.py (ch10l012-1).
from django.core.exceptions import ValidationError
[...]

class ListAndItemModelsTest(TestCase):
 [...]

 def test_cannot_save_empty_list_items(self):
 list_ = List.objects.create()
 item = Item(list=list_, text='')
 with self.assertRaises(ValidationError):
 item.save()

If you’re new to Python, you may never have seen the with state‐
ment. It’s used with what are called “context managers”, which wrap a
block of code, usually with some kind of setup, cleanup, or error-
handling code. There’s a good write-up in the Python 2.5 release notes.

This is a new unit testing technique: when we want to check that doing something will
raise an error, we can use the self.assertRaises context manager. We could have used
something like this instead:

try:
 item.save()
 self.fail('The save should have raised an exception')
except ValidationError:
 pass

But the with formulation is neater. Now, we can try running the test, and see it fail:
 item.save()
AssertionError: ValidationError not raised

Using Model-Layer Validation | 179

http://docs.python.org/release/2.5/whatsnew/pep-343.html

A Django Quirk: Model Save Doesn’t Run Validation
And now we discover one of Django’s little quirks. This test should already pass. If you
take a look at the docs for the Django model fields, you’ll see that TextField actually
defaults to blank=False, which means that it should disallow empty values.

So why is the test not failing? Well, for slightly counterintuitive historical reasons, Djan‐
go models don’t run full validation on save. As we’ll see later, any constraints that are
actually implemented in the database will raise errors on save, but SQLite doesn’t sup‐
port enforcing emptiness constraints on text columns, and so our save method is letting
this invalid value through silently.

There’s a way of checking whether the constraint will happen at the database level or
not: if it was at the database level, we would need a migration to apply the constraint.
But, Django knows that SQLite doesn’t support this type of constraint, so if we try and
run makemigrations, it will report there’s nothing to do:

$ python3 manage.py makemigrations
No changes detected

Django does have a method to manually run full validation however, called
full_clean. Let’s hack it in to see it work:

lists/tests/test_models.py.
 with self.assertRaises(ValidationError):
 item.save()
 item.full_clean()

That gets the test to pass:
OK

That taught us a little about Django validation, and the test is there to warn us if we ever
forget our requirement and set blank=True on the text field (try it!).

Surfacing Model Validation Errors in the View
Let’s try and enforce our model validation in the views layer and bring it up through
into our templates, so the user can see them. Here’s how we can optionally display an
error in our HTML—we check whether the template has been passed an error variable,
and if so, we display it next to the form:

lists/templates/base.html (ch10l013).
<form method="POST" action="{% block form_action %}{% endblock %}">
 <input name="item_text" id="id_new_item"
 class="form-control input-lg"
 placeholder="Enter a to-do item"
 />
 {% csrf_token %}
 {% if error %}
 <div class="form-group has-error">

180 | Chapter 10: Input Validation and Test Organisation

http://bit.ly/SuxPJO
https://groups.google.com/forum/#!topic/django-developers/uIhzSwWHj4c

 {{ error }}
 </div>
 {% endif %}
</form>

Take a look at the Bootstrap docs for more info on form controls.

Passing this error to the template is the job of the view function. Let’s take a look at the
unit tests in the NewListTest class. I’m going to use two slightly different error-handling
patterns here.

In the first case, our URL and view for new lists will optionally render the same template
as the home page, but with the addition of an error message. Here’s a unit test for that:

lists/tests/test_views.py (ch10l014).
class NewListTest(TestCase):
 [...]

 def test_validation_errors_are_sent_back_to_home_page_template(self):
 response = self.client.post('/lists/new', data={'item_text': ''})
 self.assertEqual(response.status_code, 200)
 self.assertTemplateUsed(response, 'home.html')
 expected_error = "You can't have an empty list item"
 self.assertContains(response, expected_error)

As we’re writing this test, we might get slightly offended by the /lists/new URL, which
we’re manually entering as a string. We’ve got a lot of URLs hardcoded in our tests, in
our views, and in our templates, which violates the DRY principle. I don’t mind a bit of
duplication in tests, but we should definitely be on the lookout for hardcoded URLs in
our views and templates, and make a note to refactor them out. But we won’t do them
straight away, because right now our application is in a broken state. We want to get
back to a working state first.

Back to our test, which is failing because the view is currently returning a 302 redirect,
rather than a “normal” 200 response:

AssertionError: 302 != 200

Let’s try calling full_clean() in the view:
lists/views.py.

def new_list(request):
 list_ = List.objects.create()
 item = Item.objects.create(text=request.POST['item_text'], list=list_)
 item.full_clean()
 return redirect('/lists/%d/' % (list_.id,))

As we’re looking at the view code, we find a good candidate for a hardcoded URL to get
rid of. Let’s add that to our scratchpad:

Surfacing Model Validation Errors in the View | 181

http://getbootstrap.com/css/#forms

• Remove hardcoded URLs from views.py

Now the model validation raises an exception, which comes up through our view:
[...]
 File "/workspace/superlists/lists/views.py", line 11, in new_list
 item.full_clean()
[...]
django.core.exceptions.ValidationError: {'text': ['This field cannot be
blank.']}

So we try our first approach: using a try/except to detect errors. Obeying the Testing
Goat, we start with just the try/except and nothing else. The tests should tell us what
to code next…

lists/views.py (ch10l015).
from django.core.exceptions import ValidationError
[...]

def new_list(request):
 list_ = List.objects.create()
 item = Item.objects.create(text=request.POST['item_text'], list=list_)
 try:
 item.full_clean()
 except ValidationError:
 pass
 return redirect('/lists/%d/' % (list_.id,))

That gets us back to the 302 != 200:
AssertionError: 302 != 200

Let’s return a rendered template then, which should take care of the template check as
well:

lists/views.py (ch10l016).
 except ValidationError:
 return render(request, 'home.html')

And the tests now tell us to put the error message into the template:
AssertionError: False is not true : Couldn't find 'You can't have an empty list
item' in response

182 | Chapter 10: Input Validation and Test Organisation

We do that by passing a new template variable in:
lists/views.py (ch10l017).

 except ValidationError:
 error = "You can't have an empty list item"
 return render(request, 'home.html', {"error": error})

Hmm, it looks like that didn’t quite work:
AssertionError: False is not true : Couldn't find 'You can't have an empty list
item' in response

A little print-based debug…
lists/tests/test_views.py.

expected_error = "You can't have an empty list item"
print(response.content.decode())
self.assertContains(response, expected_error)

…will show us the cause: Django has HTML-escaped the apostrophe:
[...]
You can't have an
empty list item

We could hack something like this into our test:
 expected_error = "You can't have an empty list item"

But using Django’s helper function is probably a better idea:
lists/tests/test_views.py (ch10l019).

from django.utils.html import escape
[...]

 expected_error = escape("You can't have an empty list item")
 self.assertContains(response, expected_error)

That passes!
Ran 12 tests in 0.047s

OK

Checking Invalid Input Isn’t Saved to the Database
Before we go further though, did you notice a little logic error we’ve allowed to creep
into our implementation? We’re currently creating an object, even if validation fails:

lists/views.py.
 item = Item.objects.create(text=request.POST['item_text'], list=list_)
 try:
 item.full_clean()
 except ValidationError:
 [...]

Let’s add a new unit test to make sure that empty list items don’t get saved:

Surfacing Model Validation Errors in the View | 183

http://bit.ly/SuxUgF

lists/tests/test_views.py (ch10l020-1).
class NewListTest(TestCase):
 [...]

 def test_validation_errors_are_sent_back_to_home_page_template(self):
 [...]

 def test_invalid_list_items_arent_saved(self):
 self.client.post('/lists/new', data={'item_text': ''})
 self.assertEqual(List.objects.count(), 0)
 self.assertEqual(Item.objects.count(), 0)

That gives:
[...]
Traceback (most recent call last):
 File "/workspace/superlists/lists/tests/test_views.py", line 57, in
test_invalid_list_items_arent_saved
 self.assertEqual(List.objects.count(), 0)
AssertionError: 1 != 0

We fix it like this:
lists/views.py (ch10l020-2).

def new_list(request):
 list_ = List.objects.create()
 item = Item(text=request.POST['item_text'], list=list_)
 try:
 item.full_clean()
 item.save()
 except ValidationError:
 list_.delete()
 error = "You can't have an empty list item"
 return render(request, 'home.html', {"error": error})
 return redirect('/lists/%d/' % (list_.id,))

Do the FTs pass?
$ python3 manage.py test functional_tests.test_list_item_validation
[...]
 File "/workspace/superlists/functional_tests/test_list_item_validation.py",
line 26, in test_cannot_add_empty_list_items
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"css selector","selector":".has-error"}

Not quite, but they did get a little further. Checking the line 26, we can see that we’ve
got past the first part of the test, and are now onto the second check—that submitting
a second empty item also shows an error.

We’ve got some working code though, so let’s have a commit:
$ git commit -am "Adjust new list view to do model validation"

184 | Chapter 10: Input Validation and Test Organisation

Django Pattern: Processing POST Requests in the Same
View as Renders the Form
This time we’ll use a slightly different approach, one that’s actually a very common
pattern in Django, which is to use the same view to process POST requests as to render
the form that they come from. Whilst this doesn’t fit the REST-ful URL model quite as
well, it has the important advantage that the same URL can display a form, and display
any errors encountered in processing the user’s input.

The current situation is that we have one view and URL for displaying a list, and one
view and URL for processing additions to that list. We’re going to combine them into
one. So, in list.html, our form will have a different target:

lists/templates/list.html (ch10l020).
{% block form_action %}/lists/{{ list.id }}/{% endblock %}

Incidentally, that’s another hardcoded URL. Let’s add it to our to-do list, and while we’re
thinking about it, there’s one in home.html too:

• Remove hardcoded URLs from views.py
• Remove hardcoded URL from forms in

list.html and home.html

This will immediately break our original functional test, because the view_list page
doesn’t know how to process POST requests yet:

$ python3 manage.py test functional_tests
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"css selector","selector":".has-error"}
[...]
AssertionError: '2: Use peacock feathers to make a fly' not found in ['1: Buy
peacock feathers']

In this section we’re performing a refactor at the application level. We
execute our application-level refactor by changing or adding unit
tests, and then adjusting our code. We use the functional tests to tell
us when our refactor is complete and things are back to working as
before. Have another look at the diagram from the end of Chapter 4
if you need to get your bearings.

Django Pattern: Processing POST Requests in the Same View as Renders the Form | 185

Refactor: Transferring the new_item Functionality into view_list
Let’s take all the old tests from NewItemTest, the ones that are about saving POST re‐
quests to existing lists, and move them into ListViewTest. As we do so, we also make
them point at the base list URL, instead of …/add_item:

lists/tests/test_views.py (ch10l021).
class ListViewTest(TestCase):

 def test_uses_list_template(self):
 [...]

 def test_passes_correct_list_to_template(self):
 [...]

 def test_displays_only_items_for_that_list(self):
 [...]

 def test_can_save_a_POST_request_to_an_existing_list(self):
 other_list = List.objects.create()
 correct_list = List.objects.create()

 self.client.post(
 '/lists/%d/' % (correct_list.id,),
 data={'item_text': 'A new item for an existing list'}
)

 self.assertEqual(Item.objects.count(), 1)
 new_item = Item.objects.first()
 self.assertEqual(new_item.text, 'A new item for an existing list')
 self.assertEqual(new_item.list, correct_list)

 def test_POST_redirects_to_list_view(self):
 other_list = List.objects.create()
 correct_list = List.objects.create()

 response = self.client.post(
 '/lists/%d/' % (correct_list.id,),
 data={'item_text': 'A new item for an existing list'}
)
 self.assertRedirects(response, '/lists/%d/' % (correct_list.id,))

Note that the NewItemTest class disappears completely. I’ve also changed the name of
the redirect test to make it explicit that it only applies to POST requests.

That gives:
FAIL: test_POST_redirects_to_list_view (lists.tests.test_views.ListViewTest)
AssertionError: 200 != 302 : Response didn't redirect as expected: Response
code was 200 (expected 302)
[...]
FAIL: test_can_save_a_POST_request_to_an_existing_list

186 | Chapter 10: Input Validation and Test Organisation

(lists.tests.test_views.ListViewTest)
AssertionError: 0 != 1

We change the view_list function to handle two types of request:
lists/views.py (ch10l022-1).

def view_list(request, list_id):
 list_ = List.objects.get(id=list_id)
 if request.method == 'POST':
 Item.objects.create(text=request.POST['item_text'], list=list_)
 return redirect('/lists/%d/' % (list_.id,))
 return render(request, 'list.html', {'list': list_})

That gets us passing tests:
Ran 13 tests in 0.047s

OK

Now we can delete the add_item view, since it’s no longer needed…oops, a couple of
unexpected failures:

[...]
AttributeError: 'module' object has no attribute 'add_item'
[...]
FAILED (errors=10)

It’s because we’ve deleted the view, but it’s still being referred to in urls.py. We remove
it from there:

lists/urls.py (ch10l023).
urlpatterns = [
 url(r'^new$', views.new_list, name='new_list'),
 url(r'^(\d+)/$', views.view_list, name='view_list'),
]

And that gets us to the OK. Let’s try a full FT run:
$ python3 manage.py test
[...]

Ran 16 tests in 15.276s

FAILED (errors=1)

We’re back to the one failure in our new functional test. Our refactor of the add_item
functionality is complete. We should commit there:

$ git commit -am "Refactor list view to handle new item POSTs"

Django Pattern: Processing POST Requests in the Same View as Renders the Form | 187

So did I break the rule about never refactoring against failing tests?
In this case, it’s allowed, because the refactor is required to get our
new functionality to work. You should definitely never refactor
against failing unit tests. But in my book it’s OK for the FT for the
current story you’re working on to be failing. If you prefer a clean test
run, you could add a skip to the current FT.

Enforcing Model Validation in view_list
We still want the addition of items to existing lists to be subject to our model validation
rules. Let’s write a new unit test for that; it’s very similar to the one for the home page,
with just a couple of tweaks:

lists/tests/test_views.py (ch10l024).
class ListViewTest(TestCase):
 [...]

 def test_validation_errors_end_up_on_lists_page(self):
 list_ = List.objects.create()
 response = self.client.post(
 '/lists/%d/' % (list_.id,),
 data={'item_text': ''}
)
 self.assertEqual(response.status_code, 200)
 self.assertTemplateUsed(response, 'list.html')
 expected_error = escape("You can't have an empty list item")
 self.assertContains(response, expected_error)

That should fail, because our view currently does not do any validation, and just redirects
for all POSTs:

 self.assertEqual(response.status_code, 200)
AssertionError: 302 != 200

Here’s an implementation:
lists/views.py (ch10l025).

def view_list(request, list_id):
 list_ = List.objects.get(id=list_id)
 error = None

 if request.method == 'POST':
 try:
 item = Item(text=request.POST['item_text'], list=list_)
 item.full_clean()
 item.save()
 return redirect('/lists/%d/' % (list_.id,))
 except ValidationError:
 error = "You can't have an empty list item"

 return render(request, 'list.html', {'list': list_, 'error': error})

188 | Chapter 10: Input Validation and Test Organisation

It’s not deeply satisfying is it? There’s definitely some duplication of code here, that try/
except occurs twice in views.py, and in general things are feeling clunky.

Ran 14 tests in 0.047s

OK

Let’s wait a bit before we do more refactoring though, because we know we’re about to
do some slightly different validation coding for duplicate items. We’ll just add it to our
scratchpad for now:

• Remove hardcoded URLs from views.py
• Remove hardcoded URL from forms in

list.html and home.html
• Remove duplication of validation logic in

views

One of the reasons that the “three strikes and refactor” rule exists is
that, if you wait until you have three use cases, each might be slight‐
ly different, and it gives you a better view for what the common
functionality is. If you refactor too early, you may find that the third
use case doesn’t quite fit with your refactored code…

At least our functional tests are back to passing:
$ python3 manage.py test functional_tests
[...]
OK

We’re back to a working state, so we can take a look at some of the items on our scratch‐
pad. This would be a good time for a commit. And possibly a tea break.

$ git commit -am "enforce model validation in list view"

Refactor: Removing Hardcoded URLs
Do you remember those name= parameters in urls.py? We just copied them across from
the default example Django gave us, and I’ve been giving them some reasonably de‐
scriptive names. Now we find out what they’re for.

Refactor: Removing Hardcoded URLs | 189

lists/urls.py.
 url(r'^new$', views.new_list, name='new_list'),
 url(r'^(\d+)/$', views.view_list, name='view_list'),

The {% url %} Template Tag
We can replace the hardcoded URL in home.html with a Django template tag which
refers to the URL’s “name”:

lists/templates/home.html (ch10l026-1).
{% block form_action %}{% url 'new_list' %}{% endblock %}

We check that doesn’t break the unit tests:
$ python3 manage.py test lists
OK

Let’s do the other template. This one is more interesting, because we pass it a parameter:
lists/templates/list.html (ch10l026-2).

{% block form_action %}{% url 'view_list' list.id %}{% endblock %}

Check out the Django docs on reverse URL resolution for more info.

We run the tests again, and check they all pass:
$ python3 manage.py test lists
OK
$ python3 manage.py test functional_tests
OK

Excellent:
$ git commit -am "Refactor hard-coded URLs out of templates"

• Remove hardcoded URLs from views.py
• Remove hardcoded URL from forms in

list.html and home.html
• Remove duplication of validation logic in

views

Using get_absolute_url for Redirects
Now let’s tackle views.py. One way of doing it is just like in the template, passing in the
name of the URL and a positional argument:

190 | Chapter 10: Input Validation and Test Organisation

https://docs.djangoproject.com/en/1.8/topics/http/urls/#reverse-resolution-of-urls

lists/views.py (ch10l026-3).
def new_list(request):
 [...]
 return redirect('view_list', list_.id)

That would get the unit and functional tests passing, but the redirect function can do
even better magic than that! In Django, because model objects are often associated with
a particular URL, you can define a special function called get_absolute_url which says
what page displays the item. It’s useful in this case, but it’s also useful in the Django
admin (which I don’t cover in the book, but you’ll soon discover for yourself): it will let
you jump from looking at an object in the admin view to looking at the object on the
live site. I’d always recommend defining a get_absolute_url for a model whenever
there is one that makes sense; it takes no time at all.

All it takes is a super-simple unit test in test_models.py:
lists/tests/test_models.py (ch10l026-4).

 def test_get_absolute_url(self):
 list_ = List.objects.create()
 self.assertEqual(list_.get_absolute_url(), '/lists/%d/' % (list_.id,))

Which gives:
AttributeError: 'List' object has no attribute 'get_absolute_url'

And the implementation is to use Django’s reverse function, which essentially does the
reverse of what Django normally does with urls.py (see docs):

lists/models.py (ch10l026-5).
from django.core.urlresolvers import reverse

class List(models.Model):

 def get_absolute_url(self):
 return reverse('view_list', args=[self.id])

And now we can use it in the view—the redirect function just takes the object we want
to redirect to, and it uses get_absolute_url under the hood automagically!

lists/views.py (ch10l026-6).
def new_list(request):
 [...]
 return redirect(list_)

There’s more info in the Django docs. Quick check that the unit tests still pass:
OK

Then we do the same to view_list:

Refactor: Removing Hardcoded URLs | 191

https://docs.djangoproject.com/en/1.8/topics/http/urls/#reverse-resolution-of-urls
https://docs.djangoproject.com/en/1.8/topics/http/shortcuts/#redirect

lists/views.py (ch10l026-7).
def view_list(request, list_id):
 [...]

 item.save()
 return redirect(list_)
 except ValidationError:
 error = "You can't have an empty list item"

And a full unit test and functional test run to assure ourselves that everything still works:
$ python3 manage.py test lists
OK
$ python3 manage.py test functional_tests
OK

Cross off our to-dos:

• Remove hardcoded URLs from views.py
• Remove hardcoded URL from forms in

list.html and home.html
• Remove duplication of validation logic in

views

Let’s do a commit:
$ git commit -am "Use get_absolute_url on List model to DRY urls in views"

That final to-do item will be the subject of the next chapter…

Tips on Organising Tests and Refactoring
Use a tests folder

Just as you use multiple files to hold your application code, you should split your
tests out into multiple files.

• Use a folder called tests, with a __init__.py.
• For functional tests, group them into tests for a particular feature or user story.
• For unit tests, you want a separate test file for each tested source code file. For

Django, that’s typically test_models.py, test_views.py, and test_forms.py.
• Have at least a placeholder test for every function and class.

192 | Chapter 10: Input Validation and Test Organisation

Don’t forget the “Refactor” in “Red, Green, Refactor”
The whole point of having tests is to allow you to refactor your code! Use them, and
make your code as clean as you can.

Don’t refactor against failing tests
• In general!
• But the FT you’re currently working on doesn’t count.
• You can occasionally put a skip on a test which is testing something you haven’t

written yet.
• More commonly, make a note of the refactor you want to do, finish what you’re

working on, and do the refactor a little later, when you’re back to a working
state.

• Don’t forget to remove any skips before you commit your code! You should
always review your diffs line by line to catch things like this.

Refactor: Removing Hardcoded URLs | 193

CHAPTER 11
A Simple Form

At the end of the last chapter, we were left with the thought that there was too much
duplication of code in the validation handling bits of our views. Django encourages you
to use form classes to do the work of validating user input, and choosing what error
messages to display. Let’s see how that works.

As we go through the chapter, we’ll also spend a bit of time tidying up our unit tests,
and making sure each of them only tests one thing at a time.

Moving Validation Logic into a Form
In Django, a complex view is a code smell. Could some of that logic
be pushed out to a form? Or to some custom methods on the mod‐
el class? Or maybe even to a non-Django module that represents your
business logic?

Forms have several superpowers in Django:

• They can process user input and validate it for errors.
• They can be used in templates to render HTML input elements, and error messages

too.
• And, as we’ll see later, some of them can even save data to the database for you.

You don’t have to use all three form superpowers in every form. You may prefer to roll
your own HTML, or do your own saving. But they are an excellent place to keep vali‐
dation logic.

195

Exploring the Forms API with a Unit Test
Let’s do a little experimenting with forms by using a unit test. My plan is to iterate
towards a complete solution, and hopefully introduce forms gradually enough that
they’ll make sense if you’ve never seen them before.

First we add a new file for our form unit tests, and we start with a test that just looks at
the form HTML:

lists/tests/test_forms.py.
from django.test import TestCase

from lists.forms import ItemForm

class ItemFormTest(TestCase):

 def test_form_renders_item_text_input(self):
 form = ItemForm()
 self.fail(form.as_p())

form.as_p() renders the form as HTML. This unit test is using a self.fail for some
exploratory coding. You could just as easily use a manage.py shell session, although
you’d need to keep reloading your code for each change.

Let’s make a minimal form. It inherits from the base Form class, and has a single field
called item_text:

lists/forms.py.
from django import forms

class ItemForm(forms.Form):
 item_text = forms.CharField()

We now see a failure message which tells us what the auto-generated form HTML will
look like:

 self.fail(form.as_p())
AssertionError: <p><label for="id_item_text">Item text:</label> <input
id="id_item_text" name="item_text" type="text" /></p>

It’s already pretty close to what we have in base.html. We’re missing the placeholder
attribute and the Bootstrap CSS classes. Let’s make our unit test into a test for that:

lists/tests/test_forms.py.
class ItemFormTest(TestCase):

 def test_form_item_input_has_placeholder_and_css_classes(self):
 form = ItemForm()
 self.assertIn('placeholder="Enter a to-do item"', form.as_p())
 self.assertIn('class="form-control input-lg"', form.as_p())

That gives us a fail which justifies some real coding. How can we customise the input
for a form field? Using a “widget”. Here it is with just the placeholder:

196 | Chapter 11: A Simple Form

lists/forms.py.
class ItemForm(forms.Form):
 item_text = forms.CharField(
 widget=forms.fields.TextInput(attrs={
 'placeholder': 'Enter a to-do item',
 }),
)

That gives:
AssertionError: 'class="form-control input-lg"' not found in '<p><label
for="id_item_text">Item text:</label> <input id="id_item_text" name="item_text"
placeholder="Enter a to-do item" type="text" /></p>'

And then:
lists/forms.py.

 widget=forms.fields.TextInput(attrs={
 'placeholder': 'Enter a to-do item',
 'class': 'form-control input-lg',
 }),

Doing this sort of widget customisation would get tedious if we had
a much larger, more complex form. Check out django-crispy-forms
and django-floppyforms for some help.

Development-Driven Tests: Using Unit Tests for Exploratory Coding
Does this feel a bit like development-driven tests? That’s OK, now and again.

When you’re exploring a new API, you’re absolutely allowed to mess about with it for
a while before you get back to rigorous TDD. You might use the interactive console, or
write some exploratory code (but you have to promise the Testing Goat that you’ll throw
it away and rewrite it properly later).

Here we’re actually using a unit test as a way of experimenting with the forms API. It’s
actually a pretty good way of learning how it works.

Switching to a Django ModelForm
What’s next? We want our form to reuse the validation code that we’ve already defined
on our model. Django provides a special class which can auto-generate a form for a
model, called ModelForm. As you’ll see, it’s configured using a special attribute called
Meta:

lists/forms.py.
from django import forms

Moving Validation Logic into a Form | 197

https://django-crispy-forms.readthedocs.org/
http://bit.ly/1rR5eyD

from lists.models import Item

class ItemForm(forms.models.ModelForm):

 class Meta:
 model = Item
 fields = ('text',)

In Meta we specify which model the form is for, and which fields we want it to use.

ModelForms do all sorts of smart stuff, like assigning sensible HTML form input types
to different types of field, and applying default validation. Check out the docs for more
info.

We now have some different-looking form HTML:
AssertionError: 'placeholder="Enter a to-do item"' not found in '<p><label
for="id_text">Text:</label> <textarea cols="40" id="id_text" name="text"
rows="10">\r\n</textarea></p>'

It’s lost our placeholder and CSS class. But you can also see that it’s using name="text"
instead of name="item_text". We can probably live with that. But it’s using a textar
ea instead of a normal input, and that’s not the UI we want for our app. Thankfully, you
can override widgets for ModelForm fields, similarly to the way we did it with the normal
form:

lists/forms.py.
class ItemForm(forms.models.ModelForm):

 class Meta:
 model = Item
 fields = ('text',)
 widgets = {
 'text': forms.fields.TextInput(attrs={
 'placeholder': 'Enter a to-do item',
 'class': 'form-control input-lg',
 }),
 }

That gets the test passing.

Testing and Customising Form Validation
Now let’s see if the ModelForm has picked up the same validation rules which we defined
on the model. We’ll also learn how to pass data into the form, as if it came from the user:

lists/tests/test_forms.py (ch11l008).
 def test_form_validation_for_blank_items(self):
 form = ItemForm(data={'text': ''})
 form.save()

That gives us:
ValueError: The Item could not be created because the data didn't validate.

198 | Chapter 11: A Simple Form

https://docs.djangoproject.com/en/1.8/topics/forms/modelforms/

Good, the form won’t allow you to save if you give it an empty item text.

Now let’s see if we can get it to use the specific error message that we want. The API for
checking form validation before we try and save any data is a function called is_valid:

lists/tests/test_forms.py (ch11l009).
def test_form_validation_for_blank_items(self):
 form = ItemForm(data={'text': ''})
 self.assertFalse(form.is_valid())
 self.assertEqual(
 form.errors['text'],
 ["You can't have an empty list item"]
)

Calling form.is_valid() returns True or False, but it also has the side effect of vali‐
dating the input data, and populating the errors attribute. It’s a dictionary mapping the
names of fields to lists of errors for those fields (it’s possible for a field to have more than
one error).

That gives us:
AssertionError: ['This field is required.'] != ["You can't have an empty list
item"]

Django already has a default error message that we could present to the user—you might
use it if you were in a hurry to build your web app, but we care enough to make our
message special. Customising it means changing error_messages, another Meta
variable:

lists/forms.py (ch11l010).
 class Meta:
 model = Item
 fields = ('text',)
 widgets = {
 'text': forms.fields.TextInput(attrs={
 'placeholder': 'Enter a to-do item',
 'class': 'form-control input-lg',
 }),
 }
 error_messages = {
 'text': {'required': "You can't have an empty list item"}
 }

OK

You know what would be even better than messing about with all these error strings?
Having a constant:

lists/forms.py (ch11l011).
EMPTY_ITEM_ERROR = "You can't have an empty list item"
[...]

 error_messages = {

Moving Validation Logic into a Form | 199

 'text': {'required': EMPTY_ITEM_ERROR}
 }

Rerun the tests to see they pass…OK. Now we change the test:
lists/tests/test_forms.py (ch11l012).

from lists.forms import EMPTY_ITEM_ERROR, ItemForm
[...]

 def test_form_validation_for_blank_items(self):
 form = ItemForm(data={'text': ''})
 self.assertFalse(form.is_valid())
 self.assertEqual(form.errors['text'], [EMPTY_ITEM_ERROR])

And the tests still pass:
OK

Great. Totes committable:
$ git status # should show lists/forms.py and tests/test_forms.py
$ git add lists
$ git commit -m "new form for list items"

Using the Form in Our Views
I had originally thought to extend this form to capture uniqueness validation as well as
empty-item validation. But there’s a sort of corollary to the “deploy as early as possible”
lean methodology, which is “merge code as early as possible”. In other words: while
building this bit of forms code, it would be easy to go on for ages, adding more and
more functionality to the form—I should know, because that’s exactly what I did during
the drafting of this chapter, and I ended up doing all sorts of work making an all-singing,
all-dancing form class before I realised it wouldn’t really work for our most basic use
case.

So, instead, try and use your new bit of code as soon as possible. This makes sure you
never have unused bits of code lying around, and that you start checking your code
against “the real world” as soon as possible.

We have a form class which can render some HTML and do validation of at least one
kind of error—let’s start using it! We should be able to use it in our base.html template,
and so in all of our views.

Using the Form in a View with a GET Request
Let’s start in our unit tests for the home view. We’ll replace the old-style
test_home_page_returns_correct_html and test_root_url_resolves_to_home_
page_view with a set of tests that use the Django test client. We leave the old tests in at
first, to check that our new tests are equivalent:

200 | Chapter 11: A Simple Form

lists/tests/test_views.py (ch11l013).
from lists.forms import ItemForm

class HomePageTest(TestCase):

 def test_root_url_resolves_to_home_page_view(self):
 [...]

 def test_home_page_returns_correct_html(self):
 request = HttpRequest()
 [...]

 def test_home_page_renders_home_template(self):
 response = self.client.get('/')
 self.assertTemplateUsed(response, 'home.html') #

 def test_home_page_uses_item_form(self):
 response = self.client.get('/')
 self.assertIsInstance(response.context['form'], ItemForm) #

We’ll use the helper method assertTemplateUsed to replace our old manual test
of the template.
We use assertIsInstance to check that our view uses the right kind of form.

That gives us:
KeyError: 'form'

So we use the form in our home page view:
lists/views.py (ch11l014).

[...]
from lists.forms import ItemForm
from lists.models import Item, List

def home_page(request):
 return render(request, 'home.html', {'form': ItemForm()})

OK, now let’s try using it in the template—we replace the old <input ..> with
{{ form.text }}:

lists/templates/base.html (ch11l015).
 <form method="POST" action="{% block form_action %}{% endblock %}">
 {{ form.text }}
 {% csrf_token %}
 {% if error %}
 <div class="form-group has-error">

{{ form.text }} renders just the HTML input for the text field of the form.

Now the old test is out of date:

Using the Form in Our Views | 201

 self.assertEqual(response.content.decode(), expected_html)
AssertionError: '<!DO[651 chars] <input class="form-control input-lg"
id="[342 chars]l>\n' != '<!DO[651 chars] \n \n
[233 chars]l>\n'

That error message is impossible to read though. Let’s clarify its message a little:
lists/tests/test_views.py (ch11l016).

class HomePageTest(TestCase):
 maxDiff = None #
 [...]
 def test_home_page_returns_correct_html(self):
 request = HttpRequest()
 response = home_page(request)
 expected_html = render_to_string('home.html')
 self.assertMultiLineEqual(response.content.decode(), expected_html) #

assertMultiLineEqual is useful for comparing long strings; it gives you a diff-
style output, but it truncates long diffs by default…
…so that’s why we also need to set maxDiff = None on the test class.

Sure enough, it’s because our render_to_string call doesn’t know about the form:
[...]
 <form method="POST" action="/lists/new">
- <input class="form-control input-lg" id="id_text"
name="text" placeholder="Enter a to-do item" type="text" />
+
[...]

But we can fix that:
lists/tests/test_views.py.

def test_home_page_returns_correct_html(self):
 request = HttpRequest()
 response = home_page(request)
 expected_html = render_to_string('home.html', {'form': ItemForm()})
 self.assertMultiLineEqual(response.content.decode(), expected_html)

And that gets us back to passing. We’ve now reassured ourselves enough that the be‐
haviour has stayed the same, so it’s now OK to delete the two old tests. The assertTem
plateUsed and response.context checks from the new test are sufficient for testing a
basic view with a GET request.

That leaves us with just two tests in HomePageTest:
lists/tests/test_views.py (ch11l017).

class HomePageTest(TestCase):

 def test_home_page_renders_home_template(self):
 [...]

 def test_home_page_uses_item_form(self):
 [...]

202 | Chapter 11: A Simple Form

A Big Find and Replace
One thing we have done, though, is changed our form—it no longer uses the same id
and name attributes. You’ll see if we run our functional tests that they fail the first time
they try and find the input box:

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"id_new_item"}

We’ll need to fix this, and it’s going to involve a big find and replace. Before we do that,
let’s do a commit, to keep the rename separate from the logic change:

$ git diff # review changes in home.html, views.py and its tests
$ git commit -am "use new form in home_page, simplify tests. NB breaks stuff"

Let’s fix the functional tests. A quick grep shows us there are several places where we’re
using id_new_item:

$ grep id_new_item functional_tests/test*
functional_tests/test_layout_and_styling.py: inputbox =
self.browser.find_element_by_id('id_new_item')
functional_tests/test_layout_and_styling.py: inputbox =
self.browser.find_element_by_id('id_new_item')
functional_tests/test_list_item_validation.py:
self.browser.find_element_by_id('id_new_item').send_keys('\n')
[...]

That’s a good call for a refactor. Let’s make a new helper method in base.py:
functional_tests/base.py (ch11l018).

class FunctionalTest(StaticLiveServerTestCase):
 [...]
 def get_item_input_box(self):
 return self.browser.find_element_by_id('id_text')

And then we use it throughout—I had to make three changes in test_simple_list_cre‐
ation.py, two in test_layout_and_styling.py, and four in test_list_item_validation.py, eg:

functional_tests/test_simple_list_creation.py.
 # She is invited to enter a to-do item straight away
 inputbox = self.get_item_input_box()

Or:
functional_tests/test_list_item_validation.py.

 # an empty list item. She hits Enter on the empty input box
 self.browser.get(self.server_url)
 self.get_item_input_box().send_keys('\n')

I won’t show you every single one, I’m sure you can manage this for yourself! You can
redo the grep to check you’ve caught them all.

Using the Form in Our Views | 203

We’re past the first step, but now we have to bring the rest of the application code in line
with the change. We need to find any occurrences of the old id (id_new_item) and name
(item_text) and replace them too, with id_text and text, respectively:

$ grep -r id_new_item lists/
lists/static/base.css:#id_new_item {

That’s one change, and similarly for the name:
$ grep -Ir item_text lists
lists/views.py: item = Item(text=request.POST['item_text'], list=list_)
lists/views.py: item = Item(text=request.POST['item_text'],
lists/tests/test_views.py: data={'item_text': 'A new list item'}
lists/tests/test_views.py: data={'item_text': 'A new list item'}
lists/tests/test_views.py: response = self.client.post('/lists/new',
data={'item_text': ''})
[...]

Once we’re done, we rerun the unit tests to check everything still works:
$ python3 manage.py test lists
Creating test database for alias 'default'...
.................

Ran 17 tests in 0.126s

OK
Destroying test database for alias 'default'...

And the functional tests too:
$ python3 manage.py test functional_tests
[...]
 File "/workspace/superlists/functional_tests/test_simple_list_creation.py",
line 40, in test_can_start_a_list_and_retrieve_it_later
 return self.browser.find_element_by_id('id_text')
 File "/workspace/superlists/functional_tests/base.py", line 31, in
get_item_input_box
 return self.browser.find_element_by_id('id_text')
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"id_text"}
[...]
FAILED (errors=3)

Not quite! Let’s look at where this is happening—if you check the line number from one
of the failures, you’ll see that each time after we’ve submitted a first item, the input box
has disappeared from the lists page.

Checking views.py and the new_list view we can see it’s because if we detect a validation
error, we’re not actually passing the form to the home.html template:

204 | Chapter 11: A Simple Form

lists/views.py.
except ValidationError:
 error = "You can't have an empty list item"
 return render(request, 'home.html', {"error": error})

We’ll want to use the form in this view too. Before we make any more changes though,
let’s do a commit:

$ git status
$ git commit -am "rename all item input ids and names. still broken"

Using the Form in a View That Takes POST Requests
Now we want to adjust the unit tests for the new_list view, especially the one that deals
with validation. Let’s take a look at it now:

lists/tests/test_views.py.
class NewListTest(TestCase):
 [...]

 def test_validation_errors_are_sent_back_to_home_page_template(self):
 response = self.client.post('/lists/new', data={'text': ''})
 self.assertEqual(response.status_code, 200)
 self.assertTemplateUsed(response, 'home.html')
 expected_error = escape("You can't have an empty list item")
 self.assertContains(response, expected_error)

Adapting the Unit Tests for the new_list View
For a start this test is testing too many things at once, so we’ve got an opportunity to
clarify things here. We should split out two different assertions:

• If there’s a validation error, we should render the home template, with a 200.
• If there’s a validation error, the response should contain our error text.

And we can add a new one too:

• If there’s a validation error, we should pass our form object to the template.

And while we’re at it, we’ll use our constant instead of the hardcoded string for that
error message:

lists/tests/test_views.py (ch11l023).
from lists.forms import ItemForm, EMPTY_ITEM_ERROR
[...]

class NewListTest(TestCase):
 [...]

 def test_for_invalid_input_renders_home_template(self):
 response = self.client.post('/lists/new', data={'text': ''})

Using the Form in a View That Takes POST Requests | 205

 self.assertEqual(response.status_code, 200)
 self.assertTemplateUsed(response, 'home.html')

 def test_validation_errors_are_shown_on_home_page(self):
 response = self.client.post('/lists/new', data={'text': ''})
 self.assertContains(response, escape(EMPTY_ITEM_ERROR))

 def test_for_invalid_input_passes_form_to_template(self):
 response = self.client.post('/lists/new', data={'text': ''})
 self.assertIsInstance(response.context['form'], ItemForm)

Much better. Each test is now clearly testing one thing, and, with a bit of luck, just one
will fail and tell us what to do:

$ python3 manage.py test lists
[...]
==
ERROR: test_for_invalid_input_passes_form_to_template
(lists.tests.test_views.NewListTest)

Traceback (most recent call last):
 File "/workspace/superlists/lists/tests/test_views.py", line 55, in
test_for_invalid_input_passes_form_to_template
 self.assertIsInstance(response.context['form'], ItemForm)
[...]
KeyError: 'form'

Ran 19 tests in 0.041s

FAILED (errors=1)

Using the Form in the View
And here’s how we use the form in the view:

lists/views.py.
def new_list(request):
 form = ItemForm(data=request.POST) #
 if form.is_valid(): #
 list_ = List.objects.create()
 Item.objects.create(text=request.POST['text'], list=list_)
 return redirect(list_)
 else:
 return render(request, 'home.html', {"form": form}) #

We pass the request.POST data into the form’s constructor.
We use form.is_valid() to determine whether this is a good or a bad
submission.

206 | Chapter 11: A Simple Form

In the invalid case, we pass the form down to the template, instead of our
hardcoded error string.

That view is now looking much nicer! And all our tests pass, except one:
 self.assertContains(response, escape(EMPTY_ITEM_ERROR))
[...]
AssertionError: False is not true : Couldn't find 'You can't have an empty
list item' in response

Using the Form to Display Errors in the Template
We’re failing because we’re not yet using the form to display errors in the template:

lists/templates/base.html (ch11l026).
 <form method="POST" action="{% block form_action %}{% endblock %}">
 {{ form.text }}
 {% csrf_token %}
 {% if form.errors %}
 <div class="form-group has-error">
 <div class="help-block">{{ form.text.errors }}</div>
 </div>
 {% endif %}
 </form>

form.errors contains a list of all the errors for the form.
form.text.errors is a list of just the errors for the text field.

What does that do to our tests?
FAIL: test_validation_errors_end_up_on_lists_page
(lists.tests.test_views.ListViewTest)
[...]
AssertionError: False is not true : Couldn't find 'You can't have an empty
list item' in response

An unexpected failure—it’s actually in the tests for our final view, view_list. Because
we’ve changed the way errors are displayed in all templates, we’re no longer showing
the error that we manually pass into the template.

That means we’re going to need to rework view_list as well, before we can get back to
a working state.

Using the Form in the Other View
This view handles both GET and POST requests. Let’s start with checking the form is
used in GET requests. We can have a new test for that:

Using the Form in the Other View | 207

lists/tests/test_views.py.
class ListViewTest(TestCase):
 [...]

 def test_displays_item_form(self):
 list_ = List.objects.create()
 response = self.client.get('/lists/%d/' % (list_.id,))
 self.assertIsInstance(response.context['form'], ItemForm)
 self.assertContains(response, 'name="text"')

That gives:
KeyError: 'form'

Here’s a minimal implementation:
lists/views.py (ch11l028).

def view_list(request, list_id):
 [...]
 form = ItemForm()
 return render(request, 'list.html', {
 'list': list_, "form": form, "error": error
 })

A Helper Method for Several Short Tests
Next we want to use the form errors in the second view. We’ll split our current single
test for the invalid case (test_validation_errors_end_up_on_lists_page) into sev‐
eral separate ones:

lists/tests/test_views.py (ch11l030).
class ListViewTest(TestCase):
 [...]

 def post_invalid_input(self):
 list_ = List.objects.create()
 return self.client.post(
 '/lists/%d/' % (list_.id,),
 data={'text': ''}
)

 def test_for_invalid_input_nothing_saved_to_db(self):
 self.post_invalid_input()
 self.assertEqual(Item.objects.count(), 0)

 def test_for_invalid_input_renders_list_template(self):
 response = self.post_invalid_input()
 self.assertEqual(response.status_code, 200)
 self.assertTemplateUsed(response, 'list.html')

 def test_for_invalid_input_passes_form_to_template(self):
 response = self.post_invalid_input()
 self.assertIsInstance(response.context['form'], ItemForm)

208 | Chapter 11: A Simple Form

 def test_for_invalid_input_shows_error_on_page(self):
 response = self.post_invalid_input()
 self.assertContains(response, escape(EMPTY_ITEM_ERROR))

By making a little helper function, post_invalid_input, we can make four separate
tests without duplicating lots of lines of code.

We’ve seen this several times now. It often feels more natural to write view tests as a
single, monolithic block of assertions—the view should do this and this and this then
return that with this. But breaking things out into multiple tests is definitely worthwhile;
as we saw in previous chapters, it helps you isolate the exact problem you may have,
when you later come and change your code and accidentally introduce a bug. Helper
methods are one of the tools that lower the psychological barrier.

For example, now we can see there’s just one failure, and it’s a clear one:
FAIL: test_for_invalid_input_shows_error_on_page
(lists.tests.test_views.ListViewTest)
AssertionError: False is not true : Couldn't find 'You can't have an empty
list item' in response

Now let’s see if we can properly rewrite the view to use our form. Here’s a first cut:
lists/views.py.

def view_list(request, list_id):
 list_ = List.objects.get(id=list_id)
 form = ItemForm()
 if request.method == 'POST':
 form = ItemForm(data=request.POST)
 if form.is_valid():
 Item.objects.create(text=request.POST['text'], list=list_)
 return redirect(list_)
 return render(request, 'list.html', {'list': list_, "form": form})

That gets the unit tests passing:
Ran 23 tests in 0.086s

OK

How about the FTs?
$ python3 manage.py test functional_tests
Creating test database for alias 'default'...
...

Ran 3 tests in 12.154s

OK
Destroying test database for alias 'default'...

Woohoo! Can you feel that feeling of relief wash over you? We’ve just made a major
change to our small app—that input field, with its name and ID, is absolutely critical to
making everything work. We’ve touched seven or eight different files, doing a refactor

Using the Form in the Other View | 209

that’s quite involved…this is the kind of thing that, without tests, would seriously worry
me. In fact, I might well have decided that it wasn’t worth messing with code that works…
but, because we have a full tests suite, we can delve around in it, tidying things up, safe
in the knowledge that the tests are there to spot any mistakes we make. It just makes it
that much likelier that you’re going to keep refactoring, keep tidying up, keep gardening,
keep tending your code, keep everything neat and tidy and clean and smooth and precise
and concise and functional and good.

• Remove duplication of validation logic in
views

Definitely time for a commit:
$ git diff
$ git commit -am "use form in all views, back to working state"

Using the Form’s Own Save Method
There are a couple more things we can do to make our views even simpler. I’ve men‐
tioned that forms are supposed to be able to save data to the database for us. Our case
won’t quite work out of the box, because the item needs to know what list to save to, but
it’s not hard to fix that.

We start, as always, with a test. Just to illustrate what the problem is, let’s see what happens
if we just try to call form.save():

lists/tests/test_forms.py (ch11l032).
 def test_form_save_handles_saving_to_a_list(self):
 form = ItemForm(data={'text': 'do me'})
 new_item = form.save()

Django isn’t happy, because an item needs to belong to a list:
django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id

Our solution is to tell the form’s save method what list it should save to:
lists/tests/test_forms.py.

from lists.models import Item, List
[...]

 def test_form_save_handles_saving_to_a_list(self):
 list_ = List.objects.create()

210 | Chapter 11: A Simple Form

 form = ItemForm(data={'text': 'do me'})
 new_item = form.save(for_list=list_)
 self.assertEqual(new_item, Item.objects.first())
 self.assertEqual(new_item.text, 'do me')
 self.assertEqual(new_item.list, list_)

We then make sure that the item is correctly saved to the database, with the right at‐
tributes:

TypeError: save() got an unexpected keyword argument 'for_list'

And here’s how we can implement our custom save method:
lists/forms.py (ch11l034).

 def save(self, for_list):
 self.instance.list = for_list
 return super().save()

The .instance attribute on a form represents the database object that is being modified
or created. And I only learned that as I was writing this chapter! There are other ways
of getting this to work, including manually creating the object yourself, or using the
commit=False argument to save, but this is the neatest I think. We’ll explore a different
way of making a form “know” what list it’s for in the next chapter:

Ran 24 tests in 0.086s

OK

Finally we can refactor our views. new_list first:
lists/views.py.

def new_list(request):
 form = ItemForm(data=request.POST)
 if form.is_valid():
 list_ = List.objects.create()
 form.save(for_list=list_)
 return redirect(list_)
 else:
 return render(request, 'home.html', {"form": form})

Rerun the test to check everything still passes:
Ran 24 tests in 0.086s

OK

And now view_list:
lists/views.py.

def view_list(request, list_id):
 list_ = List.objects.get(id=list_id)
 form = ItemForm()
 if request.method == 'POST':
 form = ItemForm(data=request.POST)
 if form.is_valid():
 form.save(for_list=list_)

Using the Form’s Own Save Method | 211

 return redirect(list_)
 return render(request, 'list.html', {'list': list_, "form": form})

And we still have full passes:
Ran 24 tests in 0.111s

OK

and
Ran 3 tests in 14.367s

OK

Great! Our two views are now looking very much like “normal” Django views: they take
information from a user’s request, combine it with some custom logic or information
from the URL (list_id), pass it to a form for validation and possible saving, and then
redirect or render a template.

Forms and validation are really important in Django, and in web programming in gen‐
eral, so let’s see if we can’t make a slightly more complicated one in the next chapter.

Tips
Thin views

If you find yourself looking at complex views, and having to write a lot of tests for
them, it’s time to start thinking about whether that logic could be moved elsewhere:
possibly to a form, like we’ve done here. Another possible place would be a custom
method on the model class. And—once the complexity of the app demands it—out
of Django-specific files and into your own classes and functions, that capture your
core business logic.

Each test should test one thing
The heuristic is to be suspicious if there’s more than one assertion in a test. Some‐
times two assertions are closely related, so they belong together. But often your first
draft of a test ends up testing multiple behaviours, and it’s worth rewriting it as
several tests. Helper functions can keep them from getting too bloated.

212 | Chapter 11: A Simple Form

CHAPTER 12
More Advanced Forms

Now let’s look at some more advanced forms usage. We’ve helped our users to avoid
blank list items, now let’s help them avoid duplicate items.

This chapter goes into more intricate details of Django’s form validation, and you can
consider it optional if you already know all about customising Django forms. If you’re
still learning Django, there’s good stuff in here. If you want to skip ahead, that’s OK too.
Make sure you take a quick look at the aside on developer stupidity, and the recap on
testing views at the end.

Another FT for Duplicate Items
We add a second test method to ItemValidationTest:

functional_tests/test_list_item_validation.py (ch12l001).
def test_cannot_add_duplicate_items(self):
 # Edith goes to the home page and starts a new list
 self.browser.get(self.server_url)
 self.get_item_input_box().send_keys('Buy wellies\n')
 self.check_for_row_in_list_table('1: Buy wellies')

 # She accidentally tries to enter a duplicate item
 self.get_item_input_box().send_keys('Buy wellies\n')

 # She sees a helpful error message
 self.check_for_row_in_list_table('1: Buy wellies')
 error = self.browser.find_element_by_css_selector('.has-error')
 self.assertEqual(error.text, "You've already got this in your list")

Why have two test methods rather than extending one, or having a new file and class?
It’s a judgement call. These two feel closely related; they’re both about validation on the
same input field, so it feels right to keep them in the same file. On the other hand, they’re
logically separate enough that it’s practical to keep them in different methods:

213

$ python3 manage.py test functional_tests.test_list_item_validation
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"css selector","selector":".has-error"}

Ran 2 tests in 9.613s

OK, so we know the first of the two tests passes now. Is there a way to run just the failing
one, I hear you ask? Why yes indeed:

$ python3 manage.py test functional_tests.\
test_list_item_validation.ItemValidationTest.test_cannot_add_duplicate_items
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"css selector","selector":".has-error"}

Preventing Duplicates at the Model Layer
Here’s what we really wanted to do. It’s a new test that checks that duplicate items in the
same list raise an error:

lists/tests/test_models.py (ch09l028).
def test_duplicate_items_are_invalid(self):
 list_ = List.objects.create()
 Item.objects.create(list=list_, text='bla')
 with self.assertRaises(ValidationError):
 item = Item(list=list_, text='bla')
 item.full_clean()

And, while it occurs to us, we add another test to make sure we don’t overdo it on our
integrity constraints:

lists/tests/test_models.py (ch09l029).
def test_CAN_save_same_item_to_different_lists(self):
 list1 = List.objects.create()
 list2 = List.objects.create()
 Item.objects.create(list=list1, text='bla')
 item = Item(list=list2, text='bla')
 item.full_clean() # should not raise

I always like to put a little comment for tests which are checking that a particular use
case should not raise an error; otherwise it can be hard to see what’s being tested.

AssertionError: ValidationError not raised

If we want to get it deliberately wrong, we can do this:
lists/models.py (ch09l030).

class Item(models.Model):
 text = models.TextField(default='', unique=True)
 list = models.ForeignKey(List, default=None)

That lets us check that our second test really does pick up on this problem:
Traceback (most recent call last):
 File "/workspace/superlists/lists/tests/test_models.py", line 62, in

214 | Chapter 12: More Advanced Forms

test_CAN_save_same_item_to_different_lists
 item.full_clean() # should not raise
 [...]
django.core.exceptions.ValidationError: {'text': ['Item with this Text already
exists.']}

An Aside on When to Test for Developer Stupidity
One of the judgement calls in testing is when you should write tests that sound like
“check we haven’t done something stupid”. In general, you should be wary of these.

In this case, we’ve written a test to check that you can’t save duplicate items to the same
list. Now, the simplest way to get that test to pass, the way in which you’d write the least
lines of code, would be to make it impossible to save any duplicate items. That justifies
writing another test, despite the fact that it would be a “stupid” or “wrong” thing for us
to code.

But you can’t be writing tests for every possible way we could have coded something
wrong. If you have a function that adds two numbers, you can write a couple of tests:

assert adder(1, 1) == 2
assert adder(2, 1) == 3

But you have the right to assume that the implementation isn’t deliberately screwey or
perverse:

def adder(a, b):
 # unlikely code!
 if a == 3:
 return 666
 else:
 return a + b

One way of putting it is that you should trust yourself not to do something deliberate‐
ly stupid, but not something accidentally stupid.

Just like ModelForms, models have a class Meta, and that’s where we can implement a
constraint which says that that an item must be unique for a particular list, or in other
words, that text and list must be unique together:

lists/models.py (ch09l031).
class Item(models.Model):
 text = models.TextField(default='')
 list = models.ForeignKey(List, default=None)

 class Meta:
 unique_together = ('list', 'text')

You might want to take a quick peek at the Django docs on model Meta attributes at this
point.

Another FT for Duplicate Items | 215

https://docs.djangoproject.com/en/1.8/ref/models/options/

A Little Digression on Queryset Ordering and String Representations
When we run the tests they reveal an unexpected failure:

==
FAIL: test_saving_and_retrieving_items
(lists.tests.test_models.ListAndItemModelsTest)

Traceback (most recent call last):
 File "/workspace/superlists/lists/tests/test_models.py", line 31, in
test_saving_and_retrieving_items
 self.assertEqual(first_saved_item.text, 'The first (ever) list item')
AssertionError: 'Item the second' != 'The first (ever) list item'
- Item the second
[...]

Depending on your platform and its SQLite installation, you may not
see this error. You can follow along anyway; the code and tests are
interesting in their own right.

That’s a bit of a puzzler. A bit of print-based debugging:
lists/tests/test_models.py.

 first_saved_item = saved_items[0]
 print(first_saved_item.text)
 second_saved_item = saved_items[1]
 print(second_saved_item.text)
 self.assertEqual(first_saved_item.text, 'The first (ever) list item')

Will show us…
.....Item the second
The first (ever) list item
F.....

It looks like our uniqueness constraint has messed with the default ordering of queries
like Item.objects.all(). Although we already have a failing test, it’s best to add a new
test that explicitly tests for ordering:

lists/tests/test_models.py (ch09l032).
 def test_list_ordering(self):
 list1 = List.objects.create()
 item1 = Item.objects.create(list=list1, text='i1')
 item2 = Item.objects.create(list=list1, text='item 2')
 item3 = Item.objects.create(list=list1, text='3')
 self.assertEqual(
 Item.objects.all(),
 [item1, item2, item3]
)

That gives us a new failure, but it’s not a very readable one:

216 | Chapter 12: More Advanced Forms

AssertionError: [<Item: Item object>, <Item: Item object>, <Item: Item object>]
!= [<Item: Item object>, <Item: Item object>, <Item: Item object>]

We need a better string representation for our objects. Let’s add another unit test:

Ordinarily you would be wary of adding more failing tests when you
already have some—it makes reading test output that much more
complicated, and just generally makes you nervous. Will we ever get
back to a working state? In this case, they’re all quite simple tests, so
I’m not worried.

lists/tests/test_models.py (ch12l008).
def test_string_representation(self):
 item = Item(text='some text')
 self.assertEqual(str(item), 'some text')

That gives us:
AssertionError: 'Item object' != 'some text'

As well as the other two failures. Let’s start fixing them all now:
lists/models.py (ch09l034).

class Item(models.Model):
 [...]

 def __str__(self):
 return self.text

in Python 2.x versions of Django, the string representation method
used to be __unicode__. Like much string handling, this is simpli‐
fied in Python 3. See the docs.

Now we’re down to two failures, and the ordering test has a more readable failure
message:

AssertionError: [<Item: 3>, <Item: i1>, <Item: item 2>] != [<Item: i1>, <Item:
item 2>, <Item: 3>]

We can fix that in the class Meta:
lists/models.py (ch09l035).

 class Meta:
 ordering = ('id',)
 unique_together = ('list', 'text')

Does that work?
AssertionError: [<Item: i1>, <Item: item 2>, <Item: 3>] != [<Item: i1>, <Item:
item 2>, <Item: 3>]

Another FT for Duplicate Items | 217

https://docs.djangoproject.com/en/1.8/topics/python3/#str-and-unicode-methods

1. You could also check out assertSequenceEqual from unittest, and assertQuerysetEqual from Django’s
test tools, although I confess when I last looked at assertQuerysetEqual I was quite baffled…

Urp? It has worked; you can see the items are in the same order, but the tests are confused.
I keep running into this problem actually—Django querysets don’t compare well with
lists. We can fix it by converting the queryset to a list1 in our test:

lists/tests/test_models.py (ch09l036).
 self.assertEqual(
 list(Item.objects.all()),
 [item1, item2, item3]
)

That works; we get a fully passing test suite:
OK

Rewriting the Old Model Test
That long-winded model test did serendipitously help us find an unexpected bug, but
now it’s time to rewrite it. I wrote it in a very verbose style to introduce the Django
ORM, but in fact, now that we have the explicit test for ordering, we can get the same
coverage from a couple of much shorter tests. Delete test_saving_and_retriev
ing_items and replace with this:

lists/tests/test_models.py (ch12l010).
class ListAndItemModelsTest(TestCase):

 def test_default_text(self):
 item = Item()
 self.assertEqual(item.text, '')

 def test_item_is_related_to_list(self):
 list_ = List.objects.create()
 item = Item()
 item.list = list_
 item.save()
 self.assertIn(item, list_.item_set.all())

 [...]

That’s more than enough really—a check of the default values of attributes on a freshly
initialized model object is enough to sanity-check that we’ve probably set some fields
up in models.py. The “item is related to list” test is a real “belt and braces” test to make
sure that our foreign key relationship works.

While we’re at it, we can split this file out into tests for Item and tests for List (there’s
only one of the latter, test_get_absolute_url:

218 | Chapter 12: More Advanced Forms

lists/tests/test_models.py (ch12l011).
class ItemModelTest(TestCase):

 def test_default_text(self):
 [...]

class ListModelTest(TestCase):

 def test_get_absolute_url(self):
 [...]

That’s neater and tidier:
$ python3 manage.py test lists
[...]
Ran 29 tests in 0.092s

OK

Some Integrity Errors Do Show Up on Save
A final aside before we move on. Do you remember I mentioned in Chapter 10 that
some data integrity errors are picked up on save? It all depends on whether the integrity
constraint is actually being enforced by the database.

Try running makemigrations and you’ll see that Django wants to add the unique_to
gether constraint to the database itself, rather than just having it as an application-layer
constraint:

$ python3 manage.py makemigrations
Migrations for 'lists':
 0005_auto_20140414_2038.py:
 - Change Meta options on item
 - Alter unique_together for item (1 constraint(s))

Now if we change our duplicates test to do a .save instead of a .full_clean…
lists/tests/test_models.py.

 def test_duplicate_items_are_invalid(self):
 list_ = List.objects.create()
 Item.objects.create(list=list_, text='bla')
 with self.assertRaises(ValidationError):
 item = Item(list=list_, text='bla')
 # item.full_clean()
 item.save()

It gives:
ERROR: test_duplicate_items_are_invalid (lists.tests.test_models.ItemModelTest)
[...]
 return Database.Cursor.execute(self, query, params)
sqlite3.IntegrityError: UNIQUE constraint failed: lists_item.list_id,

Another FT for Duplicate Items | 219

2. It’s showing a server error, code 500. Gotta get with the jargon!

lists_item.text
[...]
django.db.utils.IntegrityError: UNIQUE constraint failed: lists_item.list_id,
lists_item.text

You can see that the error bubbles up from SQLite, and it’s a different error to the one
we want, an IntegrityError instead of a ValidationError.

Let’s revert our changes to the test, and see them all passing again:
$ python3 manage.py test lists
[...]
Ran 29 tests in 0.092s
OK

And now it’s time to commit our model-layer changes:
$ git status # should show changes to tests + models and new migration
let's give our new migration a better name
$ mv lists/migrations/0005_auto* lists/migrations/0005_list_item_unique_together.py
$ git add lists
$ git diff --staged
$ git commit -am "Implement duplicate item validation at model layer"

Experimenting with Duplicate Item Validation at the
Views Layer
Let’s try running our FT, just to see where we are:

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"id_list_table"}

In case you didn’t see it as it flew past, the site is 500ing.2 A quick unit test at the view
level ought to clear this up:

lists/tests/test_views.py (ch12l014).
class ListViewTest(TestCase):
 [...]

 def test_for_invalid_input_shows_error_on_page(self):
 [...]

 def test_duplicate_item_validation_errors_end_up_on_lists_page(self):
 list1 = List.objects.create()
 item1 = Item.objects.create(list=list1, text='textey')
 response = self.client.post(
 '/lists/%d/' % (list1.id,),
 data={'text': 'textey'}
)

220 | Chapter 12: More Advanced Forms

 expected_error = escape("You've already got this in your list")
 self.assertContains(response, expected_error)
 self.assertTemplateUsed(response, 'list.html')
 self.assertEqual(Item.objects.all().count(), 1)

Gives:
django.db.utils.IntegrityError: UNIQUE constraint failed: lists_item.list_id,
lists_item.text

We want to avoid integrity errors! Ideally, we want the call to is_valid to somehow
notice the duplication error before we even try to save, but to do that, our form will
need to know what list it’s being used for, in advance.

Let’s put a skip on that test for now:
lists/tests/test_views.py (ch12l015).

from unittest import skip
[...]

 @skip
 def test_duplicate_item_validation_errors_end_up_on_lists_page(self):

A More Complex Form to Handle Uniqueness Validation
The form to create a new list only needs to know one thing, the new item text. A form
which validates that list items are unique needs to know the list too. Just like we overrode
the save method on our ItemForm, this time we’ll override the constructor on our new
form class so that it knows what list it applies to.

We duplicate our tests for the previous form, tweaking them slightly:
lists/tests/test_forms.py (ch12l016).

from lists.forms import (
 DUPLICATE_ITEM_ERROR, EMPTY_ITEM_ERROR,
 ExistingListItemForm, ItemForm
)
[...]

class ExistingListItemFormTest(TestCase):

 def test_form_renders_item_text_input(self):
 list_ = List.objects.create()
 form = ExistingListItemForm(for_list=list_)
 self.assertIn('placeholder="Enter a to-do item"', form.as_p())

 def test_form_validation_for_blank_items(self):
 list_ = List.objects.create()
 form = ExistingListItemForm(for_list=list_, data={'text': ''})
 self.assertFalse(form.is_valid())
 self.assertEqual(form.errors['text'], [EMPTY_ITEM_ERROR])

A More Complex Form to Handle Uniqueness Validation | 221

 def test_form_validation_for_duplicate_items(self):
 list_ = List.objects.create()
 Item.objects.create(list=list_, text='no twins!')
 form = ExistingListItemForm(for_list=list_, data={'text': 'no twins!'})
 self.assertFalse(form.is_valid())
 self.assertEqual(form.errors['text'], [DUPLICATE_ITEM_ERROR])

We can iterate through a few TDD cycles (I won’t show them all, but I’m sure you’ll do
them, right? Remember, the Goat sees all.) until we get a form with a custom constructor,
which just ignores its for_list argument:

lists/forms.py (ch09l071).
DUPLICATE_ITEM_ERROR = "You've already got this in your list"
[...]
class ExistingListItemForm(forms.models.ModelForm):
 def __init__(self, for_list, *args, **kwargs):
 super().__init__(*args, **kwargs)

Gives:
ValueError: ModelForm has no model class specified.

Now let’s see if making it inherit from our existing form helps:
lists/forms.py (ch09l072).

class ExistingListItemForm(ItemForm):
 def __init__(self, for_list, *args, **kwargs):
 super().__init__(*args, **kwargs)

That takes us down to just one failure:
FAIL: test_form_validation_for_duplicate_items
(lists.tests.test_forms.ExistingListItemFormTest)
 self.assertFalse(form.is_valid())
AssertionError: True is not false

The next step requires a little knowledge of Django’s internals, but you can read up on
it in the Django docs on model validation and form validation.

Django uses a method called validate_unique, both on forms and models, and we can
use both, in conjunction with the instance attribute:

lists/forms.py.
from django.core.exceptions import ValidationError
[...]

class ExistingListItemForm(ItemForm):

 def __init__(self, for_list, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.instance.list = for_list

 def validate_unique(self):

222 | Chapter 12: More Advanced Forms

https://docs.djangoproject.com/en/1.8/ref/models/instances/#validating-objects
https://docs.djangoproject.com/en/1.8/ref/forms/validation/

 try:
 self.instance.validate_unique()
 except ValidationError as e:
 e.error_dict = {'text': [DUPLICATE_ITEM_ERROR]}
 self._update_errors(e)

That’s a bit of Django voodoo right there, but we basically take the validation error,
adjust its error message, and then pass it back into the form. And we’re there! A quick
commit:

$ git diff
$ git commit -a

Using the Existing List Item Form in the List View
Now let’s see if we can put this form to work in our view.

We remove the skip, and while we’re at it, we can use our new constant. Tidy.
lists/tests/test_views.py (ch12l049).

from lists.forms import (
 DUPLICATE_ITEM_ERROR, EMPTY_ITEM_ERROR,
 ExistingListItemForm, ItemForm,
)
[...]

 def test_duplicate_item_validation_errors_end_up_on_lists_page(self):
 [...]
 expected_error = escape(DUPLICATE_ITEM_ERROR)

That brings back out integrity error:
django.db.utils.IntegrityError: UNIQUE constraint failed: lists_item.list_id,
lists_item.text

Our fix for this is to switch to using the new form class. Before we implement it, let’s
find the tests where we check the form class, and adjust them:

lists/tests/test_views.py (ch12l050).
class ListViewTest(TestCase):
[...]

 def test_displays_item_form(self):
 list_ = List.objects.create()
 response = self.client.get('/lists/%d/' % (list_.id,))
 self.assertIsInstance(response.context['form'], ExistingListItemForm)
 self.assertContains(response, 'name="text"')

 [...]

 def test_for_invalid_input_passes_form_to_template(self):
 response = self.post_invalid_input()
 self.assertIsInstance(response.context['form'], ExistingListItemForm)

Using the Existing List Item Form in the List View | 223

That gives us:
AssertionError: <ItemForm bound=False, valid=False, fields=(text)> is not an
instance of <class 'lists.forms.ExistingListItemForm'>

So we can adjust the view:
lists/views.py (ch12l051).

from lists.forms import ExistingListItemForm, ItemForm
[...]
def view_list(request, list_id):
 list_ = List.objects.get(id=list_id)
 form = ExistingListItemForm(for_list=list_)
 if request.method == 'POST':
 form = ExistingListItemForm(for_list=list_, data=request.POST)
 if form.is_valid():
 form.save()
 [...]

And that almost fixes everything, except for an unexpected fail:
TypeError: save() missing 1 required positional argument: 'for_list'

Our custom save method from the parent ItemForm is no longer needed. Let’s make a
quick unit test for that:

lists/tests/test_forms.py (ch12l053).
def test_form_save(self):
 list_ = List.objects.create()
 form = ExistingListItemForm(for_list=list_, data={'text': 'hi'})
 new_item = form.save()
 self.assertEqual(new_item, Item.objects.all()[0])

We can make our form call the grandparent save method:
lists/forms.py (ch12l054).

 def save(self):
 return forms.models.ModelForm.save(self)

Personal opinion here: I could have used super, but I prefer not to
use super when it requires arguments, eg to get a grandparent meth‐
od. I find Python 3’s super() with no args awesome to get the im‐
mediate parent. Anything else is too error-prone, and I find it ugly
besides. YMMV.

And we’re there! All the unit tests pass:
$ python3 manage.py test lists
[...]
Ran 34 tests in 0.082s

OK

And so does our FT for validation:

224 | Chapter 12: More Advanced Forms

$ python3 manage.py test functional_tests.test_list_item_validation
Creating test database for alias 'default'...
..

Ran 2 tests in 12.048s

OK
Destroying test database for alias 'default'...

As a final check, we rerun all the FTs:
$ python3 manage.py test functional_tests
Creating test database for alias 'default'...
....

Ran 4 tests in 19.048s

OK
Destroying test database for alias 'default'...

Hooray! Time for a final commit, and a wrap-up of what we’ve learned about testing
views over the last few chapters.

Recap: What to Test in Views
Partial listing showing all view tests and assertions.

class ListViewTest(TestCase):
 def test_uses_list_template(self):
 response = self.client.get('/lists/%d/' % (list_.id,)) #
 self.assertTemplateUsed(response, 'list.html') #
 def test_passes_correct_list_to_template(self):
 self.assertEqual(response.context['list'], correct_list) #
 def test_displays_item_form(self):
 self.assertIsInstance(response.context['form'], ExistingListItemForm) #
 self.assertContains(response, 'name="text"')
 def test_displays_only_items_for_that_list(self):
 self.assertContains(response, 'itemey 1') #
 self.assertContains(response, 'itemey 2') #
 self.assertNotContains(response, 'other list item 1') #
 def test_can_save_a_POST_request_to_an_existing_list(self):
 self.assertEqual(Item.objects.count(), 1) #
 self.assertEqual(new_item.text, 'A new item for an existing list') #
 def test_POST_redirects_to_list_view(self):
 self.assertRedirects(response, '/lists/%d/' % (correct_list.id,)) #
 def test_for_invalid_input_nothing_saved_to_db(self):
 self.assertEqual(Item.objects.count(), 0) #
 def test_for_invalid_input_renders_list_template(self):
 self.assertEqual(response.status_code, 200)
 self.assertTemplateUsed(response, 'list.html') #
 def test_for_invalid_input_passes_form_to_template(self):
 self.assertIsInstance(response.context['form'], ExistingListItemForm) #
 def test_for_invalid_input_shows_error_on_page(self):
 self.assertContains(response, escape(EMPTY_ITEM_ERROR)) #
 def test_duplicate_item_validation_errors_end_up_on_lists_page(self):
 self.assertContains(response, expected_error)

Using the Existing List Item Form in the List View | 225

 self.assertTemplateUsed(response, 'list.html')
 self.assertEqual(Item.objects.all().count(), 1)

Use the Django test client.
Check the template used. Then, check each item in the template context.
Check any objects are the right ones, or querysets have the correct items.
Check any forms are of the correct class.

 Test any template logic: any for or if should get a minimal test.

For views that handle POST requests, make sure you test both the valid case and
the invalid case.

 Sanity-check that your form is rendered, and its errors are displayed.

Why these points? Skip ahead to Appendix B, and I’ll show how they are sufficient to
ensure that our views are still correct if we refactor them to start using class-based views.

Next we’ll try and make our data validation more friendly by using a bit of client-side
code. Uh-oh, you know what that means…

226 | Chapter 12: More Advanced Forms

CHAPTER 13
Dipping Our Toes, Very Tentatively,

into JavaScript

If the Good Lord had wanted us to enjoy ourselves, he wouldn’t have granted us his precious
gift of relentless misery.

— John Calvin (as portrayed in Calvin and the Chipmunks)
Our new validation logic is good, but wouldn’t it be nice if the error messages disap‐
peared once the user started fixing the problem? For that we’d need a teeny-tiny bit of
JavaScript.

We are utterly spoiled by programming every day in such a joyful language as Python.
JavaScript is our punishment. So let’s dip our toes in, very gingerly.

I’m going to assume you know the basics of JavaScript syntax. If you
haven’t read JavaScript: The Good Parts, go and get yourself a copy
right away! It’s not a very long book.

Starting with an FT
Let’s add a new functional test to the ItemValidationTest class:

functional_tests/test_list_item_validation.py (ch14l001).
def test_error_messages_are_cleared_on_input(self):
 # Edith starts a new list in a way that causes a validation error:
 self.browser.get(self.server_url)
 self.get_item_input_box().send_keys('\n')
 error = self.browser.find_element_by_css_selector('.has-error')
 self.assertTrue(error.is_displayed()) #

 # She starts typing in the input box to clear the error
 self.get_item_input_box().send_keys('a')

227

http://onemillionpoints.blogspot.co.uk/2008/08/calvin-and-chipmunks.html

1. Admittedly once you start looking for Python BDD tools, things are a little more confusing.

 # She is pleased to see that the error message disappears
 error = self.browser.find_element_by_css_selector('.has-error')
 self.assertFalse(error.is_displayed()) #

 is_displayed() tells you whether an element is visible or not. We can’t just rely
on checking whether the element is present in the DOM, because now we’re
starting to hide elements.

That fails appropriately, but before we move on: three strikes and refactor! We’ve got
several places where we find the error element using CSS. Let’s move it to a helper
function:

functional_tests/test_list_item_validation.py (ch14l002).
 def get_error_element(self):
 return self.browser.find_element_by_css_selector('.has-error')

I like to keep helper functions in the FT class that’s using them, and
only promote them to the base class when they’re actually needed
elsewhere. It stops the base class from getting too cluttered. YAGNI.

And we then make five replacements in test_list_item_validation, like this one for
example:

functional_tests/test_list_item_validation.py (ch14l003).
 # She is pleased to see that the error message disappears
 error = self.get_error_element()
 self.assertFalse(error.is_displayed())

We have an expected failure:
$ python3 manage.py test functional_tests.test_list_item_validation
[...]
 self.assertFalse(error.is_displayed())
AssertionError: True is not false

And we can commit this as the first cut of our FT.

Setting Up a Basic JavaScript Test Runner
Choosing your testing tools in the Python and Django world is fairly straightforward.
The standard library unittest package is perfectly adequate, and the Django test runner
also makes a good default choice. There are some alternatives out there—nose is popular,
Green is the new kid on the block, and I’ve personally found pytest to be very impressive.
But there is a clear default option, and it’s just fine.1

228 | Chapter 13: Dipping Our Toes, Very Tentatively, into JavaScript

http://nose.readthedocs.org/
https://github.com/CleanCut/green
http://pytest.org/

2. Purely because it features the NyanCat test runner.

Not so in the JavaScript world! We use YUI at work, but I thought I’d go out and see
whether there were any new tools out there. I was overwhelmed with options—jsUnit,
Qunit, Mocha, Chutzpah, Karma, Jasmine, and many more. And it doesn’t end there
either: as I had almost settled on one of them, Mocha,2 I find out that I now need to
choose an assertion framework and a reporter, and maybe a mocking library, and it never
ends!

In the end I decided we should use QUnit because it’s simple, and it works well with
jQuery.

Make a directory called tests inside lists/static, and download the Qunit JavaScript and
CSS files into it, stripping out version numbers if necessary (I got version 1.12). We’ll
also put a file called tests.html in there:

$ tree lists/static/tests/
lists/static/tests/
├── qunit.css
├── qunit.js
└── tests.html

The boilerplate for a QUnit HTML file looks like this, including a smoke test:
lists/static/tests/tests.html.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Javascript tests</title>
 <link rel="stylesheet" href="qunit.css">
</head>

<body>
 <div id="qunit"></div>
 <div id="qunit-fixture"></div>
 <script src="qunit.js"></script>
 <script>
/*global $, test, equal */

test("smoke test", function () {
 equal(1, 1, "Maths works!");
});

 </script>

</body>
</html>

Dissecting that, the important things to pick up are the fact that we pull in qunit.js using
the first <script> tag, and then use the second one to write the main body of tests.

Setting Up a Basic JavaScript Test Runner | 229

http://visionmedia.github.io/mocha/#nyan-reporter
http://qunitjs.com/

Are you wondering about the /*global comment? I’m using a tool
called jslint, which is a syntax-checker for Javascript that’s integra‐
ted into my editor. The comment tells it what global variables are
expected—it’s not important to the code, so don’t worry about it, but
I would recommend taking a look at Javascript linters like jslint or
jshint when you get a moment. They can be very useful for avoid‐
ing JavaScript “gotchas”.

If you open up the file using your web browser (no need to run the dev server, just find
the file on disk) you should see something like Figure 13-1.

Figure 13-1. Basic QUnit screen

Looking at the test itself, we’ll find many similarities with the Python tests we’ve been
writing so far:

test("smoke test", function () { //
 equal(1, 1, "Maths works!"); //
});

230 | Chapter 13: Dipping Our Toes, Very Tentatively, into JavaScript

The test function defines a test case, a bit like def test_something(self) did
in Python. Its first argument is a name for the test, and the second is a function
for the body of the test.
The equal function is an assertion; very much like assertEqual, it compares
two arguments. Unlike in Python, though, the message is displayed both for
failures and for passes, so it should be phrased as a positive rather than a negative.

Why not try changing those arguments to see a deliberate failure?

Using jQuery and the Fixtures Div
Let’s get a bit more comfortable with what our testing framework can do, and start using
a bit of jQuery

If you’ve never seen jQuery before, I’m going to try and explain it as
we go, just enough so that you won’t be totally lost; but this isn’t a
jQuery tutorial. You may find it helpful to spend an hour or two
investigating jQuery at some point during this chapter.

Let’s add jQuery to our scripts, and a few elements to use in our tests:
lists/static/tests/tests.html.

 <div id="qunit-fixture"></div>

 <form>
 <input name="text" />
 <div class="has-error">Error text</div>
 </form>

 <script src="http://code.jquery.com/jquery.min.js"></script>
 <script src="qunit.js"></script>
 <script>
/*global $, test, equal */

test("smoke test", function () {
 equal($('.has-error').is(':visible'), true); //
 $('.has-error').hide(); //
 equal($('.has-error').is(':visible'), false); //
});

 </script>

The <form> and its contents are there to represent what will be on the real list
page.

Using jQuery and the Fixtures Div | 231

jQuery magic starts here! $ is the jQuery Swiss Army knife. It’s used to find bits
of the DOM. Its first argument is a CSS selector; here, we’re telling it to find all
elements that have the class “error”. It returns an object that represents one or
more DOM elements. That, in turn, has various useful methods that allow us to
manipulate or find out about those elements.
One of which is .is, which can tell us whether an element matches a particular
CSS property. Here we use :visible to check whether the element is displayed
or hidden.
We then use jQuery’s .hide() method to hide the div. Behind the scenes, it
dynamically sets a style="display: none" on the element.
And finally we check that it’s worked, with a second equal assertion.

If you refresh the browser, you should see that all passes:

Expected results from QUnit in the browser.
2 assertions of 2 passed, 0 failed.
1. smoke test (0, 2, 2)

Time to see how fixtures work. Let’s just dupe up this test:
lists/static/tests/tests.html.

 <script>
/*global $, test, equal */

test("smoke test", function () {
 equal($('.has-error').is(':visible'), true);
 $('.has-error').hide();
 equal($('.has-error').is(':visible'), false);
});
test("smoke test 2", function () {
 equal($('.has-error').is(':visible'), true);
 $('.has-error').hide();
 equal($('.has-error').is(':visible'), false);
});

 </script>

Slightly unexpectedly, we find one of them fails—see Figure 13-2.

232 | Chapter 13: Dipping Our Toes, Very Tentatively, into JavaScript

Figure 13-2. One of the two tests is failing

What’s happening here is that the first test hides the error div, so when the second test
runs, it starts out invisible.

QUnit tests do not run in a predictable order, so you can’t rely on the
first test running before the second one.

We need some way of tidying up between tests, a bit like setUp and tearDown, or like
the Django test runner would reset the database between each test. The qunit-
fixture div is what we’re looking for. Move the form in there:

lists/static/tests/tests.html.
 <div id="qunit"></div>
 <div id="qunit-fixture">
 <form>
 <input name="text" />
 <div class="has-error">Error text</div>
 </form>
 </div>

 <script src="http://code.jquery.com/jquery.min.js"></script>

As you’ve probably guessed, jQuery resets the content of the fixtures div before each
test, so that gets us back to two neatly passing tests:

Using jQuery and the Fixtures Div | 233

4 assertions of 4 passed, 0 failed.
1. smoke test (0, 2, 2)
2. smoke test 2 (0, 2, 2)

Building a JavaScript Unit Test for Our Desired
Functionality
Now that we’re acquainted with our JavaScript testing tools, we can switch back to just
one test, and start to write the real thing:

lists/static/tests/tests.html.
 <script>
/*global $, test, equal */

test("errors should be hidden on keypress", function () {
 $('input').trigger('keypress'); //
 equal($('.has-error').is(':visible'), false);
});

 </script>

The jQuery .trigger method is mainly used for testing. It says “fire off a
JavScript DOM event on the element(s)”. Here we use the keypress event, which
is fired off by the browser behind the scenes whenever a user types something
into a particular input element.

jQuery is hiding a lot of complexity behind the scenes here. Check
out Quirksmode.org for a view on the hideous nest of differences
between the different browsers’ interpretation of events. The reason
that jQuery is so popular is that it just makes all this stuff go away.

And that gives us:
0 assertions of 1 passed, 1 failed.
1. errors should be hidden on keypress (1, 0, 1)
 1. failed
 Expected: false
 Result: true

Let’s say we want to keep our code in a standalone JavaScript file called list.js.
lists/static/tests/tests.html.

 <script src="qunit.js"></script>
 <script src="../list.js"></script>
 <script>

Here’s the minimal code to get that test to pass:
lists/static/list.js.

$('.has-error').hide();

234 | Chapter 13: Dipping Our Toes, Very Tentatively, into JavaScript

http://www.quirksmode.org/dom/events/index.html

It has an obvious problem. We’d better add another test:
lists/static/tests/tests.html.

test("errors should be hidden on keypress", function () {
 $('input').trigger('keypress');
 equal($('.has-error').is(':visible'), false);
});

test("errors not be hidden unless there is a keypress", function () {
 equal($('.has-error').is(':visible'), true);
});

Now we get an expected failure:
1 assertions of 2 passed, 1 failed.
1. errors should be hidden on keypress (0, 1, 1)
2. errors not be hidden unless there is a keypress (1, 0, 1)
 1. failed
 Expected: true
 Result: false
 Diff: true false
[...]

And we can make a more realistic implementation:
lists/static/list.js.

$('input').on('keypress', function () { //
 $('.has-error').hide();
});

This line says: find all the input elements, and for each of them, attach an event
listener which reacts on keypress events. The event listener is the inline function,
which hides all elements that have the class .has-error.

That gets our unit tests to pass:
2 assertions of 2 passed, 0 failed.

Grand, so let’s pull in our script, and jQuery, on all our pages:
lists/templates/base.html (ch14l014).

</div>
<script src="http://code.jquery.com/jquery.min.js"></script>
<script src="/static/list.js"></script>
</body>

</html>

It’s good practice to put your script-loads at the end of your body
HTML, as it means the user doesn’t have to wait for all your Java‐
Script to load before they can see something on the page. It also helps
to make sure most of the DOM has loaded before any scripts run.

Building a JavaScript Unit Test for Our Desired Functionality | 235

Aaaand we run our FT:
$ python3 manage.py test functional_tests.test_list_item_validation.\
ItemValidationTest.test_error_messages_are_cleared_on_input
[...]

Ran 1 test in 3.023s

OK

Hooray! That’s a commit!

Javascript Testing in the TDD Cycle
You may be wondering how these JavaScript tests fit in with our “double loop” TDD
cycle. The answer is that they play exactly the same role as our Python unit tests.

1. Write an FT and see it fail.
2. Figure out what kind of code you need next: Python or JavaScript?
3. Write a unit test in either language, and see it fail.
4. Write some code in either language, and make the test pass.
5. Rinse and repeat.

Want a little more practice with JavaScript? See if you can get our
error messages to be hidden when the user clicks inside the input
element, as well as just when they type in it. You should be able to FT
it too.

Columbo Says: Onload Boilerplate and Namespacing
Oh, and one last thing. Whenever you have some JavaScript that interacts with the DOM,
it’s always good to wrap it in some “onload” boilerplate code to make sure that the page
has fully loaded before it tries to do anything. Currently it works anyway, because we’ve
placed the <script> tag right at the bottom of the page, but we shouldn’t rely on that.

The jQuery onload boilerplate is quite minimal:
lists/static/list.js.

$(document).ready(function () {
 $('input').on('keypress', function () {
 $('.has-error').hide();
 });
});

236 | Chapter 13: Dipping Our Toes, Very Tentatively, into JavaScript

3. Thanks to Vincenzo P. for pointing that one out!

In addition, we’re using the magic $ function from jQuery, but sometimes other Java‐
Script libraries try and use that too. It’s just an alias for the less contested name jQuery
though, so here’s the standard way of getting more fine-grained control over the
namespacing:

lists/static/list.js.
jQuery(document).ready(function ($) {
 $('input').on('keypress', function () {
 $('.has-error').hide();
 });
});

Read more in the jQuery .ready() docs.

We’re almost ready to move on to Part III. The last step is to deploy our new code to
our servers.

A Few Things That Didn’t Make It
• The selector $(input) is way too greedy; it’s assigning a handler to every input

element on the page. Try the exercise to add a click handler and you’ll realise why
that’s a problem. Make it more discerning!

• On a related note, we’re currently relying on lists.js binding listeners to whatever it
finds in the DOM when it’s loaded, which means any elements that are added dy‐
namically will not have them. You’ll find this is a problem if you do do the onclick
exercise, and you’ll need to work around it. You could use an initialisation function
and call it in each test, or find out about the jQuery .on delegation syntax…3

• At the moment, our test only checks that the JavaScript works on one page. It works
because we’re including it in base.html, but if we’d only added it to home.html the
tests would still pass. It’s a judgement call, but you could choose to write an extra
test here.

• The new shiny thing in the world of front-end development are MVC frameworks
like angular.js. Most tutorials for Angular use a test runner called Karma, and an
RSpec-like assertion library called Jasmine. If you’re going to use angular, you’ll
probably find life easier if you use those rather than Qunit.

A Few Things That Didn’t Make It | 237

http://api.jquery.com/ready/

JavaScript Testing Notes
• One of the great advantages of Selenium is that it allows you to test that your Java‐

Script really works, just as it tests your Python code.
• There are many JavaScript test running libraries out there. QUnit is closely tied to

jQuery, which is the main reason I chose it.
• QUnit mainly expects you to “run” your tests using an actual web browser. This has

the advantage that it’s easy to create some HTML fixtures that match the kind of
HTML your site actually contains, for tests to run against.

• I don’t really mean it when I say that JavaScript is awful. It can actually be quite fun.
But I’ll say it again: make sure you’ve read JavaScript: The Good Parts.

238 | Chapter 13: Dipping Our Toes, Very Tentatively, into JavaScript

CHAPTER 14
Deploying Our New Code

It’s time to deploy our brilliant new validation code to our live servers. This will be a
chance to see our automated deploy scripts in action for the second time.

At this point I want to say a huge thanks to Andrew Godwin and the
whole Django team. Up until Django 1.7, I used to have a whole long
section, entirely devoted to migrations. Migrations now “just work”,
so I was able to drop it altogether. Thanks for all the great work gang!

Staging Deploy
We start with the staging server:

$ cd deploy_tools
$ fab deploy:host=elspeth@superlists-staging.ottg.eu
Disconnecting from superlists-staging.ottg.eu... done.

Restart Gunicorn:
elspeth@server:$ sudo restart gunicorn-superlists-staging.ottg.eu

And run the tests against staging:
$ python3 manage.py test functional_tests --liveserver=superlists-staging.ottg.eu
OK

Live Deploy
Assuming all is well, we then run our deploy against live:

$ fab deploy:host=elspeth@superlists.ottg.eu

elspeth@server:$ sudo restart gunicorn-superlists.ottg.eu

239

What to Do If You See a Database Error
Because our migrations introduce a new integrity constraint, you may find that it fails
to apply because some existing data violates that constraint.

At this point you have two choices:

• Delete the database on the server and try again. After all, it’s only a toy project!
• Or, learn about data migrations. See Appendix D.

Wrap-Up: git tag the New Release
The last thing to do is to tag the release in our VCS—it’s important that we’re always
able to keep track of what’s live:

$ git tag -f LIVE # needs the -f because we are replacing the old tag
$ export TAG=`date +DEPLOYED-%F/%H%M`
$ git tag $TAG
$ git push -f origin LIVE $TAG

Some people don’t like to use push -f and update an existing tag, and
will instead some kind of version number to tag their releases. Use
whatever works for you.

And on that note, we can wrap up Part II, and move on to the more exciting topics that
comprise Part III. Can’t wait!

240 | Chapter 14: Deploying Our New Code

PART III
More Advanced Topics

“Oh my gosh, what? Another section? Harry, I’m exhausted, it’s already been two hun‐
dred pages, I don’t think I can handle a whole ‘nother section of the book. Particularly
not if it’s called “Advanced"…maybe I can get away with just skipping it?”

Oh no you can’t! This may be called the advanced section, but it’s full of really important
topics for TDD and web development. No way can you skip it. If anything, it’s even more
important than the first two sections.

We’ll be talking about how to integrate third-party systems, and how to test them.
Modern web development is all about reusing existing components. We’ll cover mock‐
ing and test isolation, which is really a core part of TDD, and a technique you’re going
to need for all but the simplest of codebases. We’ll talk about server-side debugging, and
test fixtures, and how to set up a Continuous Integration environment. None of these
things are take-it-or-leave-it optional luxury extras for your project, they’re all vital!

Inevitably, the learning curve does get a little steeper in this section. You may find
yourself having to read things a couple of times before they sink in, or you may find
that things don’t work first go, and that you need to do a bit of debugging on your own.
But persist with it! The harder it is, the more rewarding it is. And I’m always happy to
help if you’re stuck, just drop me an email, obeythetestinggoat@gmail.com.

Come on, I promise the best is yet to come!

mailto:obeythetestinggoat@gmail.com

CHAPTER 15
User Authentication, Integrating Third-

Party Plugins, and Mocking with JavaScript

Our beautiful lists site has been live for a few days, and our users are starting to come
back to us with feedback. “We love the site”, they say, “but we keep losing our lists.
Manually remembering URLs is hard. It’d be great if it could remember what lists we’d
started”.

Remember Henry Ford and faster horses. Whenever you hear a user requirement, it’s
important to dig a little deeper and think—what is the real requirement here? And how
can I make it involve a cool new technology I’ve been wanting to try out?

Clearly the requirement here is that people want to have some kind of user account on
the site. So, without further ado, let’s dive into authentication.

Naturally we’re not going to mess about with remembering passwords ourselves—be‐
sides being so ’90s, secure storage of user passwords is a security nightmare we’d rather
leave to someone else. We’ll use a federated authentication system instead.

(If you insist on storing your own passwords, Django’s default auth module is ready and
waiting for you. It’s nice and straightforward, and I’ll leave it to you to discover on your
own.)

In this chapter, we’re going to get pretty deep into a testing technique called “mocking”.
Personally, I know it took me a few weeks to really get my head around mocking, so
don’t worry if it’s confusing at first. In this chapter we do a lot of mocking in JavaScript.
In the next chapter we’ll do some mocking with Python, which you might find a little
easier to grasp. I would recommend reading both of them through together, and just
letting the whole concept wash over you; then come back and do them again, and see
if you understand all of the steps a little better on the second round.

243

Do let me know via obeythetestinggoat@gmail.com if you feel there’s
any particular sections where I don’t explain things well, or where I’m
going too fast.

Mozilla Persona (BrowserID)
But which federated authentication system to use? Oauth? Openid? “Login with Face‐
book”? Ugh. In my book those all have unacceptable creepy overtones; why should
Google or Facebook know what sites you’re logging into and when? Thankfully there
are still some techno-hippy-idealists out there, and the lovely people at Mozilla have
cooked up a privacy-friendly auth mechanism they call “Persona”, or sometimes
“BrowserID”.

The theory goes that your web browser acts as a third party between the website that
wants to check your ID, and the website that you will use as a guarantor of your ID. The
latter may be Google or Facebook or whomever, but a clever protocol means that they
never need know which website you were logging into or when.

Ultimately, Persona may never take off as an authentication platform, but the main
lessons from the next couple of chapters should be relevant no matter what third-party
auth system you want to integrate:

• Don’t test other people’s code or APIs.
• But, test that you’ve integrated them correctly into your own code.
• Check that everything works from the point of view of the user.
• Test that your system degrades gracefully if the third party is down.

Exploratory Coding, aka “Spiking”
Before I wrote this chapter all I’d seen of Persona was a talk at PyCon by Dan Callahan,
in which he promised it could be implemented in 30 lines of code, and magic’d his way
through a demo—in other words, I knew it not at all.

In Chapter 10 and Chapter 11 we saw that you can use a unit test as a way of exploring
a new API, but sometimes you just want to hack something together without any tests
at all, just to see if it works, to learn it or get a feel for it. That’s absolutely fine. When
learning a new tool or exploring a new possible solution, it’s often appropriate to leave
the rigorous TDD process to one side, and build a little prototype without tests, or
perhaps with very few tests. The goat doesn’t mind looking the other way for a bit.

This kind of prototyping activity is often called a “spike”, for reasons best known.

244 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

mailto:obeythetestinggoat@gmail.com
http://stackoverflow.com/questions/249969/why-are-tdd-spikes-called-spikes

The first thing I did was take a look at an existing Django-Persona integration called
Django-BrowserID, but unfortunately it didn’t really support Python 3. I’m sure it will
by the time you read this, but I was quietly relieved since I was rather looking forward
to writing my own code for this!

It took me about three hours of hacking about, using a combination of code stolen from
Dan’s talk and the example code on the Persona site, but by the end I had something
which just about works. I’ll take you on a tour, and then we’ll go through and “de-spike”
the implementation.

You should go ahead and add this code to your own site too, and then you can have a
play with it, try logging in with your own email address, and convince yourself that it
really does work.

Starting a Branch for the Spike
Before embarking on a spike, it’s a good idea to start a new branch, so you can still use
your VCS without worrying about your spike commits getting mixed up with your
production code:

$ git checkout -b persona-spike

Frontend and JavaScript Code
Let’s start with the frontend. I was able to cut and paste code from the Persona site and
Dan’s slides with minimal modification:

lists/templates/base.html (ch15l001).
<script src="http://code.jquery.com/jquery.min.js"></script>
<script src="/static/list.js"></script>
<script src="https://login.persona.org/include.js"></script>
<script>
$(document).ready(function() {

var loginLink = document.getElementById('login');
if (loginLink) {
 loginLink.onclick = function() { navigator.id.request(); };
}

var logoutLink = document.getElementById('logout');
if (logoutLink) {
 logoutLink.onclick = function() { navigator.id.logout(); };
}

var currentUser = '{{ user.email }}' || null;
var csrf_token = '{{ csrf_token }}';
console.log(currentUser);

navigator.id.watch({
 loggedInUser: currentUser,
 onlogin: function(assertion) {
 $.post('/accounts/login', {assertion: assertion, csrfmiddlewaretoken: csrf_token})
 .done(function() { window.location.reload(); })

Exploratory Coding, aka “Spiking” | 245

https://github.com/mozilla/django-browserid
https://developer.mozilla.org/en-US/docs/Mozilla/Persona

 .fail(function() { navigator.id.logout();});
 },
 onlogout: function() {
 $.post('/accounts/logout')
 .always(function() { window.location.reload(); });
 }
});

});
</script>

The Persona JavaScript library gives us a special navigator.id object. We bind its
request method to our link called “login” (which I’ve put in any old where at the top
of the page), and similarly a “logout” link gets bound to a logout function:

lists/templates/base.html (ch15l002).
<body>
<div class="container">

 <div class="navbar">
 {% if user.email %}
 <p>Logged in as {{ user.email}}</p>
 <p>Sign out</p>
 {% else %}
 Sign in
 {% endif %}
 <p>User: {{user}}</p>
 </div>

 <div class="row">
 [...]

The Browser-ID Protocol
Persona will now pop up its authentication dialog box if users click the log in link. What
happens next is the clever part of the Persona protocol: the user enters an email address,
and the browser takes care of validating that email address, by taking the user to the
email provider (Google, Yahoo, or whoever), and validating it with them.

Let’s say it’s Google: Google asks the user to confirm their username and password, and
maybe even does some two-factor auth wizardry, and is then prepared to confirm to
your browser that you are who you say you are. Google then passes a certificate back to
the browser, which is cryptographically signed to prove it’s from Google, and which
contains the user’s email address.

At this point the browser can trust that you do own that email address, and it can
incidentally reuse that certificate for any other websites that use Persona.

Now it combines the certificate with the domain name of the website you want to log
into in to a blob called an “assertion”, and sends them on to our site for validation.

246 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

This is the point between the navigator.id.request and the navigator.id.watch
callback for onlogin—we send the assertion via POST to the login URL on our site,
which I’ve put at accounts/login.

On the server, we now have the job of verifying the assertion: is it really proof that the
user owns that email address? Our server can check, because Google has signed part of
the assertion with its public key. We can either write code to do the crypto for this step
ourselves, or we can use a public service from Mozilla to do it for us.

Yes, letting Mozilla do it for us totally defeats the whole privacy point,
but it’s the principle. We could do it ourselves if we wanted to. It’s left
as an exercise for the reader! There are more details on the Mozilla
site, including all the clever public key crypto that keeps Google from
knowing what site you want to log in to, but also stops replay at‐
tacks and so on. Smart.

The Server Side: Custom Authentication
Next we prep an app for our accounts stuff:

$ python3 manage.py startapp accounts

Here’s the view that handles the POST to accounts/login:
accounts/views.py.

import sys
from django.contrib.auth import authenticate
from django.contrib.auth import login as auth_login
from django.shortcuts import redirect

def login(request):
 print('login view', file=sys.stderr)
 # user = PersonaAuthenticationBackend().authenticate(request.POST['assertion'])
 user = authenticate(assertion=request.POST['assertion'])
 if user is not None:
 auth_login(request, user)
 return redirect('/')

You can see that it’s clearly “spike” code from things like the commented-out line, evi‐
dence of an early experiment that failed.

Here’s the authenticate function, which is implemented as a custom Django “authen‐
tication backend”. (We could have done it inline in the view, but using a backend is the
Django recommended way. It would let us reuse the authentication system in the admin
site, for example.)

Exploratory Coding, aka “Spiking” | 247

https://developer.mozilla.org/en-US/docs/Mozilla/Persona/Protocol_Overview
https://developer.mozilla.org/en-US/docs/Mozilla/Persona/Protocol_Overview

accounts/authentication.py.
import requests
import sys
from accounts.models import ListUser

class PersonaAuthenticationBackend(object):

 def authenticate(self, assertion):
 # Send the assertion to Mozilla's verifier service.
 data = {'assertion': assertion, 'audience': 'localhost'}
 print('sending to mozilla', data, file=sys.stderr)
 resp = requests.post('https://verifier.login.persona.org/verify', data=data)
 print('got', resp.content, file=sys.stderr)

 # Did the verifier respond?
 if resp.ok:
 # Parse the response
 verification_data = resp.json()

 # Check if the assertion was valid
 if verification_data['status'] == 'okay':
 email = verification_data['email']
 try:
 return self.get_user(email)
 except ListUser.DoesNotExist:
 return ListUser.objects.create(email=email)

 def get_user(self, email):
 return ListUser.objects.get(email=email)

This code is copy-pasted directly from the Mozilla site, as you can see from the ex‐
planatory comments.

You’ll need to pip install requests into your virtualenv. If you’ve never used it before,
Requests is a great alternative to the Python standard library tools for HTTP requests.

To finish off the job of customising authentication in Django, we just need a custom
user model:

accounts/models.py.
from django.contrib.auth.models import AbstractBaseUser, PermissionsMixin
from django.db import models

class ListUser(AbstractBaseUser, PermissionsMixin):
 email = models.EmailField(primary_key=True)
 USERNAME_FIELD = 'email'
 #REQUIRED_FIELDS = ['email', 'height']

 objects = ListUserManager()

 @property
 def is_staff(self):
 return self.email == 'harry.percival@example.com'

 @property

248 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

http://docs.python-requests.org/

 def is_active(self):
 return True

That’s what I call a minimal user model! One field, none of this firstname/lastname/
username nonsense, and, pointedly, no password! Somebody else’s problem! But, again,
you can see that this code isn’t ready for production, from the commented-out lines to
the hardcoded harry email address.

At this point I’d recommend a little browse through the Django auth
documentation.

Aside from that, you need a model manager for the user:
accounts/models.py (ch15l006).

from django.contrib.auth.models import AbstractBaseUser, BaseUserManager, PermissionsMixin

class ListUserManager(BaseUserManager):

 def create_user(self, email):
 ListUser.objects.create(email=email)

 def create_superuser(self, email, password):
 self.create_user(email)

A logout view:
accounts/views.py (ch15l007).

from django.contrib.auth import login as auth_login, logout as auth_logout
[...]

def logout(request):
 auth_logout(request)
 return redirect('/')

Some URLs for our two views:
superlists/urls.py (ch15l008).

from accounts import urls as account_urls

urlpatterns = [
 url(r'^$', list_views.home_page, name='home'),
 url(r'^lists/', include(list_urls)),
 url(r'^accounts/', include(account_urls)),
 # url(r'^admin/', include(admin.site.urls)),
]

and
accounts/urls.py.

from django.conf.urls import patterns, url

urlpatterns = [
 url(r'^login$', 'accounts.views.login', name='login'),

Exploratory Coding, aka “Spiking” | 249

https://docs.djangoproject.com/en/1.8/topics/auth/customizing/
https://docs.djangoproject.com/en/1.8/topics/auth/customizing/

 url(r'^logout$', 'accounts.views.logout', name='logout'),
]

Almost there. We switch on the auth backend and our new accounts app in settings.py:
superlists/settings.py.

INSTALLED_APPS = (
 #'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'lists',
 'accounts',
)

AUTH_USER_MODEL = 'accounts.ListUser'
AUTHENTICATION_BACKENDS = (
 'accounts.authentication.PersonaAuthenticationBackend',
)

MIDDLEWARE_CLASSES = (
[...]

And a quick makemigrations to make the new user model real:
$ python3 manage.py makemigrations
Migrations for 'accounts':
 0001_initial.py:
 - Create model ListUser

And a migrate to build the database:
$ python3 manage.py migrate
[...]
Running migrations:
 Applying accounts.0001_initial... OK

And we should be all done! Why not spin up a dev server with runserver and see how
it all looks (Figure 15-1)?

250 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

Figure 15-1. It works! It works! Mwahahahaha.

That’s pretty much it! Along the way, I had to fight pretty hard, including debugging
Ajax requests by hand in the Firefox console (see Figure 15-2), catching infinite page-
refresh loops, stumbling over several missing attributes on my custom user model (be‐
cause I didn’t read the docs properly), and even one point switching to the dev version
of Django to overcome a bug, which thankfully turned out to be irrelevant.

Exploratory Coding, aka “Spiking” | 251

Figure 15-2. Debugging Ajax requests in the Firefox network console

If it’s not working when you try it manually, and you see “audience
mismatch” errors in the console, make sure you’re visiting the site via
http://localhost:8000, and not 127.0.0.1.

Aside: Logging to stderr
While spiking, it’s pretty critical to be able to see exceptions that are being generated by
your code. Annoyingly, Django doesn’t send all exceptions to the terminal by default,
but you can make it do so with a variable called LOGGING in settings.py:

superlists/settings.py (ch15l011).
LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'handlers': {
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',

252 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

 },
 },
 'loggers': {
 'django': {
 'handlers': ['console'],
 },
 },
 'root': {'level': 'INFO'},
}

Django uses the rather “enterprisey” logging package from the Python standard library,
which, although very fully featured, does suffer from a fairly steep learning curve. It’s
covered a little more in Chapter 17, and in the Django docs.

But we now have a working solution! Let’s commit it on our spike branch:
$ git status
$ git add accounts
$ git commit -am "spiked in custom auth backend with persona"

Time to de-spike!

De-spiking
De-spiking means rewriting your prototype code using TDD. We now have enough
information to “do it properly”. So what’s the first step? An FT of course!

We’ll stay on the spike branch for now, to see our FT pass against our spiked code. Then
we’ll go back to master, and commit just the FT.

Here’s the basic outline:
functional_tests/test_login.py.

from .base import FunctionalTest

class LoginTest(FunctionalTest):

 def test_login_with_persona(self):
 # Edith goes to the awesome superlists site
 # and notices a "Sign in" link for the first time.
 self.browser.get(self.server_url)
 self.browser.find_element_by_id('login').click()

 # A Persona login box appears
 self.switch_to_new_window('Mozilla Persona') #

 # Edith logs in with her email address
 ## Use mockmyid.com for test email
 self.browser.find_element_by_id(
 'authentication_email' #
).send_keys('edith@mockmyid.com') #

De-spiking | 253

https://docs.djangoproject.com/en/1.8/topics/logging/

 self.browser.find_element_by_tag_name('button').click()

 # The Persona window closes
 self.switch_to_new_window('To-Do')

 # She can see that she is logged in
 self.wait_for_element_with_id('logout') #
 navbar = self.browser.find_element_by_css_selector('.navbar')
 self.assertIn('edith@mockmyid.com', navbar.text)

 The FT needs a couple of helper functions, both of which do something that’s
very common in Selenium testing: they wait for something to happen. Listings
for them follow.
I found the ID of the Persona login box by opening the site manually, and using
the Firefox debug toolbar (Ctrl+Shift+I). See Figure 15-3.
Rather than using a “real” email address and having to click through their
authentication screens, we use a “fake” provider. MockMyID is one; you can also
check out Persona Test User.

Evaluate Third-Party Systems’ Test Infrastructure
Testing should be part of how you evaluate third-party systems. When you integrate
with an external service, you’re going to have to think through how you’re going to work
with it in your functional tests.

Often you can just use the same service in your tests and in “real life”. But sometimes
you’re going to want to run against a “test” version of the third-party service. In the case
of this integration with Persona, we could have used a “real” email address; when I first
wrote this chapter, I actually had an FT that clicked through to Yahoo.com, and logged
in with a throwaway account I’d created. The problem is that it made the FT totally
reliant on particular details of Yahoo’s email login screens, which can change at any time.

Instead, MockMyID and PersonaTestUser are both linked to from the Persona docu‐
mentation, and they work very smoothly, letting us test just the important parts of the
integration.

Perhaps more critically, think about payment systems. If you start integrating payments,
they’re going to be one of the most important parts of your site, and you’re going to want
to make sure they’re tested thoroughly…but you don’t want to be putting actual trans‐
actions on real credit cards through, every time you run an FT! So most providers will
provide a “test” version of their payments API. These vary in quality (naming no names),
so make sure you investigate them thoroughly.

254 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

http://mockmyid.com
http://personatestuser.org

Figure 15-3. Using the Debug toolbar to find locators

A Common Selenium Technique: Explicit Waits
Here’s the first of the two “wait” helper functions:

functional_tests/test_login.py (ch15l014).
import time
[...]

 def switch_to_new_window(self, text_in_title):
 retries = 60
 while retries > 0:
 for handle in self.browser.window_handles:
 self.browser.switch_to_window(handle)
 if text_in_title in self.browser.title:
 return
 retries -= 1
 time.sleep(0.5)
 self.fail('could not find window')

De-spiking | 255

In this one we’ve “rolled our own” wait—we iterate through all the current browser
windows, looking for one with a particular title. If we can’t find it, we do a short wait,
and try again, decrementing a retry counter.

This is such a common pattern in Selenium tests that the team created an API for waiting
—it doesn’t quite handle all use cases though, so that’s why we had to roll our own the
first time around. When doing something simpler like waiting for an element with a
given ID to appear on the page, we can use the WebDriverWait class:

functional_tests/test_login.py (ch15l015).
from selenium.webdriver.support.ui import WebDriverWait
[...]

 def wait_for_element_with_id(self, element_id):
 WebDriverWait(self.browser, timeout=30).until(
 lambda b: b.find_element_by_id(element_id)
)

This is what Selenium calls an “explicit wait”. If you remember, we already defined an
“implicit wait” in FunctionalTest.setUp. We set that to just three seconds, which is
fine in most cases, but when we’re waiting for an external service like Persona, we
sometimes need to bump that default timeout.

There are more examples in the Selenium docs, but I actually found reading the source
code more instructive—there are good docstrings!

implicitly_wait is unreliable, especially once JavaScript is in‐
volved. Prefer the “wait-for” pattern in your FT whenever you need
to check for asynchronous interactions on your pages. We’ll see this
again in Chapter 20.

And if we run the FT, it works!
$ python3 manage.py test functional_tests.test_login
Creating test database for alias 'default'...
Not Found: /favicon.ico
login view
sending to mozilla {'assertion': [...]
[...]

got b'{"audience":"localhost","expires":[...]
[...]

.

Ran 1 test in 32.222s

OK
Destroying test database for alias 'default'...

256 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

http://docs.seleniumhq.org/docs/04_webdriver_advanced.jsp
http://code.google.com/p/selenium/source/browse/py/selenium/webdriver/support/wait.py
http://code.google.com/p/selenium/source/browse/py/selenium/webdriver/support/wait.py

You can even see some of the debug output I left in my spiked view implementations.
Now it’s time to revert all of our temporary changes, and reintroduce them one by one
in a test-driven way.

Reverting Our Spiked Code
$ git checkout master # switch back to master branch
$ rm -rf accounts # remove any trace of spiked code
$ git add functional_tests/test_login.py
$ git commit -m "FT for login with Persona"

Now we rerun the FT and let it drive our development:
$ python3 manage.py test functional_tests.test_login
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"login"}
[...]

The first thing it wants us to do is add a login link. Incidentally, I prefer prefixing HTML
IDs with id_; it’s a convention to make it easy to tell the difference between classes and
IDs in HTML and CSS. So let’s tweak the FT first:

functional_tests/test_login.py (ch15l017).
 self.browser.find_element_by_id('id_login').click()
 [...]
 self.wait_for_element_with_id('id_logout')

Next a “do-nothing” login link. Bootstrap has some built-in classes for navigation bars,
so we’ll use them:

lists/templates/base.html.
<div class="container">

 <nav class="navbar navbar-default" role="navigation">
 Superlists
 Sign in
 </nav>

 <div class="row">
 [...]

After 30 seconds, that gives:
AssertionError: could not find window

License to move on! Next thing: more JavaScript.

De-spiking | 257

JavaScript Unit Tests Involving External Components: Our
First Mocks!
To get our FT further, we’re going to need to get the Persona window to pop up. For
that, we’ll need to de-spike our client-side JavaScript code that uses the Persona libraries.
We’ll test-drive that using JavaScript unit tests and mocking.

Housekeeping: A Site-Wide Static Files Folder
A bit of housekeeping first: create a site-wide static files directory inside superlists/
superlists, and move all the Bootsrap CSS, QUnit code, and base.css into it, so it looks
like this:

$ tree superlists -L 3 -I __pycache__
superlists
├── __init__.py
├── settings.py
├── static
│ ├── base.css
│ ├── bootstrap
│ │ ├── css
│ │ ├── fonts
│ │ └── js
│ └── tests
│ ├── qunit.css
│ └── qunit.js
├── urls.py
└── wsgi.py

6 directories, 7 files

Always do a commit before and after a bit of housekeeping like this.

That means adjusting our existing JavaScript unit tests:
lists/static/tests/tests.html (ch15l020).

 <link rel="stylesheet" href="../../../superlists/static/tests/qunit.css">

 [...]

 <script src="http://code.jquery.com/jquery.min.js"></script>
 <script src="../../../superlists/static/tests/qunit.js"></script>
 <script src="../list.js"></script>

And we check they still work, by opening them up in a browser:

258 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

2 assertions of 2 passed, 0 failed.

Here’s how we tell our settings file about the new static folder:
superlists/settings.py.

[...]
STATIC_ROOT = os.path.abspath(os.path.join(BASE_DIR, '../static'))
STATICFILES_DIRS = (
 os.path.join(BASE_DIR, 'superlists', 'static'),
)

I recommend reintroducing the LOGGING setting from earlier at this
point. There’s no need for an explicit test for it; our current test suite
will let us know in the unlikely event that it breaks anything. As we’ll
find out in Chapter 17, it’ll be useful for debugging later.

And we can quickly run the layout + styling FT to check the CSS all still works:
$ python3 manage.py test functional_tests.test_layout_and_styling
[...]
OK

Next, create an app called accounts to hold all the code related to login. That will include
our Persona JavaScript stuff:

$ python3 manage.py startapp accounts
$ mkdir -p accounts/static/tests

That’s the housekeeping done. Now’s a good time for a commit. Then, let’s take another
look at our spiked-in javascript:

var loginLink = document.getElementById('login');
if (loginLink) {
 loginLink.onclick = function() { navigator.id.request(); };
}

Mocking: Who, Why, What?
We want our login link’s on-click to be bound to a function provided by the Persona
library, navigator.id.request.

Now we don’t want to call the actual third-party function in our unit tests, because we
don’t want our unit tests popping up Persona windows all over the shop. So instead, we
are going to do what’s called “mocking it out”: creating a “fake” or “mock” implemen‐
tation of the third-party API for our tests to run against.

What we’re going to do is replace the real navigator object with a fake one that we’ve
built ourselves, one that will be able to tell us what happens to it.

JavaScript Unit Tests Involving External Components: Our First Mocks! | 259

1. UK-English speakers may bristle at that incorrect spelling of the word “initialise”. I know, it grates with me
too. But it’s an increasingly accepted convention to use American spelling in code. It makes it easier to search,
for example, and just to work together more generally, if we all agree on how words are spelt. We have to
accept that we’re in the minority here, and this is one battle we’ve probably lost.

2. The new shiny in the JavaScript world for avoiding namespacing problems is called require.js. It was one thing
too many to squeeze into this book, but you should check it out.

I had hoped that our first Mock example was going to be in Python,
but it looks like it’s going to be JavaScript instead. Needs must. You
may find it’s worth rereading the rest of the chapter a couple of times
after you get to the end of it, to let it all sink in.

Namespacing
In the context of base.html, navigator is just an object in the global scope, as provided
by the include.js <script> tag that we get from Mozilla. Testing global variables is a pain
though, so we can turn it into a local variable by passing it into an “initialize”1 function.
The code we’ll end up with in base.html will look like this:

lists/templates/base.html.
<script src="/static/accounts/accounts.js"></script>
<script>
 $(document).ready(function() {

 Superlists.Accounts.initialize(navigator)

 });
</script>

I’ve specified that our initialize function will be namespaced inside some nested
objects, Superlists.Accounts. JavaScript suffers from a programming model that’s tied
into a global scope, and this sort of namespacing/naming convention helps to keep
things under control. Lots of JavaScript libraries might want to call a function initial
ize, but very few will call it Superlists.Accounts.initialize!2

This call to initialize is simple enough that I’m happy it doesn’t need any unit tests
of its own.

A Simple Mock to Unit Tests Our initialize Function
The initialize function itself we will test. Copy the lists tests across to get the boiler‐
plate HTML, and then adjust the following:

accounts/static/tests/tests.html.
 <div id="qunit-fixture">
 Sign in
 </div>

260 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

3. I’ve called this object a “mock”, but it’s probably more correctly called a “spy”. We don’t have to concern
ourselves with the differences in this book, but for more on the general class of tools called “Test Doubles”,
including the difference between stubs, mocks, fakes, and spies, see Mocks, Fakes and Stubs by Emily Bache.

 <script src="http://code.jquery.com/jquery.min.js"></script>
 <script src="../../../superlists/static/tests/qunit.js"></script>
 <script src="../accounts.js"></script>
 <script>
/*global $, test, equal, sinon, Superlists */

test("initialize binds sign in button to navigator.id.request", function () {
 var requestWasCalled = false; //
 var mockRequestFunction = function () { requestWasCalled = true; }; //
 var mockNavigator = { //
 id: {
 request: mockRequestFunction
 }
 };

 Superlists.Accounts.initialize(mockNavigator); //

 $('#id_login').trigger('click'); //

 equal(requestWasCalled, true); //
});

 </script>

One of the best ways to understand this test, or indeed any test, is to work backwards.
The first thing we see is the assertion:

We are asserting that a variable called requestWasCalled is true. We’re checking
that, one way or another, the request function, as in navigator.id.request,
was called.
Called when? When a click event happens to the id_login element.
Before we trigger that click event, we call our Superlists.Accounts.initial
ize function, just like we will on the real page. The only difference is, instead of
passing it the real global navigator object from Persona, we pass in a fake one
called mockNavigator.3

That’s defined as a generic JavaScript object, with an attribute called id which
in turn has an attribute called request, which we’re assigning to a variable called
mockRequestFunction.
mockRequestFunction we define as a very simple function, which if called will
simply set the value of the requestWasCalled variable to true.
And finally (firstly?) we make sure that requestWasCalled starts out as false.

JavaScript Unit Tests Involving External Components: Our First Mocks! | 261

https://leanpub.com/mocks-fakes-stubs

4. In the real world, when setting up a namespace like this, you’d want to follow a sort of “add-or-create” pattern,
so that, if there’s already a window.Superlists in the scope, we extend it rather than replacing it. win
dow.Superlists = window.Superlists || {} is one formulation, and jQuery’s $.extend is another
possibilty. But, there’s already a lot of content in this chapter, and I thought this was probably one too many
things to talk about!

The upshot of all this is: the only way this test will pass is if our initialize function
binds the click event on id_login to the method .id.request of the object we pass
it. If we get the tests passing when we use the mock object, we are reassured that our
initialize function will also do the right thing when we give it a real object on our
real page.

Does that make sense? Let’s play around with the test and see if we can get the hang
of it.

When testing events on DOM elements, you need an actual element
to trigger events against, and to register listeners on. If you forget, it’s
a particularly fiendish test bug, because .trigger will just silently no-
op, and you’ll be left scratching your head about why it’s not work‐
ing. So don’t forget to add the inside the qunit-
fixture div!

Our first error is this:
1. Died on test #1
@file:///workspace/superlists/accounts/static/tests/tests.html:35:
Superlists is not defined

That’s the equivalent of an ImportError in Python. Let’s start work on accounts/static/
accounts.js:

accounts/static/accounts.js.
window.Superlists = null;

Just as in Python we might do Superlists = None, here we do window.Superlists =
null. Using window. makes sure we get the global object:

1. Died on test #1
@file:///workspace/superlists/accounts/static/tests/tests.html:35:
Superlists is null

OK, next baby step or two:
accounts/static/accounts.js.

window.Superlists = {
 Accounts: {}
};

gives:4

262 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

Superlists.Accounts.initialize is not a function

So let’s make it a function:
accounts/static/accounts.js.

window.Superlists = {
 Accounts: {
 initialize: function () {}
 }
};

And now we get a real test failure instead of just errors:
1. initialize binds sign in button to navigator.id.request (1, 0, 1)

 1. failed
 Expected: true
 Result: false

Next—let’s separate defining our initialize function from the part where we export
it into the Superlists namespace. We’ll also do a console.log, which is the JavaScript
equivalent of a debug-print, to take a look at what the initialize function is being called
with:

accounts/static/accounts.js (ch15l028).
var initialize = function (navigator) {
 console.log(navigator);
};

window.Superlists = {
 Accounts: {
 initialize: initialize
 }
};

In Firefox and I believe Chrome also, you can use the shortcut Ctrl-Shift-I to bring up
the JavaScript console, and see the [object Object] that was logged (see Figure 15-4). If
you click on it, you can see it has the properties we defined in our test: an id, and inside
that, a function called request.

JavaScript Unit Tests Involving External Components: Our First Mocks! | 263

Figure 15-4. Debugging in the JavaScript console

So let’s now just pile in and get the test to pass:
accounts/static/accounts.js (ch15l029).

var initialize = function (navigator) {
 navigator.id.request();
};

That gets the tests to pass, but it’s not quite the implementation we want. We’re calling
navigator.id.request always, instead of only on click. We’ll need to adjust our tests.

1 assertions of 1 passed, 0 failed.
1. initialize binds sign in button to navigator.id.request (0, 1, 1)

Before we do, let’s just have a play around to see if we really understand what’s going
on. What happens if we do this?

accounts/static/accounts.js (ch15l029-1).
var initialize = function (navigator) {
 navigator.id.request();
 navigator.id.doSomethingElse();
};

We get:

264 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

1. Died on test #1
@file:///workspace/superlists/accounts/static/tests/tests.html:35:
navigator.id.doSomethingElse is not a function

You see, the mock navigator object that we pass in is entirely under our control. It has
only the attributes and methods we give it. You can play around with it now if you like:

accounts/static/tests/tests.html.
 var mockNavigator = {
 id: {
 request: mockRequestFunction,
 doSomethingElse: function () { console.log("called me!");}
 }
 };

That will give you a pass, and if you open up the debug window, you’ll see:
[01:22:27.456] "called me!"

Does that help to see what’s going on? Let’s revert those last two changes, and tweak our
unit test so that it checks the request function is only called after we fire off the click
event. We also add some error messages to help see which of the two equal assertions
is failing:

accounts/static/tests/tests.html (ch15l032).
 var mockNavigator = {
 id: {
 request: mockRequestFunction
 }
 };
 Superlists.Accounts.initialize(mockNavigator);
 equal(requestWasCalled, false, 'check request not called before click');
 $('#id_login').trigger('click');
 equal(requestWasCalled, true, 'check request called after click');

Assertion messages (the third argument to equal), in QUnit, are ac‐
tually “success” messages. Rather than only being displayed if the test
fails, they are also displayed when the test passes. That’s why they have
the positive phrasing.

Now we get a neater failure:
1 assertions of 2 passed, 1 failed.
1. initialize binds sign in button to navigator.id.request (1, 1, 2)
 1. check request not called before click
 Expected: false
 Result: true

So let’s make it so that the call to navigator.id.request only happens if our id_log
in is clicked:

JavaScript Unit Tests Involving External Components: Our First Mocks! | 265

accounts/static/accounts.js (ch15l033).
/*global $ */

var initialize = function (navigator) {
 $('#id_login').on('click', function () {
 navigator.id.request();
 });
};
[...]

That passes. A good start! Let’s try pulling it into our template:
lists/templates/base.html.

<script src="http://code.jquery.com/jquery.min.js"></script>
<script src="https://login.persona.org/include.js"></script>
<script src="/static/accounts.js"></script>
<script src="/static/list.js"></script>
<script>
 /*global $, Superlists, navigator */
 $(document).ready(function () {
 Superlists.Accounts.initialize(navigator);
 });
</script>
</body>

We also need to add the accounts app to settings.py, otherwise it won’t be serving the
static file at accounts/static/accounts.js:

superlists/settings.py.
+++ b/superlists/settings.py
@@ -37,4 +37,5 @@ INSTALLED_APPS = (
 'lists',
+ 'accounts',
)

A quick check on the FT…doesn’t get any further unfortunately. To see why, we can
open up the site manually, and check the JavaScript debug console:

[01:36:54.572] Error: navigator.id.watch must be called before
navigator.id.request @ https://login.persona.org/include.js:8

More Advanced Mocking
We now need to call Mozilla’s navigator.id.watch correctly. Taking another look at
our spike, it should be something like this:

var currentUser = '{{ user.email }}' || null;
var csrf_token = '{{ csrf_token }}';
console.log(currentUser);

navigator.id.watch({
 loggedInUser: currentUser, //
 onlogin: function(assertion) {
 $.post('/accounts/login', {assertion: assertion, csrfmiddlewaretoken: csrf_token}) //
 .done(function() { window.location.reload(); })
 .fail(function() { navigator.id.logout();});

266 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

5. Incidentally, notice we use {{ csrf_token }} which gives you the raw string token, rather than {%
csrf_token%} which would give us a full HTML tag, <input type="hidden" name="etc etc.

 },
 onlogout: function() {
 $.post('/accounts/logout')
 .always(function() { window.location.reload(); });
 }
});

Decoding that, the watch function needs to know a couple of things from the global
scope:

The current user’s email, to be passed in as the loggedInUser parameter to
watch.
The current CSRF token, to pass in the Ajax POST request to the login view.5

We’ve also got two hardcoded URLs in there, which would be better to get from Django,
something like this:

var urls = {
 login: "{% url 'login' %}",
 logout: "{% url 'logout' %}",
};

So that would be a third parameter to pass in from the global scope. We’ve already got
an initialize function, so let’s imagine using it like this:

Superlists.Accounts.initialize(navigator, user, token, urls);

Using a sinon.js mock to check we call the API correctly
“Rolling your own” mocks is possible as we’ve seen, and JavaScript actually makes it
relatively easy, but using a mocking library can save us a lot of heavy lifting. The most
popular one in the JavaScript world is called sinon.js. Let’s download it (from http://
sinonjs.org) and put it in our site-wide static tests folder:

$ tree superlists/static/tests/
superlists/static/tests/
├── qunit.css
├── qunit.js
└── sinon.js

Next we include it in our accounts tests:
accounts/static/tests/tests.html.

 <script src="http://code.jquery.com/jquery.min.js"></script>
 <script src="../../../superlists/static/tests/qunit.js"></script>
 <script src="../../../superlists/static/tests/sinon.js"></script>
 <script src="../accounts.js"></script>

JavaScript Unit Tests Involving External Components: Our First Mocks! | 267

http://sinonjs.org
http://sinonjs.org

6. Sinon also has more specialised objects for “spies” and “stubs”. Mocks can do everything that spies and stubs
can do though, so I figured, one less piece of terminology would keep things simple.

And now we can write a test that uses Sinon’s mock object:6

accounts/static/tests/tests.html (ch15l038).
test("initialize calls navigator.id.watch", function () {
 var user = 'current user';
 var token = 'csrf token';
 var urls = {login: 'login url', logout: 'logout url'};
 var mockNavigator = {
 id: {
 watch: sinon.mock() //
 }
 };

 Superlists.Accounts.initialize(mockNavigator, user, token, urls);

 equal(
 mockNavigator.id.watch.calledOnce, //
 true,
 'check watch function called'
);
});

We create a mock navigator object as before, but now instead of hand-crafting
a function to mock out the function we’re interested in, we use a si
non.mock() object.
This object then records what happens to it inside special properties like calle
dOnce, which we can make assertions against.

There’s more info in the Sinon docs—the front page actually has quite a good overview.

Here’s our expected test failure:
2 assertions of 3 passed, 1 failed.

1. initialize binds sign in button to navigator.id.request (0, 2, 2)
2. initialize calls navigator.id.watch (1, 0, 1)
 1. check watch function called
 Expected: true
 Result: false

We add in the call to watch…
accounts/static/accounts.js.

var initialize = function (navigator) {
 $('#id_login').on('click', function () {
 navigator.id.request();
 });

268 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

http://sinonjs.org/

 navigator.id.watch();
};

But that breaks the other test!
1 assertions of 2 passed, 1 failed.

1. initialize binds sign in button to navigator.id.request (1, 0, 1)
 1. Died on test #1
@file:///workspace/superlists/accounts/static/tests/tests.html:36:
missing argument 1 when calling function navigator.id.watch

2. initialize calls navigator.id.watch (0, 1, 1)

That was a puzzler—that “missing argument 1 when calling function navigator.id.watch”
took me a while to figure out. Turns out that, in Firefox, .watch is a function on every
object. We’ll need to mock it out in the previous test too:

accounts/static/tests/tests.html.
test("initialize binds sign in button to navigator.id.request", function () {
 var requestWasCalled = false;
 var mockRequestFunction = function () { requestWasCalled = true; };
 var mockNavigator = {
 id: {
 request: mockRequestFunction,
 watch: function () {}
 }
 };
 [...]

And we’re back to passing tests:
3 assertions of 3 passed, 0 failed.

1. initialize binds sign in button to navigator.id.request (0, 2, 2)
2. initialize calls navigator.id.watch (0, 1, 1)

Checking Call Arguments
We’re not calling the watch function correctly yet—it needs to know the current user,
and we have to set up a couple of callbacks for login and logout. Let’s start with the user:

accounts/static/tests/tests.html (ch15l042).
test("watch sees current user", function () {
 var user = 'current user';
 var token = 'csrf token';
 var urls = {login: 'login url', logout: 'logout url'};
 var mockNavigator = {
 id: {
 watch: sinon.mock()
 }
 };

 Superlists.Accounts.initialize(mockNavigator, user, token, urls);

JavaScript Unit Tests Involving External Components: Our First Mocks! | 269

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/watch

 var watchCallArgs = mockNavigator.id.watch.firstCall.args[0];
 equal(watchCallArgs.loggedInUser, user, 'check user');
});

We have a very similar setup (which is a code smell incidentally—on the next test, we’re
going to want to do some de-duplication of test code). Then we use the .first
Call.args[0] property on the mock to check on the parameter we passed to the watch
function (args being a list of positional arguments). That gives us:

3. watch sees current user (1, 0, 1)
 1. Died on test #1
@file:///workspace/superlists/accounts/static/tests/tests.html:72:
watchCallArgs is undefined

because we’re not currently passing any arguments to watch. Step by step, we can do:
accounts/static/accounts.js (ch15l043).

 navigator.id.watch({});

and get a clearer error message:
3. watch sees current user (1, 0, 1)
 1. check user
 Expected: "current user"
 Result: undefined

and fix it thusly:
accounts/static/accounts.js (ch15l044).

var initialize = function (navigator, user, token, urls) {
 [...]

 navigator.id.watch({
 loggedInUser: user
 });

Good.
4 assertions of 4 passed, 0 failed.

QUnit setup and teardown, Testing Ajax
Next we need to check the onlogin callback, which is called when Persona has some
user authentication information, and we need to send it up to our server for validation.
That involves an Ajax call ($.post), and they’re normally quite hard to test, but sinon.js
has a helper called fake XMLHttpRequest.

This patches out the native JavaScript XMLHttpRequest class, so it’s good practice to
make sure we restore it afterwards. This gives us a good excuse to learn about QUnit’s
setup and teardown methods—they are used in a function called module, which acts a
bit like a unittest.TestCase class, and groups all the tests that follow it together.

270 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

http://sinonjs.org/docs/#server

Aside on Ajax
If you’ve never used Ajax before, here is a very brief overview. You may find it useful to
read up on it elsewhere before proceeding though.

Ajax stands for “Asynchronous JavaScript and XML”, although the XML part is a bit of
a misnomer these days, since everyone usually sends text or JSON rather than XML. It’s
a way of letting your client-side JavaScript code send and receive information via the
HTTP protocol (GET and POST requests), but do so “asynchronously”, i.e., without
blocking and without needing to reload the page.

Here we’re going to use Ajax requests to send a POST request to our login view, sending
it the assertion information from the Persona UI. We’ll use the jQuery Ajax convenience
functions.

Let’s add this “module” after the first test, before the test for "initialize calls navi
gator.id.watch":

accounts/static/tests/tests.html (ch15l045).
var user, token, urls, mockNavigator, requests, xhr; //
module("navigator.id.watch tests", {
 setup: function () {
 user = 'current user'; //
 token = 'csrf token';
 urls = { login: 'login url', logout: 'logout url' };
 mockNavigator = {
 id: {
 watch: sinon.mock()
 }
 };
 xhr = sinon.useFakeXMLHttpRequest(); //
 requests = []; //
 xhr.onCreate = function (request) { requests.push(request); }; //
 },
 teardown: function () {
 mockNavigator.id.watch.reset(); //
 xhr.restore(); //
 }
});

test("initialize calls navigator.id.watch", function () {
 [...]

We pull out the variables user, token, urls, etc. up to a higher scope, so that
they’ll be available to all of the tests in the file.
We initialise said variables inside the setup function, which, just like a uni
ttest setUp function, will run before each test. That includes our mockNaviga
tor.

JavaScript Unit Tests Involving External Components: Our First Mocks! | 271

http://api.jquery.com/jQuery.post/
http://api.jquery.com/jQuery.post/

We also invoke Sinon’s useFakeXMLHttpRequest, which patches out the
browser’s Ajax capabilities.

 There’s one more bit of boilerplate: we tell Sinon to take any Ajax requests and
put them into the requests array, so that we can inspect them in our tests.
Finally we have the cleanup—we “reset” the mock for the watch function in
between each test (otherwise calls from one test would show up in others).
And we put the JavaScript XMLHttpRequest back to the way we found it.

That lets us rewrite our two tests to be much shorter:
accounts/static/tests/tests.html (ch15l046).

test("initialize calls navigator.id.watch", function () {
 Superlists.Accounts.initialize(mockNavigator, user, token, urls);
 equal(mockNavigator.id.watch.calledOnce, true, 'check watch function called');
});

test("watch sees current user", function () {
 Superlists.Accounts.initialize(mockNavigator, user, token, urls);
 var watchCallArgs = mockNavigator.id.watch.firstCall.args[0];
 equal(watchCallArgs.loggedInUser, user, 'check user');
});

And they still pass, but their name is neatly prefixed with our module name:
4 assertions of 4 passed, 0 failed.

1. initialize binds sign in button to navigator.id.request (0, 2, 2)
2. navigator.id.watch tests: initialize calls navigator.id.watch (0, 1, 1)
3. navigator.id.watch tests: watch sees current user (0, 1, 1)

And here’s how we test the onlogin callback:
accounts/static/tests/tests.html (ch15l047).

test("onlogin does ajax post to login url", function () {
 Superlists.Accounts.initialize(mockNavigator, user, token, urls);
 var onloginCallback = mockNavigator.id.watch.firstCall.args[0].onlogin; //
 onloginCallback(); //
 equal(requests.length, 1, 'check ajax request'); //
 equal(requests[0].method, 'POST');
 equal(requests[0].url, urls.login, 'check url');
});

test("onlogin sends assertion with csrf token", function () {
 Superlists.Accounts.initialize(mockNavigator, user, token, urls);
 var onloginCallback = mockNavigator.id.watch.firstCall.args[0].onlogin;
 var assertion = 'browser-id assertion';
 onloginCallback(assertion);
 equal(
 requests[0].requestBody,
 $.param({ assertion: assertion, csrfmiddlewaretoken: token }), //

272 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

 'check POST data'
);
});

The mock we set on the mock navigator’s watch function lets us extract the
callback function we set as “onlogin.”
We can then actually call that function in order to test it.
Sinon’s fakeXMLHttpRequest server will catch any Ajax requests we make, and
put them into the requests array. We can then check on things like whether it
was a POST and what URL it was sent to.
The actual POST parameters are held in .requestBody, but they are URL-
encoded (using the &key=val syntax). jQuery’s $.param function does URL-
encoding, so we use that to do our comparison.

And the two tests fail as expected:
4. navigator.id.watch tests: onlogin does ajax post to login url (1, 0, 1)
 1. Died on test #1
@file:///workspace/superlists/accounts/static/tests/tests.html:78:
onloginCallback is not a function

5. navigator.id.watch tests: onlogin sends assertion with csrf token (1, 0, 1)
 1. Died on test #1
@file:///workspace/superlists/accounts/static/tests/tests.html:90:
onloginCallback is not a function

Another unit-test/code cycle. Here’s the failure messages I went through:
1. check ajax request
Expected: 1

…
3. check url
Expected: "login url"

…
7 assertions of 8 passed, 1 failed.
1. check POST data
Expected:
"assertion=browser-id+assertion&csrfmiddlewaretoken=csrf+token"
Result: null

…
1. check POST data
Expected:
"assertion=browser-id+assertion&csrfmiddlewaretoken=csrf+token"
Result: "assertion=browser-id+assertion"

…

JavaScript Unit Tests Involving External Components: Our First Mocks! | 273

7. You can’t mock out window.location.reload, so instead you have to define an (untested) function called
Superlists.Accounts.refreshPage, and then put a mock on that to check that it gets set as the
Ajax .done callback.

8 assertions of 8 passed, 0 failed.

And I ended up with this code:
accounts/static/accounts.js.

 navigator.id.watch({
 loggedInUser: user,
 onlogin: function (assertion) {
 $.post(
 urls.login,
 { assertion: assertion, csrfmiddlewaretoken: token }
);
 }
 });

Logout
At the time of writing, the “onlogout” part of the watch API’s status was uncertain. It
works, but it’s not necessary for our purposes. We’ll just make it a do-nothing function,
as a placeholder. Here’s a minimal test for that:

accounts/static/tests/tests.html (ch15l053).
test("onlogout is just a placeholder", function () {
 Superlists.Accounts.initialize(mockNavigator, user, token, urls);
 var onlogoutCallback = mockNavigator.id.watch.firstCall.args[0].onlogout;
 equal(typeof onlogoutCallback, "function", "onlogout should be a function");
});

And we get quite a simple logout function:
accounts/static/accounts.js (ch15l054).

 },
 onlogout: function () {}
});

More Nested Callbacks! Testing Asynchronous Code
This is what JavaScript’s all about folks! Thankfully, sinon.js really does help. We still
need to test that our login post methods also set some callbacks for things to do after
the POST request comes back:

 .done(function() { window.location.reload(); })
 .fail(function() { navigator.id.logout();});

I’m going to skip testing the window.location.reload, because it’s a bit unnecessarily
complicated,7 and I think we can allow that this will be tested by our Selenium test. We
will do a test for the on-fail callback though, just to demonstrate that it is possible:

274 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

accounts/static/tests/tests.html (ch15l055).
test("onlogin post failure should do navigator.id.logout ", function () {
 mockNavigator.id.logout = sinon.mock(); //
 Superlists.Accounts.initialize(mockNavigator, user, token, urls);
 var onloginCallback = mockNavigator.id.watch.firstCall.args[0].onlogin;
 var server = sinon.fakeServer.create(); //
 server.respondWith([403, {}, "permission denied"]); //

 onloginCallback();
 equal(mockNavigator.id.logout.called, false, 'should not logout yet');

 server.respond(); //
 equal(mockNavigator.id.logout.called, true, 'should call logout');
});

We put a mock on the navigator.id.logout function which we’re interested
in.
We use Sinon’s fakeServer, which is an abstraction on top of the fakeXMLHtt
pRequest to simulate Ajax server responses.
We set up our fake server to respond with a 403 “permission denied” response,
to simulate what will happen for unauthorized users.
We then explicitly tell the fake server to send that response. Only then should
we see the logout call.

That gets us to this—a slight change to our spiked code:
accounts/static/accounts.js (ch15l056).

 onlogin: function (assertion) {
 $.post(
 urls.login,
 { assertion: assertion, csrfmiddlewaretoken: token }
).fail(function () { navigator.id.logout(); });
 },
 onlogout: function () {}

Finally we add our window.location.reload, just to check it doesn’t break any unit
tests:

accounts/static/accounts.js (ch15l057).
 navigator.id.watch({
 loggedInUser: user,
 onlogin: function (assertion) {
 $.post(
 urls.login,
 { assertion: assertion, csrfmiddlewaretoken: token }
)
 .done(function () { window.location.reload(); })
 .fail(function () { navigator.id.logout(); });
 },
 onlogout: function () {}
 });

JavaScript Unit Tests Involving External Components: Our First Mocks! | 275

Everything’s still OK:
11 assertions of 11 passed, 0 failed.

If those chained .done and .fail calls are bugging you—they bug me a little—you can
rewrite that as, eg:

 var deferred = $.post(
 urls.login,
 { assertion: assertion, csrfmiddlewaretoken: token }
);
 deferred.done(function () { window.location.reload(); })
 deferred.fail(function () { navigator.id.logout(); });

But async code is always a bit mind-bending. I find it just about readable as it is: “do a
post to urls.login with the assertion and csrf token, when it’s done, do a window reload,
or if it fails, do a navigator.id.logout”. You can read up on JavaScript deferreds, aka
“promises”, here.

We’re approaching the moment of truth: will our FTs get any further? First, we adjust
our initialize call:

lists/templates/base.html.
<script>
 /*global $, Superlists, navigator */
 $(document).ready(function () {
 var user = "{{ user.email }}" || null;
 var token = "{{ csrf_token }}";
 var urls = {
 login: "TODO",
 logout: "TODO",
 };
 Superlists.Accounts.initialize(navigator, user, token, urls);
 });
</script>

And we run the FT…
$ python3 manage.py test functional_tests.test_login
Creating test database for alias 'default'...
Not Found: /favicon.ico
Not Found: /TODO
E
==
ERROR: test_login_with_persona (functional_tests.test_login.LoginTest)

Traceback (most recent call last):
 File "/workspace/superlists/functional_tests/test_login.py", line 47, in
test_login_with_persona
 self.wait_for_element_with_id('id_logout')
 File "/workspace/superlists/functional_tests/test_login.py", line 23, in
wait_for_element_with_id
 lambda b: b.find_element_by_id(element_id)
[...]

276 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

http://otaqui.com/blog/1637/introducing-javascript-promises-aka-futures-in-google-chrome-canary/

selenium.common.exceptions.TimeoutException: Message:

Ran 1 test in 28.779s

FAILED (errors=1)
Destroying test database for alias 'default'...

Hooray! I mean, I know it failed, but we saw it popping up the Persona dialog and getting
through it and everything! Next chapter: the server side.

On Spiking and Mocking with JavaScript
Spiking

Exploratory coding to find out about a new API, or to explore the feasibility of a
new solution. Spiking can be done without tests. It’s a good idea to do your spike
on a new branch, and go back to master when de-spiking.

Mocking
We use mocking in unit tests when we have an external dependency that we don’t
want to actually use in our tests. A mock is used to simulate the third-party API.
Whilst it is possible to “roll your own” mocks in JavaScript, a mocking framework
like Sinon provides a lot of helpful shortcuts which will make it easier to write (and
more importantly, read) your tests.

Unit testing Ajax
Sinon is a great help here. Manually mocking Ajax methods is a real pain.

JavaScript Unit Tests Involving External Components: Our First Mocks! | 277

CHAPTER 16
Server-Side Authentication and

Mocking in Python

Let’s crack on with the server side of our new auth system. In this chapter we’ll do some
more mocking, this time with Python. We’ll also find out about how to customise Djan‐
go’s authentication system.

A Look at Our Spiked Login View
At the end of the last chapter, we had a working client side that was trying to send
authentication assertions to our server’s login view. Let’s start by building that view, and
then move inwards to build the backend authentication functions.

Here’s the spiked version of our login view:
def persona_login(request):
 print('login view', file=sys.stderr)
 #user = PersonaAuthenticationBackend().authenticate(request.POST['assertion'])
 user = authenticate(assertion=request.POST['assertion']) #
 if user is not None:
 login(request, user) #
 return redirect('/')

authenticate is our customised authentication function, which we’ll de-spike
later. Its job is to take the assertion from the client side and validate it.
login is Django’s built-in login function. It stores a session object on the server,
tied to the user’s cookies, so that we can recognise them as being an authenticated
user on future requests.

Our authenticate function is going to make calls out, over the Internet, to Mozilla’s
servers. We don’t want that to happen in our unit test, so we’ll want to mock out
authenticate.

279

1. If you’re using Python 3.2, upgrade! Or if you’re stuck with it, pip3 install mock, and use from mock
instead of from unittest.mock.

Mocking in Python
The popular mock package was added to the standard library as part of Python 3.3.1 It
provides a magical object called a Mock, which is a bit like the Sinon mock objects we
saw in the last chapter, only much cooler. Check this out:

>>> from unittest.mock import Mock
>>> m = Mock()
>>> m.any_attribute
<Mock name='mock.any_attribute' id='140716305179152'>
>>> m.foo
<Mock name='mock.foo' id='140716297764112'>
>>> m.any_method()
<Mock name='mock.any_method()' id='140716331211856'>
>>> m.foo()
<Mock name='mock.foo()' id='140716331251600'>
>>> m.called
False
>>> m.foo.called
True
>>> m.bar.return_value = 1
>>> m.bar()
1

A mock object would be a pretty neat thing to use to mock out the authenticate
function, wouldn’t it? Here’s how you can do that.

Testing Our View by Mocking Out authenticate
(I trust you to set up a tests folder with a dunderinit. Don’t forget to delete the default
tests.py, as well.)

accounts/tests/test_views.py.
from django.test import TestCase
from unittest.mock import patch

class LoginViewTest(TestCase):

 @patch('accounts.views.authenticate') #
 def test_calls_authenticate_with_assertion_from_post(
 self, mock_authenticate #
):
 mock_authenticate.return_value = None #
 self.client.post('/accounts/login', {'assertion': 'assert this'})
 mock_authenticate.assert_called_once_with(assertion='assert this') #

280 | Chapter 16: Server-Side Authentication and Mocking in Python

2. Even though we’re going to define our own authenticate function, we still import from django.con
trib.auth. Django will dynamically replace it with our function once we’ve configured it in settings.py. This
has the benefit that, if we later switch to a third-party library for our authenticate function, our views.py
doesn’t need to change.

The decorator called patch is a bit like the Sinon mock function we saw in the
last chapter. It lets you specify an object you want to “mock out”. In this case
we’re mocking out the authenticate function, which we expect to be using in
accounts/views.py.
The decorator adds the mock object as an additional argument to the function
it’s applied to.
We can then configure the mock so that it has certain behaviours. Having au
thenticate return None is the simplest, so we set the special .return_value
attribute. Otherwise it would return another mock, and that would probably
confuse our view.
Mocks can make assertions! In this case, they can check whether they were called,
and what with.

So what does that give us?
$ python3 manage.py test accounts
[...]
AttributeError: <module 'accounts.views' from
'/workspace/superlists/accounts/views.py'> does not have the attribute
'authenticate'

We tried to patch something that doesn’t exist yet. We need to import authenticate
into our views.py:2

accounts/views.py.
from django.contrib.auth import authenticate

Now we get:
AssertionError: Expected 'authenticate' to be called once. Called 0 times.

That’s our expected failure; to implement, we’ll have to wire up a URL for our login
view:

superlists/urls.py.
[...]
from lists import urls as list_urls
from accounts import urls as account_urls

urlpatterns = [
 url(r'^$', list_views.home_page, name='home'),
 url(r'^lists/', include(list_urls)),
 url(r'^accounts/', include(account_urls)),

Mocking in Python | 281

 # url(r'^admin/', include(admin.site.urls)),
]

accounts/urls.py.
from django.conf.urls import url
from accounts import views

urlpatterns = [
 url(r'^login$', views.persona_login, name='persona_login'),
]

Will a minimal view do anything?
accounts/views.py.

from django.contrib.auth import authenticate

def persona_login():
 pass

Yep:
TypeError: persona_login() takes 0 positional arguments but 1 was given

And so:
accounts/views.py (ch16l008).

def persona_login(request):
 pass

Then:
ValueError: The view accounts.views.persona_login didn't return an HttpResponse
object. It returned None instead.

accounts/views.py (ch16l009).
from django.contrib.auth import authenticate
from django.http import HttpResponse

def persona_login(request):
 return HttpResponse()

And we’re back to:
AssertionError: Expected 'authenticate' to be called once. Called 0 times.

We try:
accounts/views.py.

def persona_login(request):
 authenticate()
 return HttpResponse()

And sure enough, we get:
AssertionError: Expected call: authenticate(assertion='assert this')
Actual call: authenticate()

And then we can fix that too:

282 | Chapter 16: Server-Side Authentication and Mocking in Python

accounts/views.py.
def persona_login(request):
 authenticate(assertion=request.POST['assertion'])
 return HttpResponse()

OK so far. One Python function mocked and tested.

Checking the View Actually Logs the User In
But our authenticate view also needs to actually log the user in by calling the Django
auth.login function, if authenticate returns a user. Then it needs to return something
other than an empty response—since this is an Ajax view, it doesn’t need to return
HTML, just an “OK” string will do:

accounts/tests/test_views.py (ch16l011).
from django.contrib.auth import get_user_model
from django.test import TestCase
from unittest.mock import patch
User = get_user_model() #

class LoginViewTest(TestCase):
 @patch('accounts.views.authenticate')
 def test_calls_authenticate_with_assertion_from_post(
 [...]

 @patch('accounts.views.authenticate')
 def test_returns_OK_when_user_found(
 self, mock_authenticate
):
 user = User.objects.create(email='a@b.com')
 user.backend = '' # required for auth_login to work
 mock_authenticate.return_value = user
 response = self.client.post('/accounts/login', {'assertion': 'a'})
 self.assertEqual(response.content.decode(), 'OK')

I should explain this use of get_user_model from django.contrib.auth. Its job
is to find the project’s user model, and it works whether you’re using the standard
user model or a custom one (like we will be).

That test covers the desired response. Now test that the user actually gets logged in
correctly. We can do that by inspecting the Django test client, to see if the session cookie
has been set correctly.

Check out the Django docs on authentication at this point.

Mocking in Python | 283

https://docs.djangoproject.com/en/1.8/topics/auth/default/#how-to-log-a-user-in

accounts/tests/test_views.py (ch16l012).
from django.contrib.auth import get_user_model, SESSION_KEY
[...]

 @patch('accounts.views.authenticate')
 def test_gets_logged_in_session_if_authenticate_returns_a_user(
 self, mock_authenticate
):
 user = User.objects.create(email='a@b.com')
 user.backend = '' # required for auth_login to work
 mock_authenticate.return_value = user
 self.client.post('/accounts/login', {'assertion': 'a'})
 self.assertEqual(self.client.session[SESSION_KEY], str(user.pk)) #

 @patch('accounts.views.authenticate')
 def test_does_not_get_logged_in_if_authenticate_returns_None(
 self, mock_authenticate
):
 mock_authenticate.return_value = None
 self.client.post('/accounts/login', {'assertion': 'a'})
 self.assertNotIn(SESSION_KEY, self.client.session) #

The Django test client keeps track of the session for its user. For the case where
the user gets authenticated successfully, we check that their user ID (the primary
key, or pk) is associated with their session.
In the case where the user should not be authenticated, the SESSION_KEY should
not appear in their session.

Django Sessions: How a User’s Cookies Tell the Server She Is
Authenticated

Being an attempt to explain sessions, cookies, and authentication in Django.

Because HTTP is stateless, servers need a way of recognising different clients with every
single request. IP addresses can be shared, so the usual solution is to give each client a
unique session ID, which it will store in a cookie, and submit with every request. The
server will store that ID somewhere (by default, in the database), and then it can rec‐
ognise each request that comes in as being from a particular client.

If you log in to the site using the dev server, you can actually take a look at your session
ID by hand if you like. It’s stored under the key sessionid by default. See Figure 16-1.

284 | Chapter 16: Server-Side Authentication and Mocking in Python

Figure 16-1. Examining the session cookie in the Debug toolbar

These session cookies are set for all visitors to a Django site, whether they’re logged in
or not.

When we want to recognise a client as being a logged-in and authenticated user, again,
rather asking the client to send their username and password with every single request,
the server can actually just mark that client’s session as being an authenticated session,
and associate it with a user ID in its database.

A session is a dictionary-like data structure, and the user ID is stored under the key
given by django.contrib.auth.SESSION_KEY. You can check this out in a manage.py
console if you like:

$ python3 manage.py shell
[...]
In [1]: from django.contrib.sessions.models import Session

substitute your session id from your browser cookie here
In [2]: session = Session.objects.get(
 session_key="8u0pygdy9blo696g3n4o078ygt6l8y0y"
)

In [3]: print(session.get_decoded())
{'_auth_user_id': 'harry@mockmyid.com', '_auth_user_backend':

'accounts.authentication.PersonaAuthenticationBackend'}

You can also store any other information you like on a user’s session, as a way of tem‐
porarily keeping track of some state. This works for non-logged-in users too. Just use

Mocking in Python | 285

mailto:harry@mockmyid.com

request.session inside any view, and it works as a dict. There’s more information in
the Django docs on sessions.

That gives us two failures:
$ python3 manage.py test accounts
[...]
 self.assertEqual(self.client.session[SESSION_KEY], str(user.pk))
KeyError: '_auth_user_id'

[...]
AssertionError: '' != 'OK'
+ OK

The Django function that takes care of logging in a user, by marking their session, is
available at django.contrib.auth.login. So we go through another couple of TDD
cycles, until:

accounts/views.py.
from django.contrib.auth import authenticate, login
from django.http import HttpResponse

def persona_login(request):
 user = authenticate(assertion=request.POST['assertion'])
 if user:
 login(request, user)
 return HttpResponse('OK')

…
OK

We now have a working login view.

Testing Login with Mocks
An alternative way of testing that the Django login function was called correctly would
be to mock it out too:

accounts/tests/test_views.py.
from django.http import HttpRequest
from accounts.views import persona_login
[...]

 @patch('accounts.views.login')
 @patch('accounts.views.authenticate')
 def test_calls_auth_login_if_authenticate_returns_a_user(
 self, mock_authenticate, mock_login
):
 request = HttpRequest()
 request.POST['assertion'] = 'asserted'

286 | Chapter 16: Server-Side Authentication and Mocking in Python

https://docs.djangoproject.com/en/1.8/topics/http/sessions/

 mock_user = mock_authenticate.return_value
 persona_login(request)
 mock_login.assert_called_once_with(request, mock_user)

The upside of this version of the test is that it doesn’t need to rely on the magic of the
Django test client, and it doesn’t need to know anything about how Django sessions
work—all you need to know is the name of the function you’re supposed to call.

Its downside is that it is very much testing implementation, rather than testing behaviour
—it’s tightly coupled to the particular name of the Django login function and its API.

De-spiking Our Custom Authentication Backend: Mocking
Out an Internet Request
Our custom authentication backend is next. Here’s how it looked in the spike:

class PersonaAuthenticationBackend(object):

 def authenticate(self, assertion):
 # Send the assertion to Mozilla's verifier service.
 data = {'assertion': assertion, 'audience': 'localhost'}
 print('sending to mozilla', data, file=sys.stderr)
 resp = requests.post('https://verifier.login.persona.org/verify', data=data)
 print('got', resp.content, file=sys.stderr)

 # Did the verifier respond?
 if resp.ok:
 # Parse the response
 verification_data = resp.json()

 # Check if the assertion was valid
 if verification_data['status'] == 'okay':
 email = verification_data['email']
 try:
 return self.get_user(email)
 except ListUser.DoesNotExist:
 return ListUser.objects.create(email=email)

 def get_user(self, email):
 return ListUser.objects.get(email=email)

Decoding this:

• We take an assertion and send it off to Mozilla using requests.post.
• We check its response code (resp.ok), and then check for a status=okay in the

response JSON.
• We then extract an email address, and either find an existing user with that address,

or create a new one.

De-spiking Our Custom Authentication Backend: Mocking Out an Internet Request | 287

1 if = 1 More Test
A rule of thumb for these sorts of tests: any if means an extra test, and any try/
except means an extra test, so this should be about four tests. Let’s start with one:

accounts/tests/test_authentication.py.
from unittest.mock import patch
from django.test import TestCase

from accounts.authentication import (
 PERSONA_VERIFY_URL, DOMAIN, PersonaAuthenticationBackend
)

class AuthenticateTest(TestCase):

 @patch('accounts.authentication.requests.post')
 def test_sends_assertion_to_mozilla_with_domain(self, mock_post):
 backend = PersonaAuthenticationBackend()
 backend.authenticate('an assertion')
 mock_post.assert_called_once_with(
 PERSONA_VERIFY_URL,
 data={'assertion': 'an assertion', 'audience': DOMAIN}
)

In authenticate.py we’ll just have a few placeholders:
accounts/authentication.py.

import requests

PERSONA_VERIFY_URL = 'https://verifier.login.persona.org/verify'
DOMAIN = 'localhost'

class PersonaAuthenticationBackend(object):

 def authenticate(self, assertion):
 pass

At this point we’ll need to:
(virtualenv)$ pip install requests

Don’t forget to add requests to requirements.txt too, or the next
deploy won’t work…

Then let’s see how the tests get on!
$ python3 manage.py test accounts
[...]
AssertionError: Expected 'post' to be called once. Called 0 times.

288 | Chapter 16: Server-Side Authentication and Mocking in Python

And we can get that to passing in three steps (make sure the Goat sees you doing each
one individually!):

accounts/authentication.py.
 def authenticate(self, assertion):
 requests.post(
 PERSONA_VERIFY_URL,
 data={'assertion': assertion, 'audience': DOMAIN}
)

Grand:
$ python3 manage.py test accounts
[...]

Ran 5 tests in 0.023s

OK

Next let’s check that authenticate should return None if it sees an error from the request:
accounts/tests/test_authentication.py (ch16l020).

 @patch('accounts.authentication.requests.post')
 def test_returns_none_if_response_errors(self, mock_post):
 mock_post.return_value.ok = False
 backend = PersonaAuthenticationBackend()

 user = backend.authenticate('an assertion')
 self.assertIsNone(user)

And that passes straight away—we currently return None in all cases!

Patching at the Class Level
Next we want to check that the response JSON has status=okay. Adding this test would
involve a bit of duplication—let’s apply the “three strikes” rule:

accounts/tests/test_authentication.py (ch16l021).
@patch('accounts.authentication.requests.post') #
class AuthenticateTest(TestCase):

 def setUp(self):
 self.backend = PersonaAuthenticationBackend() #

 def test_sends_assertion_to_mozilla_with_domain(self, mock_post):
 self.backend.authenticate('an assertion')
 mock_post.assert_called_once_with(
 PERSONA_VERIFY_URL,
 data={'assertion': 'an assertion', 'audience': DOMAIN}
)

 def test_returns_none_if_response_errors(self, mock_post):

De-spiking Our Custom Authentication Backend: Mocking Out an Internet Request | 289

 mock_post.return_value.ok = False #
 user = self.backend.authenticate('an assertion')
 self.assertIsNone(user)

 def test_returns_none_if_status_not_okay(self, mock_post):
 mock_post.return_value.json.return_value = {'status': 'not okay!'} #
 user = self.backend.authenticate('an assertion')
 self.assertIsNone(user)

You can apply a patch at the class level as well, and that has the effect that every
test method in the class will have the patch applied, and the mock injected.
We can now use the setUp function to prepare any useful variables which we’re
going to use in all of our tests.

 Now each test is only adjusting the setup variables it needs, rather than setting
up a load of duplicated boilerplate—it’s more readable.

And that’s all very well, but everything still passes!
OK

Time to test for the positive case where authenticate should return a user object. We
expect this to fail:

accounts/tests/test_authentication.py (ch16l022-1).
from django.contrib.auth import get_user_model
User = get_user_model()
[...]

 def test_finds_existing_user_with_email(self, mock_post):
 mock_post.return_value.json.return_value = {'status': 'okay', 'email': 'a@b.com'}
 actual_user = User.objects.create(email='a@b.com')
 found_user = self.backend.authenticate('an assertion')
 self.assertEqual(found_user, actual_user)

Indeed, a fail:
AssertionError: None != <User: >

Let’s code. We’ll start with a “cheating” implementation, where we just get the first user
we find in the database:

accounts/authentication.py (ch16l023).
import requests
from django.contrib.auth import get_user_model
User = get_user_model()
[...]

 def authenticate(self, assertion):
 requests.post(
 PERSONA_VERIFY_URL,
 data={'assertion': assertion, 'audience': DOMAIN}
)
 return User.objects.first()

290 | Chapter 16: Server-Side Authentication and Mocking in Python

That gets our new test passing, but still, none of the other tests are failing:
$ python3 manage.py test accounts
[...]

Ran 8 tests in 0.030s

OK

They’re passing because objects.first() returns None if there are no users in the
database. Let’s make our other cases more realistic, by making sure there’s always at least
one user in the database for all our tests:

accounts/tests/test_authentication.py (ch16l022-2).
 def setUp(self):
 self.backend = PersonaAuthenticationBackend()
 user = User(email='other@user.com')
 user.username = 'otheruser' #
 user.save()

By default, Django’s users have a username attribute, which has to be unique, so
this value is just a placeholder to allow us to create multiple users. Later on, we’ll
get rid of usernames in favour of using emails as the primary key.

That gives us three failures:
FAIL: test_finds_existing_user_with_email
AssertionError: <User: otheruser> != <User: >
[...]
FAIL: test_returns_none_if_response_errors
AssertionError: <User: otheruser> is not None
[...]
FAIL: test_returns_none_if_status_not_okay
AssertionError: <User: otheruser> is not None

Let’s start building our guards for cases where authentication should fail—if the response
errors, or if the status is not okay. Suppose we start with this:

accounts/authentication.py (ch16l024-1).
def authenticate(self, assertion):
 response = requests.post(
 PERSONA_VERIFY_URL,
 data={'assertion': assertion, 'audience': DOMAIN}
)
 if response.json()['status'] == 'okay':
 return User.objects.first()

That actually fixes two of the tests, slightly surprisingly:
AssertionError: <User: otheruser> != <User: >

FAILED (failures=1)

De-spiking Our Custom Authentication Backend: Mocking Out an Internet Request | 291

3. Actually, this is only happening because we’re using the patch decorator, which returns a MagicMock, an even
mockier version of mock that can also behave like a dictionary. More info in the docs.

Let’s get the final test passing by retrieving the right user, and then we’ll have a look at
that surprise pass:

accounts/authentication.py (ch16l024-2).
 if response.json()['status'] == 'okay':
 return User.objects.get(email=response.json()['email'])

…
OK

Beware of Mocks in Boolean Comparisons
So how come our test_returns_none_if_response_errors isn’t failing?

Because we’ve mocked out requests.post, the response is a Mock object, which as you
remember, returns all attributes and properties as more Mocks.3 So, when we do:

accounts/authentication.py.
 if response.json()['status'] == 'okay':

response is actually a mock, response.json() is a mock, and response.json()['sta
tus'] is a mock too! We end up comparing a mock with the string “okay”, which eval‐
uates to False, and so we return None by default. Let’s make our test more explicit, by
saying that the response JSON will be an empty dict:

accounts/tests/test_authentication.py (ch16l025).
 def test_returns_none_if_response_errors(self, mock_post):
 mock_post.return_value.ok = False
 mock_post.return_value.json.return_value = {}
 user = self.backend.authenticate('an assertion')
 self.assertIsNone(user)

That gives:
 if response.json()['status'] == 'okay':
KeyError: 'status'

And we can fix it like this:
accounts/authentication.py (ch16l026).

 if response.ok and response.json()['status'] == 'okay':
 return User.objects.get(email=response.json()['email'])

…
OK

Great! Our authenticate function is now working the way we want it to.

292 | Chapter 16: Server-Side Authentication and Mocking in Python

https://docs.python.org/3/library/unittest.mock-magicmethods.html

Creating a User if Necessary
Next we should check that, if our authenticate function has a valid assertion from
Persona, but we don’t have a user record for that person in our database, we should
create one. Here’s the test for that:

accounts/tests/test_authentication.py (ch16l027).
def test_creates_new_user_if_necessary_for_valid_assertion(self, mock_post):
 mock_post.return_value.json.return_value = {'status': 'okay', 'email': 'a@b.com'}
 found_user = self.backend.authenticate('an assertion')
 new_user = User.objects.get(email='a@b.com')
 self.assertEqual(found_user, new_user)

That fails in our application code when we try find an existing user with that email:
 return User.objects.get(email=response.json()['email'])
django.contrib.auth.models.DoesNotExist: User matching query does not exist.

So we add a try/except, returning an “empty” user at first:
accounts/authentication.py (ch16l028).

 if response.ok and response.json()['status'] == 'okay':
 try:
 return User.objects.get(email=response.json()['email'])
 except User.DoesNotExist:
 return User.objects.create()

And that fails, but this time it fails when the test tries to find the new user by email:
 new_user = User.objects.get(email='a@b.com')
django.contrib.auth.models.DoesNotExist: User matching query does not exist.

And so we fix it by assigning the correct email addresss:
accounts/authentication.py (ch16l029).

 if response.ok and response.json()['status'] == 'okay':
 email = response.json()['email']
 try:
 return User.objects.get(email=email)
 except User.DoesNotExist:
 return User.objects.create(email=email)

That gets us to passing tests:
$ python3 manage.py test accounts
[...]
Ran 9 tests in 0.019s
OK

The get_user Method
The next thing we have to build is a get_user method for our authentication backend.
This method’s job is to retrieve a user based on their email address, or to return None if
it can’t find one. (That last wasn’t well documented at the time of writing, but that is the
interface we have to comply with. See the source for details.)

De-spiking Our Custom Authentication Backend: Mocking Out an Internet Request | 293

http://bit.ly/SuECDa

Here’s a couple of tests for those two requirements:
accounts/tests/test_authentication.py (ch16l030).

class GetUserTest(TestCase):

 def test_gets_user_by_email(self):
 backend = PersonaAuthenticationBackend()
 other_user = User(email='other@user.com')
 other_user.username = 'otheruser'
 other_user.save()
 desired_user = User.objects.create(email='a@b.com')
 found_user = backend.get_user('a@b.com')
 self.assertEqual(found_user, desired_user)

 def test_returns_none_if_no_user_with_that_email(self):
 backend = PersonaAuthenticationBackend()
 self.assertIsNone(
 backend.get_user('a@b.com')
)

Here’s our first failure:
AttributeError: 'PersonaAuthenticationBackend' object has no attribute
'get_user'

Let’s create a placeholder one then:
accounts/authentication.py (ch16l031).

class PersonaAuthenticationBackend(object):

 def authenticate(self, assertion):
 [...]

 def get_user(self):
 pass

Now we get:
TypeError: get_user() takes 1 positional argument but 2 were given

So:
accounts/authentication.py (ch16l032).

 def get_user(self, email):
 pass

Next:
 self.assertEqual(found_user, desired_user)
AssertionError: None != <User: >

And (step by step, just to see if our test fails the way we think it will):
accounts/authentication.py (ch16l033).

 def get_user(self, email):
 return User.objects.first()

294 | Chapter 16: Server-Side Authentication and Mocking in Python

That gets us past the first assertion, and onto
 self.assertEqual(found_user, desired_user)
AssertionError: <User: otheruser> != <User: >

And so we call get with the email as an argument:
accounts/authentication.py (ch16l034).

 def get_user(self, email):
 return User.objects.get(email=email)

That gets us to passing tests:

Now our test for the None case fails:
ERROR: test_returns_none_if_no_user_with_that_email
[...]
django.contrib.auth.models.DoesNotExist: User matching query does not exist.

Which prompts us to finish the method like this:
accounts/authentication.py (ch16l035).

 def get_user(self, email):
 try:
 return User.objects.get(email=email)
 except User.DoesNotExist:
 return None #

You could just use pass here, and the function would return None by default.
However, because we specifically need the function to return None, explicit is
better than implicit here.

That gets us to passing tests:
OK

And we have a working authentication backend!
$ python3 manage.py test accounts
[...]
Ran 11 tests in 0.020s
OK

Now we can define our custom user model.

A Minimal Custom User Model
Django’s built-in user model makes all sorts of assumptions about what information
you want to track about users, from explicitly recording first name and last name, to
forcing you to use a username. I’m a great believer in not storing information about
users unless you absolutely must, so a user model that records an email address and
nothing else sounds good to me!

A Minimal Custom User Model | 295

accounts/tests/test_models.py.
from django.test import TestCase
from django.contrib.auth import get_user_model

User = get_user_model()

class UserModelTest(TestCase):

 def test_user_is_valid_with_email_only(self):
 user = User(email='a@b.com')
 user.full_clean() # should not raise

That gives us an expected failure:
django.core.exceptions.ValidationError: {'username': ['This field cannot be
blank.'], 'password': ['This field cannot be blank.']}

Password? Username? Bah! How about this?
accounts/models.py.

from django.db import models

class User(models.Model):
 email = models.EmailField()

And we wire it up inside settings.py using a variable called AUTH_USER_MODEL. While
we’re at it, we’ll add our new authentication backend too:

superlists/settings.py (ch16l039).
AUTH_USER_MODEL = 'accounts.User'
AUTHENTICATION_BACKENDS = (
 'accounts.authentication.PersonaAuthenticationBackend',
)

The next error is a database error:
django.db.utils.OperationalError: no such table: accounts_user

That prompts us, as usual, to do a migration… When we try, Django complains that
our custom user model is missing a couple of bits of metadata:

$ python3 manage.py makemigrations
Traceback (most recent call last):
[...]
 if not isinstance(cls.REQUIRED_FIELDS, (list, tuple)):
AttributeError: type object 'User' has no attribute 'REQUIRED_FIELDS'

Sigh. Come on, Django, it’s only got one field, you should be able to figure out the
answers to these questions for yourself. Here you go:

accounts/models.py.
class User(models.Model):
 email = models.EmailField()
 REQUIRED_FIELDS = ()

296 | Chapter 16: Server-Side Authentication and Mocking in Python

4. You might ask, if I think Django is so silly, why don’t I submit a pull request to fix it? Should be quite a simple
fix. Well, I promise I will, as soon as I’ve finished writing the book. For now, snarky comments will have to
suffice.

Next silly question?4

$ python3 manage.py makemigrations
[...]
AttributeError: type object 'User' has no attribute 'USERNAME_FIELD'

So:
accounts/models.py.

class User(models.Model):
 email = models.EmailField()
 REQUIRED_FIELDS = ()
 USERNAME_FIELD = 'email'

$ python3 manage.py makemigrations
System check identified some issues:

WARNINGS:
accounts.User: (auth.W004) 'User.email' is named as the 'USERNAME_FIELD', but
it is not unique.
 HINT: Ensure that your authentication backend(s) can handle non-unique
usernames.
Migrations for 'accounts':
 0001_initial.py:
 - Create model User

Let’s hold that thought, and see if we can get the tests passing again.

A Slight Disappointment
Meanwhile, we have a couple of weird unexpected failures:

$ python3 manage.py test accounts
[...]
ERROR: test_gets_logged_in_session_if_authenticate_returns_a_user
[...]
ERROR: test_returns_OK_when_user_found
[...]
 user.save(update_fields=['last_login'])
[...]
ValueError: The following fields do not exist in this model or are m2m fields:
last_login

It looks like Django is going to insist on us having a last_login field on our user model
too. Oh well. My pristine, single-field user model is despoiled. I still love it though.

A Minimal Custom User Model | 297

5. Emails may not be the perfect primary key IRL. One reader, clearly deeply emotionally scarred, wrote me a
tearful email about how much they’ve suffered for over a decade from trying to deal with the effects email
primary keys, due to their making multi-user account management impossible. So, as ever, YMMV.

accounts/models.py.
from django.db import models
from django.utils import timezone

class User(models.Model):
 email = models.EmailField()
 last_login = models.DateTimeField(default=timezone.now)
 REQUIRED_FIELDS = ()
 USERNAME_FIELD = 'email'

We get another database error, so let’s clear down the migration and re-create it:
$ rm accounts/migrations/0001_initial.py
$ python3 manage.py makemigrations
System check identified some issues:
[...]
Migrations for 'accounts':
 0001_initial.py:
 - Create model User

That gets the tests passing:
$ python3 manage.py test accounts
[...]

Ran 12 tests in 0.041s

OK

Tests as Documentation
Let’s go all the way and make the email field into the primary key5, and thus implicitly
remove the auto-generated id column.

Although that warning is probably enough of a justification to go ahead and make the
change, it would be better to have a specific test:

accounts/tests/test_models.py (ch16l043).
 def test_email_is_primary_key(self):
 user = User()
 self.assertFalse(hasattr(user, 'id'))

It’ll help us remember if we ever come back and look at the code again in future.
 self.assertFalse(hasattr(user, 'id'))
AssertionError: True is not false

298 | Chapter 16: Server-Side Authentication and Mocking in Python

Your tests can be are a form of documentation for your code—they
express what your requirements are of a particular class or function.
Sometimes, if you forget why you’ve done something a particular way,
going back and looking at the tests will give you the answer. That’s
why it’s important to give your tests explicit, verbose method names.

And here’s the implementation (feel free to check what happens with unique=True first):
accounts/models.py (ch16l044).

 email = models.EmailField(primary_key=True)

That works:
$ python3 manage.py test accounts
[...]
Ran 13 tests in 0.021s
OK

One final cleanup of migrations to make sure we’ve got everything there:
$ rm accounts/migrations/0001_initial.py
$ python3 manage.py makemigrations
Migrations for 'accounts':
 0001_initial.py:
 - Create model User

No warnings now!

Users Are Authenticated
Our user model needs one last property before it’s complete: standard Django users have
an API which includes several methods, most of which we won’t need, but there is one
that will come in useful: .is_authenticated():

accounts/tests/test_models.py (ch16l045).
 def test_is_authenticated(self):
 user = User()
 self.assertTrue(user.is_authenticated())

Which gives:
AttributeError: 'User' object has no attribute 'is_authenticated'

And so, the ultra-simple:
accounts/models.py.

class User(models.Model):
 email = models.EmailField(primary_key=True)
 last_login = models.DateTimeField(default=timezone.now)
 REQUIRED_FIELDS = ()
 USERNAME_FIELD = 'email'

 def is_authenticated(self):
 return True

A Minimal Custom User Model | 299

https://docs.djangoproject.com/en/1.8/ref/contrib/auth/#methods

And that works:
$ python3 manage.py test accounts
[...]
Ran 14 tests in 0.021s
OK

The Moment of Truth: Will the FT Pass?
I think we’re just about ready to try our functional test! Let’s just wire up our base
template. Firstly, it needs to show a different message for logged-in and non-logged-in
users:

lists/templates/base.html.
<nav class="navbar navbar-default" role="navigation">
 Superlists
 {% if user.email %}
 Log out
 Logged in as {{ user.email }}
 {% else %}
 Sign in
 {% endif %}
</nav>

Lovely. Then we wire up our various context variables for the call to initialize:
lists/templates/base.html.

<script>
 /*global $, Superlists, navigator */
 $(document).ready(function () {
 var user = "{{ user.email }}" || null;
 var token = "{{ csrf_token }}";
 var urls = {
 login: "{% url 'persona_login' %}",
 logout: "TODO",
 };
 Superlists.Accounts.initialize(navigator, user, token, urls);
 });
</script>

So how does our FT get along?
$ python3 manage.py test functional_tests.test_login
Creating test database for alias 'default'...
[...]
Ran 1 test in 26.382s

OK

Woohoo!

I’ve been waiting to do a commit up until this moment, just to make sure everything
works. At this point, you could make a series of separate commits—one for the login
view, one for the auth backend, one for the user model, one for wiring up the template.

300 | Chapter 16: Server-Side Authentication and Mocking in Python

Or you could decide that, since they’re all interrelated, and none will work without the
others, you may as well just have one big commit:

$ git status
$ git add .
$ git diff --staged
$ git commit -m "Custom Persona auth backend + custom user model"

Finishing Off Our FT, Testing Logout
We’ll extend our FT to check that the logged-in status persists, ie it’s not just something
we set in JavaScript on the client side, but the server knows about it too and will maintain
the logged-in state if she refreshes the page. We’ll also test that she can log out.

I started off writing code a bit like this:
functional_tests/test_login.py.

 # Refreshing the page, she sees it's a real session login,
 # not just a one-off for that page
 self.browser.refresh()
 self.wait_for_element_with_id('id_logout')
 navbar = self.browser.find_element_by_css_selector('.navbar')
 self.assertIn('edith@mockmyid.com', navbar.text)

And, after four repetitions of very similar code, a couple of helper functions suggested
themselves:

functional_tests/test_login.py (ch16l050).
 def wait_to_be_logged_in(self):
 self.wait_for_element_with_id('id_logout')
 navbar = self.browser.find_element_by_css_selector('.navbar')
 self.assertIn('edith@mockmyid.com', navbar.text)

 def wait_to_be_logged_out(self):
 self.wait_for_element_with_id('id_login')
 navbar = self.browser.find_element_by_css_selector('.navbar')
 self.assertNotIn('edith@mockmyid.com', navbar.text)

And I extended the FT like this:
functional_tests/test_login.py (ch16l049).

 [...]
 # The Persona window closes
 self.switch_to_new_window('To-Do')

 # She can see that she is logged in
 self.wait_to_be_logged_in()

 # Refreshing the page, she sees it's a real session login,
 # not just a one-off for that page
 self.browser.refresh()
 self.wait_to_be_logged_in()

 # Terrified of this new feature, she reflexively clicks "logout"

Finishing Off Our FT, Testing Logout | 301

 self.browser.find_element_by_id('id_logout').click()
 self.wait_to_be_logged_out()

 # The "logged out" status also persists after a refresh
 self.browser.refresh()
 self.wait_to_be_logged_out()

I also found that improving the failure message in the wait_for_element_with_id
function helped to see what was going on:

functional_tests/test_login.py.
 def wait_for_element_with_id(self, element_id):
 WebDriverWait(self.browser, timeout=30).until(
 lambda b: b.find_element_by_id(element_id),
 'Could not find element with id {}. Page text was:\n{}'.format(
 element_id, self.browser.find_element_by_tag_name('body').text
)
)

With that, we can see that the test is failing because the logout button doesn’t work:
$ python3 manage.py test functional_tests.test_login
 File "/workspace/superlists/functional_tests/test_login.py", line 36, in
wait_to_be_logged_out
[...]
selenium.common.exceptions.TimeoutException: Message: Could not find element
with id id_login. Page text was:
Superlists
Log out
Logged in as edith@mockmyid.com
Start a new To-Do list

Implementing a logout button is actually very simple: we can use Django’s built-in logout
view, which clears down the user’s session and redirects them to a page of our choice:

accounts/urls.py.
from django.contrib.auth.views import logout
[...]

urlpatterns = [
 url(r'^login$', views.persona_login, name='persona_login'),
 url(r'^logout$', logout, {'next_page': '/'}, name='logout'),
]

And in base.html, we just make the logout into a normal URL link:
lists/templates/base.html.

Log out

And that gets us a fully passing FT—indeed, a fully passing test suite:
$ python3 manage.py test functional_tests.test_login
[...]
OK
$ python3 manage.py test
[...]
Ran 54 tests in 78.124s

302 | Chapter 16: Server-Side Authentication and Mocking in Python

http://bit.ly/SuI0hA
http://bit.ly/SuI0hA

OK

I’m actually glossing over a small problem here. You may notice, if
you test the site manually, that Persona sometimes re-logs you in
automatically after you hit logout. Many thanks to Daniel G who
finally prompted me with a fix for this. You can find it here if you’re
curious.

In the next chapter, we’ll start trying to put our login system to good use. In the mean‐
time, do a commit, and enjoy this recap:

On Mocking in Python
The Mock library

Michael Foord (who used to work for the company that spawned PythonAnywhere,
just before I joined) wrote the excellent “Mock” library that’s now been integrated
into the standard library of Python 3. It contains most everything you might need
for mocking in Python.

The patch decorator
unittest.mock provides a function called patch, which can be used to “mock out”
any object from the module you’re testing. It’s commonly used as a decorator on a
test method, or even at the class level, where it’s applied to all the test methods of
that class.

Mocks are truthy and can mask errors
Be aware that mocking things out can cause counterintuitive behaviour in if state‐
ments. Mocks are truthy, and they can also mask errors, because they have all at‐
tributes and methods.

Too many mocks are a code smell
Overly mocky tests end up very tightly coupled to their implementation. Sometimes
this is unavoidable. But, in general, try to find ways of organising your code so that
you don’t need too many mocks.

Finishing Off Our FT, Testing Logout | 303

https://github.com/hjwp/book-example/commits/chapter_16_fix_auto_relogin_bug

CHAPTER 17
Test Fixtures, Logging, and

Server-Side Debugging

Now that we have a functional authentication system, we want to use it to identify users,
and be able to show them all the lists they have created.

To do that, we’re going to have to write FTs that have a logged-in user. Rather than
making each test go through the (time-consuming) Persona dialog, we want to be able
to skip that part.

This is about separation of concerns. Functional tests aren’t like unit tests, in that they
don’t usually have a single assertion. But, conceptually, they should be testing a single
thing. There’s no need for every single FT to test the login/logout mechanisms. If we
can figure out a way to “cheat” and skip that part, we’ll spend less time waiting for
duplicated test paths.

Don’t overdo de-duplication in FTs. One of the benefits of an FT is
that it can catch strange and unpredictable interactions between dif‐
ferent parts of your application.

Skipping the Login Process by Pre-creating a Session
It’s quite common for a user to return to a site and still have a cookie, which means they
are “pre-authenticated”, so this isn’t an unrealistic cheat at all. Here’s how you can set it
up:

functional_tests/test_my_lists.py.
from django.conf import settings
from django.contrib.auth import BACKEND_SESSION_KEY, SESSION_KEY, get_user_model
User = get_user_model()

305

from django.contrib.sessions.backends.db import SessionStore

from .base import FunctionalTest

class MyListsTest(FunctionalTest):

 def create_pre_authenticated_session(self, email):
 user = User.objects.create(email=email)
 session = SessionStore()
 session[SESSION_KEY] = user.pk #
 session[BACKEND_SESSION_KEY] = settings.AUTHENTICATION_BACKENDS[0]
 session.save()
 ## to set a cookie we need to first visit the domain.
 ## 404 pages load the quickest!
 self.browser.get(self.server_url + "/404_no_such_url/")
 self.browser.add_cookie(dict(
 name=settings.SESSION_COOKIE_NAME,
 value=session.session_key, #
 path='/',
))

We create a session object in the database. The session key is the primary key of
the user object (which is actually their email address).
We then add a cookie to the browser that matches the session on the server—
on our next visit to the site, the server should recognise us as a logged-in user.

Note that, as it is, this will only work because we’re using LiveServerTestCase, so the
User and Session objects we create will end up in the same database as the test server.
Later we’ll need to modify it so that it works against the database on the staging server
too.

JSON Test Fixtures Considered Harmful
When we pre-populate the database with test data, as we’ve done here with the User
object and its associated Session object, what we’re doing is setting up a “test fixture”.

Django comes with built-in support for saving database objects as JSON (using the
manage.py dumpdata), and automatically loading them in your test runs using the
fixtures class attribute on TestCase.

More and more people are starting to say: don’t use JSON fixtures. They’re a nightmare
to maintain when your model changes. Instead, if you can, load data directly using the
Django ORM, or look into a tool like factory_boy.

306 | Chapter 17: Test Fixtures, Logging, and Server-Side Debugging

http://bit.ly/1kSTyrb
https://factoryboy.readthedocs.org/

Checking It Works
To check it works, it would be good to use the wait_to_be_logged_in function we
defined in our last test. To access it from a different test, we’ll need to pull it up into
FunctionalTest, as well as a couple of other methods. We’ll also tweak them slightly
so that they can take an arbitrary email address as a parameter:

functional_tests/base.py (ch17l002-2).
from selenium.webdriver.support.ui import WebDriverWait
[...]

class FunctionalTest(StaticLiveServerTestCase):
 [...]

 def wait_for_element_with_id(self, element_id):
 [...]

 def wait_to_be_logged_in(self, email):
 self.wait_for_element_with_id('id_logout')
 navbar = self.browser.find_element_by_css_selector('.navbar')
 self.assertIn(email, navbar.text)

 def wait_to_be_logged_out(self, email):
 self.wait_for_element_with_id('id_login')
 navbar = self.browser.find_element_by_css_selector('.navbar')
 self.assertNotIn(email, navbar.text)

That means a small tweak in test_login.py:
functional_tests/test_login.py (ch17l003).

TEST_EMAIL = 'edith@mockmyid.com'
[...]

 def test_login_with_persona(self):
 [...]

 self.browser.find_element_by_id(
 'authentication_email'
).send_keys(TEST_EMAIL)
 self.browser.find_element_by_tag_name('button').click()

 [...]

 # She can see that she is logged in
 self.wait_to_be_logged_in(email=TEST_EMAIL)
 [...]
 self.wait_to_be_logged_in(email=TEST_EMAIL)
 [...]
 self.wait_to_be_logged_out(email=TEST_EMAIL)
 [...]
 self.wait_to_be_logged_out(email=TEST_EMAIL)

Skipping the Login Process by Pre-creating a Session | 307

Just to check we haven’t broken anything, we rerun the login test:
$ python3 manage.py test functional_tests.test_login
[...]
OK

And now we can write a placeholder for the “My Lists” test, to see if our pre-
authenticated session creator really does work:

functional_tests/test_my_lists.py (ch17l004).
 def test_logged_in_users_lists_are_saved_as_my_lists(self):
 email = 'edith@example.com'

 self.browser.get(self.server_url)
 self.wait_to_be_logged_out(email)

 # Edith is a logged-in user
 self.create_pre_authenticated_session(email)

 self.browser.get(self.server_url)
 self.wait_to_be_logged_in(email)

That gets us:
$ python3 manage.py test functional_tests.test_my_lists
[...]
OK

That’s a good place for a commit:
$ git add functional_tests
$ git commit -m "placeholder test_my_lists and move login checkers into base"

The Proof Is in the Pudding: Using Staging to Catch Final
Bugs
That’s all very well for running the FTs locally, but how would it work against the staging
server? Let’s try and deploy our site. Along the way we’ll catch an unexpected bug (that’s
what staging is for!), and then we’ll have to figure out a way of managing the database
on the test server.

$ cd deploy_tools
$ fab deploy --host=elspeth@superlists-staging.ottg.eu
[...]

And restart Gunicorn…
elspeth@server: sudo restart gunicorn-superlists-staging.ottg.eu

Here’s what happens when we run the functional tests:

308 | Chapter 17: Test Fixtures, Logging, and Server-Side Debugging

$ python3 manage.py test functional_tests \
--liveserver=superlists-staging.ottg.eu

==
ERROR: test_login_with_persona (functional_tests.test_login.LoginTest)

Traceback (most recent call last):
 File "/worskpace/functional_tests/test_login.py", line 50, in
test_login_with_persona
[...]
 self.wait_for_element_with_id('id_logout')
[...]
selenium.common.exceptions.TimeoutException: Message: Could not find element
with id id_logout. Page text was:
Superlists
Sign in
Start a new To-Do list

==
ERROR: test_logged_in_users_lists_are_saved_as_my_lists
(functional_tests.test_my_lists.MyListsTest)

Traceback (most recent call last):
 File "/worskpace/functional_tests/test_my_lists.py", line 34, in
test_logged_in_users_lists_are_saved_as_my_lists
 self.wait_to_be_logged_in(email)
[...]
selenium.common.exceptions.TimeoutException: Message: Could not find element
with id id_logout. Page text was:
Superlists
Sign in
Start a new To-Do list

We can’t log in—either with the real Persona or with our pre-authenticated session.
There’s some kind of bug.

I had considered just going back and fixing this in the previous chapter, and pretending
it never happened, but I think leaving it illustrates the point of running tests against a
staging environment. It would have been pretty embarrassing if we’d deployed this bug
straight to our live site.

Aside from that, we’ll get to practice a bit of server-side debugging.

Setting Up Logging
In order to track this bug down, we have to set up Gunicorn to do some logging. Adjust
the Gunicorn config on the server, using vi or nano:

server: /etc/init/gunicorn-superlists-staging.ottg.eu.conf.
[...]
exec ../virtualenv/bin/gunicorn \
 --bind unix:/tmp/superlists-staging.ottg.eu.socket \

The Proof Is in the Pudding: Using Staging to Catch Final Bugs | 309

 --access-logfile ../access.log \
 --error-logfile ../error.log \
 superlists.wsgi:application

That will put an access log and error log into the ~/sites/$SITENAME folder. Then we
add some debug calls in our authenticate function (again, we can do this directly on
the server):

accounts/authentication.py.
import logging
[...]

 def authenticate(self, assertion):
 logging.warning('entering authenticate function')
 response = requests.post(
 PERSONA_VERIFY_URL,
 data={'assertion': assertion, 'audience': settings.DOMAIN}
)
 logging.warning('got response from persona')
 logging.warning(response.content.decode())
 [...]

Using the “root” logger like this (logging.warning) isn’t generally a
good idea. We’ll set up a more robust logging configuration at the end
of the chapter.

You should also make sure your settings.py still contains the LOGGING settings which will
actually send stuff to the console:

superlists/settings.py.
LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'handlers': {
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 },
 },
 'loggers': {
 'django': {
 'handlers': ['console'],
 },
 },
 'root': {'level': 'INFO'},
}

310 | Chapter 17: Test Fixtures, Logging, and Server-Side Debugging

We restart Gunicorn again, and then either rerun the FT, or just try to log in manually.
While that happens, we can watch the logs on the server with a:

elspeth@server: $ tail -f error.log # assumes we are in ~/sites/$SITENAME folder
[...]
WARNING:root:{"status":"failure","reason":"audience mismatch: domain mismatch"}

You may even find the page gets stuck in a “redirect loop”, as Persona tries to resubmit
the assertion again and again.

It turns out it’s because I overlooked an important part of the Persona system, which is
that authentications are only valid for particular domains. We’ve left the domain hard‐
coded as “localhost” in accounts/authentication.py:

accounts/authentication.py.
PERSONA_VERIFY_URL = 'https://verifier.login.persona.org/verify'
DOMAIN = 'localhost'
User = get_user_model()

We can try and hack in a fix on the server:
accounts/authentication.py.

DOMAIN = 'superlists-staging.ottg.eu'

And check whether it works by doing a manual login. It does.

Fixing the Persona Bug
Here’s how we go about baking in a fix, switching back to coding on our local PC. We
start by moving the definition for the DOMAIN variable into settings.py, where we can
later use the deploy script to override it:

superlists/settings.py (ch17l011).
This setting is changed by the deploy script
DOMAIN = "localhost"

ALLOWED_HOSTS = [DOMAIN]

We feed that change back through the tests:
accounts/tests/test_authentication.py.

@@ -1,12 +1,14 @@
 from unittest.mock import patch
+from django.conf import settings
 from django.contrib.auth import get_user_model
 from django.test import TestCase
 User = get_user_model()

 from accounts.authentication import (
- PERSONA_VERIFY_URL, DOMAIN, PersonaAuthenticationBackend
+ PERSONA_VERIFY_URL, PersonaAuthenticationBackend
)

+
 @patch('accounts.authentication.requests.post')

The Proof Is in the Pudding: Using Staging to Catch Final Bugs | 311

 class AuthenticateTest(TestCase):

@@ -21,7 +23,7 @@ class AuthenticateTest(TestCase):
 self.backend.authenticate('an assertion')
 mock_post.assert_called_once_with(
 PERSONA_VERIFY_URL,
- data={'assertion': 'an assertion', 'audience': DOMAIN}
+ data={'assertion': 'an assertion', 'audience': settings.DOMAIN}
)

And then we change the implementation:
accounts/authentication.py.

@@ -1,8 +1,8 @@
 import requests
+from django.conf import settings
 from django.contrib.auth import get_user_model
 User = get_user_model()

 PERSONA_VERIFY_URL = 'https://verifier.login.persona.org/verify'
-DOMAIN = 'localhost'

@@ -11,7 +11,7 @@ class PersonaAuthenticationBackend(object):
 def authenticate(self, assertion):
 response = requests.post(
 PERSONA_VERIFY_URL,
- data={'assertion': assertion, 'audience': DOMAIN}
+ data={'assertion': assertion, 'audience': settings.DOMAIN}
)
 if response.ok and response.json()['status'] == 'okay':
 email = response.json()['email']

Rerunning the tests just to be sure:
$ python3 manage.py test accounts
[...]
Ran 14 tests in 0.053s
OK

Next we update our fabfile to make it adjust the domain in settings.py, removing the
cumbersome two-line sed on ALLOWED_HOSTS:

deploy_tools/fabfile.py.
def _update_settings(source_folder, site_name):
 settings_path = source_folder + '/superlists/settings.py'
 sed(settings_path, "DEBUG = True", "DEBUG = False")
 sed(settings_path, 'DOMAIN = "localhost"', 'DOMAIN = "%s"' % (site_name,))
 secret_key_file = source_folder + '/superlists/secret_key.py'
 if not exists(secret_key_file):
 [...]

We redeploy, and spot the sed in the output:
$ fab deploy --host=superlists-staging.ottg.eu
[...]

312 | Chapter 17: Test Fixtures, Logging, and Server-Side Debugging

[superlists-staging.ottg.eu] run: sed -i.bak -r -e s/DOMAIN =
"localhost"/DOMAIN = "superlists-staging.ottg.eu"/g "$(echo
/home/harry/sites/superlists-staging.ottg.eu/source/superlists/settings.py)"
[...]

Managing the Test Database on Staging
Now we can rerun our FTs, and get to the next failure: our attempt to create pre-
authenticated sessions doesn’t work, so the “My Lists” test fails:

$ python3 manage.py test functional_tests \
--liveserver=superlists-staging.ottg.eu

ERROR: test_logged_in_users_lists_are_saved_as_my_lists
(functional_tests.test_my_lists.MyListsTest)
[...]
selenium.common.exceptions.TimeoutException: Message: Could not find element
with id id_logout. Page text was:
Superlists
Sign in
Start a new To-Do list

Ran 7 tests in 72.742s

FAILED (errors=1)

It’s because our test utility function create_pre_authenticated_session only acts on
the local database. Let’s find out how our tests can manage the database on the server.

A Django Management Command to Create Sessions
To do things on the server, we’ll need to build a self-contained script that can be run
from the command line on the server, most probably via Fabric.

When trying to build standalone scripts that work with the Django environment, can
talk to the database and so on, there are some fiddly issues you need to get right, like
setting the DJANGO_SETTINGS_MODULE environment variable correctly, and getting the
sys.path right. Instead of messing about with all that, Django lets you create your own
“management commands” (commands you can run with python manage.py), which
will do all that path mangling for you. They live in a folder called management/
commands inside your apps:

$ mkdir -p functional_tests/management/commands
$ touch functional_tests/management/__init__.py
$ touch functional_tests/management/commands/__init__.py

The boilerplate in a management command is a class that inherits from djan
go.core.management.BaseCommand, and that defines a method called handle:

Managing the Test Database on Staging | 313

functional_tests/management/commands/create_session.py.
from django.conf import settings
from django.contrib.auth import BACKEND_SESSION_KEY, SESSION_KEY, get_user_model
User = get_user_model()
from django.contrib.sessions.backends.db import SessionStore
from django.core.management.base import BaseCommand

class Command(BaseCommand):

 def add_arguments(self, parser):
 parser.add_argument('email')

 def handle(self, *args, **options):
 session_key = create_pre_authenticated_session(options['email'])
 self.stdout.write(session_key)

def create_pre_authenticated_session(email):
 user = User.objects.create(email=email)
 session = SessionStore()
 session[SESSION_KEY] = user.pk
 session[BACKEND_SESSION_KEY] = settings.AUTHENTICATION_BACKENDS[0]
 session.save()
 return session.session_key

We’ve taken the code for create_pre_authenticated_session code from
test_my_lists.py. handle will pick up an email address from the parser, and then return
the session key that we’ll want to add to our browser cookies, and the management
command prints it out at the command line. Try it out:

$ python3 manage.py create_session a@b.com
Unknown command: 'create_session'

One more step: we need to add functional_tests to our settings.py for it to recognise
it as a real app that might have management commands as well as tests:

superlists/settings.py.
+++ b/superlists/settings.py
@@ -42,6 +42,7 @@ INSTALLED_APPS = (
 'lists',
 'accounts',
+ 'functional_tests',
)

Now it works:
$ python3 manage.py create_session a@b.com
qnslckvp2aga7tm6xuivyb0ob1akzzwl

314 | Chapter 17: Test Fixtures, Logging, and Server-Side Debugging

If you see an error saying the auth_user table is missing, you may
need to run manage.py migrate. In case that doesn’t work, delete the
db.sqlite3 file and run migrate again, to get a clean slate.

Getting the FT to Run the Management Command on the Server
Next we need to adjust test_my_lists so that it runs the local function when we’re on
the local server, and make it run the management command on the staging server if
we’re on that:

functional_tests/test_my_lists.py (ch17l016).
from django.conf import settings
from .base import FunctionalTest
from .server_tools import create_session_on_server
from .management.commands.create_session import create_pre_authenticated_session

class MyListsTest(FunctionalTest):

 def create_pre_authenticated_session(self, email):
 if self.against_staging:
 session_key = create_session_on_server(self.server_host, email)
 else:
 session_key = create_pre_authenticated_session(email)
 ## to set a cookie we need to first visit the domain.
 ## 404 pages load the quickest!
 self.browser.get(self.server_url + "/404_no_such_url/")
 self.browser.add_cookie(dict(
 name=settings.SESSION_COOKIE_NAME,
 value=session_key,
 path='/',
))

 [...]

Let’s see how we know whether or not we’re working against the staging server.
self.against_staging gets populated in base.py:

functional_tests/base.py (ch17l017).
from .server_tools import reset_database #

class FunctionalTest(StaticLiveServerTestCase):

 @classmethod
 def setUpClass(cls):
 for arg in sys.argv:
 if 'liveserver' in arg:
 cls.server_host = arg.split('=')[1] #
 cls.server_url = 'http://' + cls.server_host
 cls.against_staging = True #
 return

Managing the Test Database on Staging | 315

 super().setUpClass()
 cls.against_staging = False
 cls.server_url = cls.live_server_url

 @classmethod
 def tearDownClass(cls):
 if not cls.against_staging:
 super().tearDownClass()

 def setUp(self):
 if self.against_staging:
 reset_database(self.server_host) #
 self.browser = webdriver.Firefox()
 self.browser.implicitly_wait(3)

 Instead of just storing cls.server_url, we also store the server_host and
against_staging attributes if we detect the liveserver command-line
argument.

 We also need a way of resetting the server database in between each test. I’ll
explain the logic of the session-creation code, which should also explain how
this works.

An Additional Hop via subprocess
Because our tests are Python 3, we can’t directly call our Fabric functions, which are
Python 2. Instead, we have to do an extra hop and call the fab command as a new
process, like we do from the command line when we do server deploys. Here’s how that
looks, in a module called server_tools:

functional_tests/server_tools.py.
from os import path
import subprocess
THIS_FOLDER = path.dirname(path.abspath(__file__))

def create_session_on_server(host, email):
 return subprocess.check_output(
 [
 'fab',
 'create_session_on_server:email={}'.format(email), #
 '--host={}'.format(host),
 '--hide=everything,status', #
],
 cwd=THIS_FOLDER
).decode().strip() #

def reset_database(host):
 subprocess.check_call(
 ['fab', 'reset_database', '--host={}'.format(host)],

316 | Chapter 17: Test Fixtures, Logging, and Server-Side Debugging

 cwd=THIS_FOLDER
)

Here we use the subprocess module to call some Fabric functions using the fab
command.

As you can see, the command-line syntax for arguments to fab functions is quite
simple, a colon and then a variable=argument syntax.
Incidentally, this is also the first time I’ve shown the “new-style” string
formatting syntax. As you can see it uses curly brackets {} instead of %s. I slightly
prefer it to the old style, but you’re bound to come across both if you spend any
time with Python. Take a look at some of the examples in the Python docs to
learn more.

 Because of all the hopping around via Fabric and subprocesses, we’re forced to
be quite careful about extracting the session key as a string from the output of
the command as it gets run on the server.

You may need to adapt the call to subprocess if you are using a custom username or
password: make it match the fab arguments you use when you run the automated de‐
ployment script.

By the time you read this book, Fabric may well have been fully por‐
ted to Python 3. If so, investigate using the Fabric context managers
to call Fabric functions directly inline with your code.

Finally, let’s look at the fabfile that defines those two commands we want to run server
side, to reset the database or set up the session:

functional_tests/fabfile.py.
from fabric.api import env, run

def _get_base_folder(host):
 return '~/sites/' + host

def _get_manage_dot_py(host):
 return '{path}/virtualenv/bin/python {path}/source/manage.py'.format(
 path=_get_base_folder(host)
)

def reset_database():
 run('{manage_py} flush --noinput'.format(
 manage_py=_get_manage_dot_py(env.host)
))

Managing the Test Database on Staging | 317

http://docs.python.org/3/library/string.html#format-examples

def create_session_on_server(email):
 session_key = run('{manage_py} create_session {email}'.format(
 manage_py=_get_manage_dot_py(env.host),
 email=email,
))
 print(session_key)

Does that make a reasonable amount of sense? We’ve got a function that can create a
session in the database. If we detect we’re running locally, we call it directly. If we’re
against the server, there’s a couple of hops: we use subprocess to get to Fabric via fab,
which lets us run a management command that calls that same function, on the server.

How about an ASCII-art illustration?

Locally:
MyListsTest
.create_pre_authenticated_session --> .management.commands.create_session
 .create_pre_authenticated_session

Against staging:
MyListsTest
.create_pre_authenticated_session .management.commands.create_session
 .create_pre_authenticated_session
 |
 \|/ /|\
 |
server_tools
.create_session_on_server run manage.py create_session

 | /|\
 \|/ |

subprocess.check_output --> fab --> fabfile.create_session_on_server

Anyway, let’s see if it works. First, locally, to check we didn’t break anything:
$ python3 manage.py test functional_tests.test_my_lists
[...]
OK

Next, against the server. We push our code up first:
$ git push # you'll need to commit changes first.
$ cd deploy_tools
$ fab deploy --host=superlists-staging.ottg.eu

And now we run the test—notice we can include elspeth@ in the specification of the
liveserver argument now:

$ python3 manage.py test functional_tests.test_my_lists \
--liveserver=elspeth@superlists-staging.ottg.eu

318 | Chapter 17: Test Fixtures, Logging, and Server-Side Debugging

Creating test database for alias 'default'...
[superlists-staging.ottg.eu] Executing task 'reset_database'
~/sites/superlists-staging.ottg.eu/source/manage.py flush --noinput
[superlists-staging.ottg.eu] out: Syncing...
[superlists-staging.ottg.eu] out: Creating tables ...
[...]
.

Ran 1 test in 25.701s

OK

Looking good! We can rerun all the tests to make sure…
$ python3 manage.py test functional_tests \
--liveserver=elspeth@superlists-staging.ottg.eu
Creating test database for alias 'default'...
[superlists-staging.ottg.eu] Executing task 'reset_database'
[...]
Ran 7 tests in 89.494s

OK
Destroying test database for alias 'default'...

Hooray!

I’ve shown one way of managing the test database, but you could
experiment with others—for example, if you were using MySQL or
Postgres, you could open up an SSH tunnel to the server, and use port
forwarding to talk to the database directly. You could then amend
settings.DATABASES during FTs to talk to the tunnelled port.

Warning: Be Careful Not to Run Test Code Against the Live Server
We’re into dangerous territory, now that we have code that can directly affect a database
on the server. You want to be very, very careful that you don’t accidentally blow away
your production database by running FTs against the wrong host.

You might consider putting some safeguards in place at this point. For example, you
could put staging and production on different servers, and make it so they use different
keypairs for authentication, with different passphrases.

This is similar dangerous territory to running tests against clones of production data,
if you remember my little story about accidentally sending thousands of duplicate in‐
voices to clients. LFMF.

Managing the Test Database on Staging | 319

Baking In Our Logging Code
Before we finish, let’s “bake in” our logging code. It would be useful to keep our new
logging code in there, under source control, so that we can debug any future login
problems. They may indicate someone is up to no good, after all.

Let’s start by saving the Gunicorn config to our template file in deploy_tools:
deploy_tools/gunicorn-upstart.template.conf.

[...]
chdir /home/elspeth/sites/SITENAME/source

exec ../virtualenv/bin/gunicorn \
 --bind unix:/tmp/SITENAME.socket \
 --access-logfile ../access.log \
 --error-logfile ../error.log \
 superlists.wsgi:application

Using Hierarchical Logging Config
When we hacked in the logging.warning earlier, we were using the root logger. That’s
not normally a good idea, since any third-party package can mess with the root logger.
The normal pattern is to use a logger named after the file you’re in, by using:

logger = logging.getLogger(__name__)

Logging configuration is hierarchical, so you can define “parent” loggers for top-level
modules, and all the Python modules inside them will inherit that config.

Here’s how we add a logger for both our apps into settings.py:
superlists/settings.py.

LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'handlers': {
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 },
 },
 'loggers': {
 'django': {
 'handlers': ['console'],
 },
 'accounts': {
 'handlers': ['console'],
 },
 'lists': {
 'handlers': ['console'],
 },
 },

320 | Chapter 17: Test Fixtures, Logging, and Server-Side Debugging

 'root': {'level': 'INFO'},
}

Now accounts.models, accounts.views, accounts.authentication, and all the others will
inherit the logging.StreamHandler from the parent accounts logger.

Unfortunately, because of Django’s project structure, there’s no way of defining a top-
level logger for your whole project (aside from using the root logger), so you have to
define one logger per app.

Here’s how to write a test for logging behaviour:
accounts/tests/test_authentication.py (ch17l023).

import logging
[...]

@patch('accounts.authentication.requests.post')
class AuthenticateTest(TestCase):
 [...]

 def test_logs_non_okay_responses_from_persona(self, mock_post):
 response_json = {
 'status': 'not okay', 'reason': 'eg, audience mismatch'
 }
 mock_post.return_value.ok = True
 mock_post.return_value.json.return_value = response_json #

 logger = logging.getLogger('accounts.authentication') #
 with patch.object(logger, 'warning') as mock_log_warning: #
 self.backend.authenticate('an assertion')

 mock_log_warning.assert_called_once_with(
 'Persona says no. Json was: {}'.format(response_json) #
)

We set up our test with some data that should cause some logging.
We retrieve the actual logger for the module we’re testing.
We use patch.object to temporarily mock out its warning function, by using
with to make it a context manager around the function we’re testing.
And then it’s available for us to make assertions against.

That gives us:
AssertionError: Expected 'warning' to be called once. Called 0 times.

Let’s just try it out, to make sure we really are testing what we think we are:
accounts/authentication.py (ch17l024).

import logging
logger = logging.getLogger(__name__)
[...]

Baking In Our Logging Code | 321

 if response.ok and response.json()['status'] == 'okay':
 [...]
 else:
 logger.warning('foo')

We get the expected failure:
AssertionError: Expected call: warning("Persona says no. Json was: {'status':
'not okay', 'reason': 'eg, audience mismatch'}")
Actual call: warning('foo')

And so we settle in with our real implementation:
accounts/authentication.py (ch17l025).

 else:
 logger.warning(
 'Persona says no. Json was: {}'.format(response.json())
)

$ python3 manage.py test accounts
[...]
Ran 15 tests in 0.033s

OK

You can easily imagine how you could test more combinations at this point, if you
wanted different error messages for response.ok != True, and so on.

Wrap-Up
We now have test fixtures that work both locally and on the server, and we’ve got some
more robust logging configuration.

But before we can deploy our actual live site, we’d better actually give the users what
they wanted—the next chapter describes how to give them the ability to save their lists
on a “My Lists” page.

Fixtures and Logging
De-duplicate your FTs, with caution

Every single FT doesn’t need to test every single part of your application. In our
case, we wanted to avoid going through the full login process for every FT that needs
an authenticated user, so we used a test fixture to “cheat” and skip that part. You
might find other things you want to skip in your FTs. A word of caution however:
functional tests are there to catch unpredictable interactions between different parts
of your application, so be wary of pushing de-duplication to the extreme.

322 | Chapter 17: Test Fixtures, Logging, and Server-Side Debugging

Test fixtures
Test fixtures refers to test data that needs to be set up as a precondition before a test
is run—often this means populating the database with some information, but as
we’ve seen (with browser cookies), it can involve other types of preconditions.

Avoid JSON fixtures
Django makes it easy to save and restore data from the database in JSON format
(and others) using the dumpdata and loaddata management commands. Most
people recommend against using these for test fixtures, as they are painful to man‐
age when your database schema changes. Use the ORM, or a tool like factory_boy.

Fixtures also have to work remotely
LiveServerTestCase makes it easy to interact with the test database using the
Django ORM for tests running locally. Interacting with the database on the staging
server is not so straightforward—one solution is Django management commands,
as I’ve shown, but you should explore what works for you, and be careful!

Use loggers named after the module you’re in
The root logger is a single global object, available to any library that’s loaded in your
Python process, so you’re never quite in control of it. Instead, follow the log
ging.getLogger(__name__) pattern to get one that’s unique to your module, but
that inherits from a top-level configuration you control.

Test important log messages
As we saw, log messages can be critical to debugging issues in production. If a log
message is important enough to keep in your codebase, it’s probably important
enough to test. We follow the rule of thumb that anything above logging.INFO
definitely needs a test. Using patch.object on the logger for the module you’re
testing is one convenient way of unit testing it.

Wrap-Up | 323

https://factoryboy.readthedocs.org/

CHAPTER 18
Finishing “My Lists”: Outside-In TDD

In this chapter I’d like to talk about a technique called “Outside-In” TDD. It’s pretty
much what we’ve been doing all along. Our “double-loop” TDD process, in which we
write the functional test first and then the unit tests, is already a manifestation of outside-
in—we design the system from the outside, and build up our code in layers. Now I’ll
make it explicit, and talk about some of the common issues involved.

The Alternative: “Inside Out”
The alternative to “Outside In” is to work “Inside Out”, which is the way most people
intuitively work before they encounter TDD. After coming up with a design, the natural
inclination is sometimes to implement it starting with the innermost, lowest-level com‐
ponents first.

For example, when faced with our current problem, providing users with a “My Lists”
page of saved lists, the temptation is to start by adding an “owner” attribute to the List
model object, reasoning that an attribute like this is “obviously” going to be required.
Once that’s in place, we would modify the more peripheral layers of code, such as views
and templates, taking advantage of the new attribute, and then finally add URL routing
to point to the new view.

It feels comfortable because it means you’re never working on a bit of code that is de‐
pendent on something that hasn’t yet been implemented. Each bit of work on the inside
is a solid foundation on which to build the next layer out.

But working inside-out like this also has some weaknesses.

Why Prefer “Outside-In”?
The most obvious problem with inside-out is that it requires us to stray from a TDD
workflow. Our functional test’s first failure might be due to missing URL routing, but

325

we decide to ignore that and go off adding attributes to our database model objects
instead.

We might have ideas in our head about the new desired behaviour of our inner layers
like database models, and often these ideas will be pretty good, but they are actually just
speculation about what’s really required, because we haven’t yet built the outer layers
that will use them.

One problem that can result is to build inner components that are more general or more
capable than we actually need, which is a waste of time, and an added source of com‐
plexity for your project. Another common problem is that you create inner components
with an API which is convenient for their own internal design, but which later turns
out to be inappropriate for the calls your outer layers would like to make…worse still,
you might end up with inner components which, you later realise, don’t actually solve
the problem that your outer layers need solved.

In contrast, working outside-in allows you to use each layer to imagine the most con‐
venient API you could want from the layer beneath it. Let’s see it in action.

The FT for “My Lists”
As we work through the following functional test, we start with the most outward-facing
(presentation layer), through to the view functions (or “controllers”), and lastly the
innermost layers, which in this case will be model code.

We know our create_pre_authenticated_session code works now, so we can just
write our FT to look for a “My Lists” page:

functional_tests/test_my_lists.py.
 def test_logged_in_users_lists_are_saved_as_my_lists(self):
 # Edith is a logged-in user
 self.create_pre_authenticated_session('edith@example.com')

 # She goes to the home page and starts a list
 self.browser.get(self.server_url)
 self.get_item_input_box().send_keys('Reticulate splines\n')
 self.get_item_input_box().send_keys('Immanentize eschaton\n')
 first_list_url = self.browser.current_url

 # She notices a "My lists" link, for the first time.
 self.browser.find_element_by_link_text('My lists').click()

 # She sees that her list is in there, named according to its
 # first list item
 self.browser.find_element_by_link_text('Reticulate splines').click()
 self.assertEqual(self.browser.current_url, first_list_url)

 # She decides to start another list, just to see
 self.browser.get(self.server_url)

326 | Chapter 18: Finishing “My Lists”: Outside-In TDD

 self.get_item_input_box().send_keys('Click cows\n')
 second_list_url = self.browser.current_url

 # Under "my lists", her new list appears
 self.browser.find_element_by_link_text('My lists').click()
 self.browser.find_element_by_link_text('Click cows').click()
 self.assertEqual(self.browser.current_url, second_list_url)

 # She logs out. The "My lists" option disappears
 self.browser.find_element_by_id('id_logout').click()
 self.assertEqual(
 self.browser.find_elements_by_link_text('My lists'),
 []
)

If you run it, the first error should look like this:
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"link text","selector":"My lists"}

The Outside Layer: Presentation and Templates
The test is currently failing saying that it can’t find a link saying “My Lists”. We can
address that at the presentation layer, in base.html, in our navigation bar. Here’s the
minimal code change:

lists/templates/base.html (ch18l002-1).
{% if user.email %}
 <ul class="nav navbar-nav">
 My lists

 <a class="btn navbar-btn navbar-right" id="id_logout" [...]

Of course, that link doesn’t actually go anywhere, but it does get us along to the next
failure:

 self.browser.find_element_by_link_text('Reticulate splines').click()
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"link text","selector":"Reticulate splines"}

Which is telling us we’re going to have to build a page that lists all of a user’s lists by
title. Let’s start with the basics—a URL and a placeholder template for it.

Again, we can go outside-in, starting at the presentation layer with just the URL and
nothing else:

The Outside Layer: Presentation and Templates | 327

lists/templates/base.html (ch18l002-2).
 <ul class="nav navbar-nav">
 My lists

Moving Down One Layer to View Functions (the
Controller)
That will cause a template error, so we’ll start to move down from the presentation layer
and URLs down to the controller layer, Django’s view functions.

As always, we start with a test:
lists/tests/test_views.py (ch18l003).

class MyListsTest(TestCase):

 def test_my_lists_url_renders_my_lists_template(self):
 response = self.client.get('/lists/users/a@b.com/')
 self.assertTemplateUsed(response, 'my_lists.html')

That gives:
AssertionError: No templates used to render the response

And we fix it, still at the presentation level, in urls.py:
lists/urls.py.

urlpatterns = [
 url(r'^new$', views.new_list, name='new_list'),
 url(r'^(\d+)/$', views.view_list, name='view_list'),
 url(r'^users/(.+)/$', views.my_lists, name='my_lists'),
]

That gives us a test failure, which informs us of what we should do as we move down
to the next level:

AttributeError: 'module' object has no attribute 'my_lists'

We move in from the presentation layer to the views layer, and create a minimal
placeholder:

lists/views.py (ch18l005).
def my_lists(request, email):
 return render(request, 'my_lists.html')

And, a minimal template:
lists/templates/my_lists.html.

{% extends 'base.html' %}

{% block header_text %}My Lists{% endblock %}

That gets our unit tests passing, but our FT is still at the same point, saying that the “My
Lists” page doesn’t yet show any lists. It wants them to be clickable links named after the
first item:

328 | Chapter 18: Finishing “My Lists”: Outside-In TDD

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"link text","selector":"Reticulate splines"}

Another Pass, Outside-In
At each stage, we still let the FT drive what development we do.

Starting again at the outside layer, in the template, we begin to write the template code
we’d like to use to get the “My Lists” page to work the way we want it to. As we do so,
we start to specify the API we want from the code at the layers below.

A Quick Restructure of the Template Inheritance Hierarchy
Currently there’s no place in our base template for us to put any new content. Also, the
“My Lists” page doesn’t need the new item form, so we’ll put that into a block too, making
it optional:

lists/templates/base.html (ch18l007-1).
 <div class="text-center">
 <h1>{% block header_text %}{% endblock %}</h1>

 {% block list_form %}
 <form method="POST" action="{% block form_action %}{% endblock %}">
 {{ form.text }}
 {% csrf_token %}
 {% if form.errors %}
 <div class="form-group has-error">
 <div class="help-block">{{ form.text.errors }}</div>
 </div>
 {% endif %}
 </form>
 {% endblock %}

 </div>

lists/templates/base.html (ch18l007-2).
 <div class="row">
 <div class="col-md-6 col-md-offset-3">
 {% block table %}
 {% endblock %}
 </div>
 </div>

 <div class="row">
 <div class="col-md-6 col-md-offset-3">
 {% block extra_content %}
 {% endblock %}
 </div>
 </div>

</div>

Another Pass, Outside-In | 329

<script src="http://code.jquery.com/jquery.min.js"></script>
[...]

Designing Our API Using the Template
Meanwhile, in my_lists.html we override the list_form and say it should be empty…

lists/templates/my_lists.html.
{% extends 'base.html' %}

{% block header_text %}My Lists{% endblock %}

{% block list_form %}{% endblock %}

And then we can just work inside the extra_content block:
lists/templates/my_lists.html.

[...]

{% block list_form %}{% endblock %}

{% block extra_content %}
 <h2>{{ owner.email }}'s lists</h2>

 {% for list in owner.list_set.all %}
 {{ list.name }}
 {% endfor %}

{% endblock %}

We’ve made several design decisions in this template which are going to filter their way
down through the code:

We want a variable called owner to represent the user in our template.
We want to be able to iterate through the lists created by the user using own
er.list_set.all (I happen to know we get this for free from the Django ORM).
We want to use list.name to print out the “name” of the list, which is currently
specified as the text of its first element.

Outside-In TDD is sometimes called “programming by wishful think‐
ing”, and you can see why. We start writing code at the higher levels
based on what we wish we had at the lower levels, even though it
doesn’t exist yet!

We can rerun our FTs, to check we didn’t break anything, and to see whether we’ve got
any further:

$ python3 manage.py test functional_tests
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate

330 | Chapter 18: Finishing “My Lists”: Outside-In TDD

element: {"method":"link text","selector":"Reticulate splines"}

Ran 7 tests in 77.613s

FAILED (errors=1)

Well, no further, but at least we didn’t break anything. Time for a commit:
$ git add lists
$ git diff --staged
$ git commit -m "url, placeholder view, and first-cut templates for my_lists"

Moving Down to the Next Layer: What the View Passes to the
Template

lists/tests/test_views.py (ch18l011).
from django.contrib.auth import get_user_model
User = get_user_model()
[...]
class MyListsTest(TestCase):

 def test_my_lists_url_renders_my_lists_template(self):
 [...]

 def test_passes_correct_owner_to_template(self):
 User.objects.create(email='wrong@owner.com')
 correct_user = User.objects.create(email='a@b.com')
 response = self.client.get('/lists/users/a@b.com/')
 self.assertEqual(response.context['owner'], correct_user)

Gives:
KeyError: 'owner'

So:
lists/views.py (ch18l012).

from django.contrib.auth import get_user_model
User = get_user_model()
[...]

def my_lists(request, email):
 owner = User.objects.get(email=email)
 return render(request, 'my_lists.html', {'owner': owner})

That gets our new test passing, but we’ll also see an error from the previous test. We just
need to add a user for it as well:

lists/tests/test_views.py (ch18l013).
 def test_my_lists_url_renders_my_lists_template(self):
 User.objects.create(email='a@b.com')
 [...]

And we get to an OK:

Another Pass, Outside-In | 331

OK

The Next “Requirement” from the Views Layer: New Lists
Should Record Owner
Before we move down to the model layer, there’s another part of the code at the views
layer that will need to use our model: we need some way for newly created lists to be
assigned to an owner, if the current user is logged in to the site.

Here’s a first crack at writing the test:
lists/tests/test_views.py (ch18l014).

from django.http import HttpRequest
[...]
from lists.views import new_list
[...]

class NewListTest(TestCase):
 [...]

 def test_list_owner_is_saved_if_user_is_authenticated(self):
 request = HttpRequest()
 request.user = User.objects.create(email='a@b.com')
 request.POST['text'] = 'new list item'
 new_list(request)
 list_ = List.objects.first()
 self.assertEqual(list_.owner, request.user)

This test uses the raw view function, and manually constructs an HttpRequest because
it’s slightly easier to write the test that way. Although the Django test client does have a
helper function called login, it doesn’t work well with external authentication services.
The alternative would be to manually create a session object (like we do in the functional
tests), or to use mocks, and I think both of those would end up uglier than this version.
If you’re curious, you could have a go at writing it differently.

The test fails as follows:
AttributeError: 'List' object has no attribute 'owner'

To fix this, we can try writing code like this:
lists/views.py (ch18l015).

def new_list(request):
 form = ItemForm(data=request.POST)
 if form.is_valid():
 list_ = List()
 list_.owner = request.user
 list_.save()
 form.save(for_list=list_)
 return redirect(list_)

332 | Chapter 18: Finishing “My Lists”: Outside-In TDD

 else:
 return render(request, 'home.html', {"form": form})

But it won’t actually work, because we don’t know how to save a list owner yet:
 self.assertEqual(list_.owner, request.user)
AttributeError: 'List' object has no attribute 'owner'

A Decision Point: Whether to Proceed to the Next Layer with a Failing
Test
In order to get this test passing, as it’s written now, we have to move down to the model
layer. However, it means doing more work with a failing test, which is not ideal.

The alternative is to rewrite the test to make it more isolated from the level below, using
mocks.

On the one hand, it’s a lot more effort to use mocks, and it can lead to tests that are
harder to read. On the other hand, imagine if our app was more complex, and there
were several more layers between the outside and the inside. Imagine leaving three or
four or five layers of tests, all failing while we wait to get to the bottom layer to implement
our critical feature. While tests are failing, we’re not sure that layer really works, on its
own terms, or not. We have to wait until we get to the bottom layer.

This is a decision point you’re likely to run into in your own projects. Let’s investigate
both approaches. We’ll start by taking the shortcut, and leaving the test failing. In the
next chapter, we’ll come back to this exact point, and investigate how things would have
gone if we’d used more isolation.

Let’s do a commit, and then tag the commit as a way of remembering our position for
the next chapter:

$ git commit -am "new_list view tries to assign owner but cant"
$ git tag revisit_this_point_with_isolated_tests

Moving Down to the Model Layer
Our outside-in design has driven out two requirements for the model layer: we want to
be able to assign an owner to a list using the attribute .owner, and we want to be able
to access the list’s owner with the API owner.list_set.all.

Let’s write a test for that:
lists/tests/test_models.py (ch18l018).

from django.contrib.auth import get_user_model
User = get_user_model()
[...]

class ListModelTest(TestCase):

Moving Down to the Model Layer | 333

 def test_get_absolute_url(self):
 [...]

 def test_lists_can_have_owners(self):
 user = User.objects.create(email='a@b.com')
 list_ = List.objects.create(owner=user)
 self.assertIn(list_, user.list_set.all())

And that gives us a new unit test failure:
 list_ = List.objects.create(owner=user)
 [...]
TypeError: 'owner' is an invalid keyword argument for this function

The naive implementation would be this:
from django.conf import settings
[...]

class List(models.Model):
 owner = models.ForeignKey(settings.AUTH_USER_MODEL)

But we want to make sure the list owner is optional. Explicit is better than implicit, and
tests are documentation, so let’s have a test for that too:

lists/tests/test_models.py (ch18l020).
 def test_list_owner_is_optional(self):
 List.objects.create() # should not raise

The correct implementation is this:
lists/models.py.

from django.conf import settings
[...]

class List(models.Model):
 owner = models.ForeignKey(settings.AUTH_USER_MODEL, blank=True, null=True)

 def get_absolute_url(self):
 return reverse('view_list', args=[self.id])

Now running the tests gives the usual database error:
 return Database.Cursor.execute(self, query, params)
django.db.utils.OperationalError: no such column: lists_list.owner_id

Because we need to do make some migrations:
$ python3 manage.py makemigrations
Migrations for 'lists':
 0006_list_owner.py:
 - Add field owner to list

We’re almost there, a couple more failures:
ERROR: test_redirects_after_POST (lists.tests.test_views.NewListTest)
[...]

334 | Chapter 18: Finishing “My Lists”: Outside-In TDD

ValueError: Cannot assign "<SimpleLazyObject:
<django.contrib.auth.models.AnonymousUser object at 0x7f364795ef90>>":
"List.owner" must be a "User" instance.
ERROR: test_saving_a_POST_request (lists.tests.test_views.NewListTest)
[...]
ValueError: Cannot assign "<SimpleLazyObject:
<django.contrib.auth.models.AnonymousUser object at 0x7f364795ef90>>":
"List.owner" must be a "User" instance.

We’re moving back up to the views layer now, just doing a little tidying up. Notice that
these are in the old test for the new_list view, when we haven’t got a logged-in user. We
should only save the list owner when the user is actually logged in. The .is_authenti
cated() function we defined in Chapter 16 comes in useful now (when they’re not
logged in, Django represents users using a class called AnonymousUser, whose .is_au
thenticated() always returns False):

lists/views.py (ch18l023).
 if form.is_valid():
 list_ = List()
 if request.user.is_authenticated():
 list_.owner = request.user
 list_.save()
 form.save(for_list=list_)
 [...]

And that gets us passing!
$ python3 manage.py test lists
Creating test database for alias 'default'...
.......................................

Ran 39 tests in 0.237s

OK
Destroying test database for alias 'default'...

This is a good time for a commit:
$ git add lists
$ git commit -m "lists can have owners, which are saved on creation."

Final Step: Feeding Through the .name API from the Template
The last thing our outside-in design wanted came from the templates, which wanted to
be able to access a list “name” based on the text of its first item:

lists/tests/test_models.py (ch18l024).
 def test_list_name_is_first_item_text(self):
 list_ = List.objects.create()
 Item.objects.create(list=list_, text='first item')
 Item.objects.create(list=list_, text='second item')
 self.assertEqual(list_.name, 'first item')

Moving Down to the Model Layer | 335

lists/models.py (ch18l025).
 @property
 def name(self):
 return self.item_set.first().text

The @property Decorator in Python
If you haven’t seen it before, the @property decorator transforms a method on a class
to make it appear to the outside world like an attribute.

This is a powerful feature of the language, because it makes it easy to implement “duck
typing”, to change the implementation of a property without changing the interface of
the class. In other words, if we decide to change .name into being a “real” attribute on
the model, which is stored as text in the database, then we will be able to do so entirely
transparently—as far as the rest of our code is concerned, they will still be able to just
access .name and get the list name, without needing to know about the implementation.

Of course, in the Django template language, .name would still call the method even if it
didn’t have @property, but that’s a particularity of Django, and doesn’t apply to Python
in general…

And that, believe it or not, actually gets us a passing test, and a working “My Lists” page
(Figure 18-1)!

Figure 18-1. The “My Lists” page, in all its glory (and proof I did test on Windows)

336 | Chapter 18: Finishing “My Lists”: Outside-In TDD

$ python3 manage.py test functional_tests
[...]
Ran 7 tests in 93.819s

OK

But we know we cheated to get there. The Testing Goat is eyeing us suspiciously. We left
a test failing at one layer while we implemented its dependencies at the lower layer. Let’s
see how things would play out if we were to use better test isolation…

Outside-In TDD
Outside-In TDD

A methodology for building code, driven by tests, which proceeds by starting from
the “outside” layers (presentation, GUI), and moving “inwards” step by step, via
view/controller layers, down towards the model layer. The idea is to drive the design
of your code from the use to which it is going to be put, rather than trying to
anticipate requirements from the ground up.

Programming by wishful thinking
The outside-in process is sometimes called “programming by wishful thinking”.
Actually, any kind of TDD involves some wishful thinking. We’re always writing
tests for things that don’t exist yet.

The pitfalls of outside-in
Outside-In isn’t a silver bullet. It encourages us to focus on things that are imme‐
diately visible to the user, but it won’t automatically remind us to write other critical
tests that are less user-visible, things like security for example. You’ll need to re‐
member them yourself.

Moving Down to the Model Layer | 337

CHAPTER 19
Test Isolation, and “Listening to Your Tests”

In the last chapter, we made the decision to leave a unit test failing in the views layer
while we proceeded to write more tests and more code at the models layer to get it to
pass.

We got away with it because our app was simple, but I should stress that, in a more
complex application, this would be a dangerous decision. Proceeding to work on lower
levels while you’re not sure that the higher levels are really finished or not is a risky
strategy.

I’m grateful to Gary Bernhardt, who took a look at an early draft of
the previous chapter, and encouraged me to get into a longer discus‐
sion of test isolation.

Ensuring isolation between layers does involve more effort (and more of the dreaded
mocks!), but it can also help to drive out improved design, as we’ll see in this chapter.

Revisiting Our Decision Point: The Views Layer Depends on
Unwritten Models Code
Let’s revisit the point we were at half-way through the last chapter, when we couldn’t get
the new_list view to work because lists didn’t have the .owner attribute yet.

We’ll actually go back in time and check out the old codebase, so that we can see how
things would have worked if we’d used more isolated tests.

$ git checkout -b more-isolation # a branch for this experiment
$ git reset --hard revisit_this_point_with_isolated_tests

339

Here’s what our failing tests looks like:
lists/tests/test_views.py.

class NewListTest(TestCase):
 [...]

 def test_list_owner_is_saved_if_user_is_authenticated(self):
 request = HttpRequest()
 request.user = User.objects.create(email='a@b.com')
 request.POST['text'] = 'new list item'
 new_list(request)
 list_ = List.objects.first()
 self.assertEqual(list_.owner, request.user)

And here’s what our attempted solution looked like:
lists/views.py.

def new_list(request):
 form = ItemForm(data=request.POST)
 if form.is_valid():
 list_ = List()
 list_.owner = request.user
 list_.save()
 form.save(for_list=list_)
 return redirect(list_)
 else:
 return render(request, 'home.html', {"form": form})

And at this point, the view test is failing because we don’t have the model layer yet:
 self.assertEqual(list_.owner, request.user)
AttributeError: 'List' object has no attribute 'owner'

You won’t see this error unless you actually check out the old code
and revert lists/models.py. You should definitely do this, part of the
objective of this chapter is to see whether we really can write tests for
a models layer that doesn’t exist yet.

A First Attempt at Using Mocks for Isolation
Lists don’t have owners yet, but we can let the views layer tests pretend they do by using
a bit of mocking:

lists/tests/test_views.py (ch19l003).
from unittest.mock import Mock, patch

from django.http import HttpRequest
from django.test import TestCase
[...]

 @patch('lists.views.List') #
 def test_list_owner_is_saved_if_user_is_authenticated(self, mockList):

340 | Chapter 19: Test Isolation, and “Listening to Your Tests”

 mock_list = List.objects.create() #
 mock_list.save = Mock()
 mockList.return_value = mock_list
 request = HttpRequest()
 request.user = User.objects.create() #
 request.POST['text'] = 'new list item'

 new_list(request)

 self.assertEqual(mock_list.owner, request.user) #

We mock out the List class to be able to get access to any lists that might be
created by the view.
Then we create a real List object for the view to use. It has to be a real List object,
otherwise the Item that the view is trying to save will fail with a foreign key error
(this is an indication that the test is only partially isolated).
We set a real user on the request object.
And now we can make assertions about whether the list has had the .owner
attribute set on it.

If we try to run this test now, it should pass.
$ python3 manage.py test lists
[...]
Ran 37 tests in 0.145s
OK

If you don’t see a pass, make sure that your views code in views.py is exactly as I’ve shown
it, using List(), not List.objects.create.

Using mocks does tie you to specific ways of using an API. This is one
of the many trade-offs involved in the use of mock objects.

Using Mock side_effects to Check the Sequence of Events
The trouble with this test is that it can still let us get away with writing the wrong code
by mistake. Imagine if we accidentally call save before we we assign the owner:

lists/views.py.
 if form.is_valid():
 list_ = List()
 list_.save()
 list_.owner = request.user
 form.save(for_list=list_)
 return redirect(list_)

A First Attempt at Using Mocks for Isolation | 341

The test, as it’s written now, still passes:
OK

So we actually need to check, not just that the owner is assigned, but that it’s assigned
before we call save on our list object.

Here’s how we can test the sequence of events using mocks—you can mock out a func‐
tion, and use it as a spy to check on the state of the world at the moment it’s called:

lists/tests/test_views.py (ch19l005).
 @patch('lists.views.List')
 def test_list_owner_is_saved_if_user_is_authenticated(self, mockList):
 mock_list = List.objects.create()
 mock_list.save = Mock()
 mockList.return_value = mock_list
 request = HttpRequest()
 request.user = Mock()
 request.user.is_authenticated.return_value = True
 request.POST['text'] = 'new list item'

 def check_owner_assigned(): #
 self.assertEqual(mock_list.owner, request.user) #
 mock_list.save.side_effect = check_owner_assigned #

 new_list(request)

 mock_list.save.assert_called_once_with() #

 We define a function that makes the assertion about the thing we want to happen
first: checking the list’s owner has been set.
We assign that check function as a side_effect to the thing we want to check
happened second. When the view calls our mocked save function, it will go
through this assertion. We make sure to set this up before we actually call the
function we’re testing.
Finally, we make sure that the function with the side_effect was actually
triggered, ie we did .save(). Otherwise our assertion may actually never have
been run.

Two common mistakes when using mock side-effects are: assigning
the side effect too late, i.e. after you call the function under test, and
forgetting to check that the side-effect function was actually called.
And by common, I mean, “I made them both several times while
writing this chapter”.

At this point, if you’ve still got the “broken” code from above, where we assign the owner
but call save in the wrong order, you should now see a fail:

342 | Chapter 19: Test Isolation, and “Listening to Your Tests”

ERROR: test_list_owner_is_saved_if_user_is_authenticated
(lists.tests.test_views.NewListTest)
[...]
 File "/workspace/superlists/lists/views.py", line 17, in new_list
 list_.save()
[...]
 File "/workspace/superlists/lists/tests/test_views.py", line 84, in
check_owner_assigned
 self.assertEqual(mock_list.owner, request.user)
AttributeError: 'List' object has no attribute 'owner'

Notice how the failure happens when we try and save, and then go inside our side_ef
fect function.

We can get it passing again like this:
lists/views.py.

 if form.is_valid():
 list_ = List()
 list_.owner = request.user
 list_.save()
 form.save(for_list=list_)
 return redirect(list_)

…
OK

But, boy, that’s getting to be an ugly test!

Listen to Your Tests: Ugly Tests Signal a Need to Refactor
Whenever you find yourself having to write a test like this, and you’re finding it hard
work, it’s likely that your tests are trying to tell you something. Nine lines of setup (three
lines for the mock user, four more lines for the request object, and three for our side-
effect function) is way too many.

What this test is trying to tell us is that our view is doing too much work, dealing with
creating a form, creating a new list object and deciding whether or not to save an owner
for the list.

We’ve already seen that we can make our views simpler and easier to understand by
pushing some of the work down to a form class. Why does the view need to create the
list object? Perhaps our ItemForm.save could do that? And why does the view need to
make decisions about whether or not to save the request.user? Again, the form could
do that.

While we’re giving this form more responsibilities, it feels like it should probably get a
new name too. We could call NewListForm instead, since that’s a better representation
of what it does… something like this?

Listen to Your Tests: Ugly Tests Signal a Need to Refactor | 343

lists/views.py.
don't enter this code yet, we're only imagining it.

def new_list(request):
 form = NewListForm(data=request.POST)
 if form.is_valid():
 list_ = form.save(owner=request.user) # creates both List and Item
 return redirect(list_)
 else:
 return render(request, 'home.html', {"form": form})

That would be neater! Let’s see how we’d get to that state by using fully isolated tests.

Rewriting Our Tests for the View to Be Fully Isolated
Our first attempt at a test suite is for this view was highly integrated. It needed the
database layer and the forms layer to be fully functional in order for it to pass. We’ve
started trying to make it more isolated, let’s now go all the way.

Keep the Old Integrated Test Suite Around as a Sanity Check
Let’s rename our old NewListTest class to NewListViewIntegratedTest, and throw
away our attempt at a mocky test for saving the owner, putting back the integrated
version, with a skip on it for now:

lists/tests/test_views.py (ch19l008).
import unittest
[...]

class NewListViewIntegratedTest(TestCase):

 def test_saving_a_POST_request(self):
 [...]

 @unittest.skip
 def test_list_owner_is_saved_if_user_is_authenticated(self):
 request = HttpRequest()
 request.user = User.objects.create(email='a@b.com')
 request.POST['text'] = 'new list item'
 new_list(request)
 list_ = List.objects.first()
 self.assertEqual(list_.owner, request.user)

Have you heard the term “integration test” and are wondering what
the difference is with an “integrated test”? Go and take a peek at the
definitions box in Chapter 22.

344 | Chapter 19: Test Isolation, and “Listening to Your Tests”

$ python3 manage.py test lists
[...]
Ran 37 tests in 0.139s
OK

A New Test Suite with Full Isolation
Let’s start with a blank slate, and see if we can use isolated tests to drive a replacement
of our new_list view. We’ll call it new_list2, build it alongside the old view, and when
we’re ready, we can swap it in and see if the old integrated tests all still pass.

lists/views.py (ch19l009).
def new_list(request):
 [...]

def new_list2(request):
 pass

Thinking in Terms of Collaborators
In order to rewrite our tests to be fully isolated, we need to throw out our old way of
thinking about the tests in terms of the “real” effects of the view on things like the
database, and instead think of it in terms of the objects it collaborates with, and how it
interacts with them.

In the new world, the view’s main collaborator will be a form object, so we mock that
out in order to be able to fully control it, and in order to be able to define, by wishful
thinking, the way we want our form to work.

lists/tests/test_views.py (ch19l010).
from lists.views import new_list, new_list2
[...]

@patch('lists.views.NewListForm') #
class NewListViewUnitTest(unittest.TestCase): #

 def setUp(self):
 self.request = HttpRequest()
 self.request.POST['text'] = 'new list item' #

 def test_passes_POST_data_to_NewListForm(self, mockNewListForm):
 new_list2(self.request)
 mockNewListForm.assert_called_once_with(data=self.request.POST) #

The Django TestCase class makes it too easy to write integrated tests. As a way
of making sure we’re writing “pure”, isolated unit tests, we’ll only use uni
ttest.TestCase

We mock out the NewListForm class (which doesn’t even exist yet). It’s going to
be used in all the tests, so we mock it out at the class level.

Rewriting Our Tests for the View to Be Fully Isolated | 345

We set up a basic POST request in setUp, building up the request by hand rather
than using the (overly integrated) Django Test Client.
And we check the first thing about our new view: it initialises its collaborator,
the NewListForm, with the correct constructor—the data from the request.

That will start with a failure, saying we don’t have a NewListForm in our view yet.
AttributeError: <module 'lists.views' from
'/workspace/superlists/lists/views.py'> does not have the attribute
'NewListForm'

Let’s create a placeholder for it:
lists/views.py (ch19l011).

from lists.forms import ExistingListItemForm, ItemForm, NewListForm
[...]

and:
lists/forms.py (ch19l012).

class ItemForm(forms.models.ModelForm):
 [...]

class NewListForm(object):
 pass

class ExistingListItemForm(ItemForm):
 [...]

Next we get a real failure:
AssertionError: Expected 'NewListForm' to be called once. Called 0 times.

And we implement like this:
lists/views.py (ch19l012-2).

def new_list2(request):
 NewListForm(data=request.POST)

$ python3 manage.py test lists
[...]
Ran 38 tests in 0.143s
OK

Let’s continue. If the form is valid, we want to call save on it:
lists/tests/test_views.py (ch19l013).

@patch('lists.views.NewListForm')
class NewListViewUnitTest(unittest.TestCase):

 def setUp(self):
 self.request = HttpRequest()
 self.request.POST['text'] = 'new list item'
 self.request.user = Mock()

346 | Chapter 19: Test Isolation, and “Listening to Your Tests”

 def test_passes_POST_data_to_NewListForm(self, mockNewListForm):
 new_list2(self.request)
 mockNewListForm.assert_called_once_with(data=self.request.POST)

 def test_saves_form_with_owner_if_form_valid(self, mockNewListForm):
 mock_form = mockNewListForm.return_value
 mock_form.is_valid.return_value = True
 new_list2(self.request)
 mock_form.save.assert_called_once_with(owner=self.request.user)

That takes us to this:
lists/views.py (ch19l014).

def new_list2(request):
 form = NewListForm(data=request.POST)
 form.save(owner=request.user)

In the case where the form is valid, we want the view to return a redirect, to send us to
see the object that the form has just created. So we mock out another of the view’s
collaborators, the redirect function:

lists/tests/test_views.py (ch19l015).
 @patch('lists.views.redirect') #
 def test_redirects_to_form_returned_object_if_form_valid(
 self, mock_redirect, mockNewListForm #
):
 mock_form = mockNewListForm.return_value
 mock_form.is_valid.return_value = True #

 response = new_list2(self.request)

 self.assertEqual(response, mock_redirect.return_value) #
 mock_redirect.assert_called_once_with(mock_form.save.return_value) #

We mock out the redirect function, this time at the method level.
patch decorators are applied innermost first, so the new mock is injected to our
method as before the mockNewListForm.
We specify we’re testing the case where the form is valid.
We check that the response from the view is the result of the redirect function.
And we check that the redirect function was called with the object that the form
returns on save.

That takes us to here:
lists/views.py (ch19l016).

def new_list2(request):
 form = NewListForm(data=request.POST)
 list_ = form.save(owner=request.user)
 return redirect(list_)

Rewriting Our Tests for the View to Be Fully Isolated | 347

$ python3 manage.py test lists
[...]
Ran 40 tests in 0.163s
OK

And now the failure case—if the form is invalid, we want to render the home page
template:

lists/tests/test_views.py (ch19l017).
 @patch('lists.views.render')
 def test_renders_home_template_with_form_if_form_invalid(
 self, mock_render, mockNewListForm
):
 mock_form = mockNewListForm.return_value
 mock_form.is_valid.return_value = False

 response = new_list2(self.request)

 self.assertEqual(response, mock_render.return_value)
 mock_render.assert_called_once_with(
 self.request, 'home.html', {'form': mock_form}
)

That gives us:
AssertionError: <django.http.response.HttpResponseRedirect object at
0x7f8d3f338a50> != <MagicMock name='render()' id='140244627467408'>

When using assert methods on mocks, like assert_called_
once_with, it’s doubly important to make sure you run the test and
see it fail. It’s all too easy to make a typo in your assert function name
and end up calling a mock method that does nothing (mine was to
write asssert_called_once_with with three essses, try it!)

We make a deliberate mistake, just to make sure our tests are comprehensive:
lists/views.py (ch19l018).

def new_list2(request):
 form = NewListForm(data=request.POST)
 list_ = form.save(owner=request.user)
 if form.is_valid():
 return redirect(list_)
 return render(request, 'home.html', {'form': form})

That passes but it shouldn’t! One more test then:
lists/tests/test_views.py (ch19l019).

 def test_does_not_save_if_form_invalid(self, mockNewListForm):
 mock_form = mockNewListForm.return_value
 mock_form.is_valid.return_value = False
 new_list2(self.request)
 self.assertFalse(mock_form.save.called)

348 | Chapter 19: Test Isolation, and “Listening to Your Tests”

Which fails:
 self.assertFalse(mock_form.save.called)
AssertionError: True is not false

And we get to to our neat, small finished view:
lists/views.py.

def new_list2(request):
 form = NewListForm(data=request.POST)
 if form.is_valid():
 list_ = form.save(owner=request.user)
 return redirect(list_)
 return render(request, 'home.html', {'form': form})

…
$ python3 manage.py test lists
[...]
Ran 42 tests in 0.163s
OK

Moving Down to the Forms Layer
So we’ve built up our view function based on a “wishful thinking” version of a form
called NewListForm, which doesn’t even exist yet.

We’ll need the form’s save method to create a new list, and a new item based on the text
from the form’s validated POST data. If we were to just dive in and use the ORM, the
code might look something a bit like this:

class NewListForm(models.Form):

 def save(self, owner):
 list_ = List()
 if owner:
 list_.owner = owner
 list_.save()
 item = Item()
 item.list = list_
 item.text = self.cleaned_data['text']
 item.save()

This implementation depends on two classes from the model layer, Item and List. So,
what would a well isolated test look like?

class NewListFormTest(unittest.TestCase):

 @patch('lists.forms.List') #
 @patch('lists.forms.Item') #
 def test_save_creates_new_list_and_item_from_post_data(
 self, mockItem, mockList #
):

Moving Down to the Forms Layer | 349

1. It could easily just be a standalone function, but hanging it on the model class is a nice way to keep track of
where it lives, and gives a bit more of a hint as to what it will do.

 mock_item = mockItem.return_value
 mock_list = mockList.return_value
 user = Mock()
 form = NewListForm(data={'text': 'new item text'})
 form.is_valid() #

 def check_item_text_and_list():
 self.assertEqual(mock_item.text, 'new item text')
 self.assertEqual(mock_item.list, mock_list)
 self.assertTrue(mock_list.save.called)
 mock_item.save.side_effect = check_item_text_and_list #

 form.save(owner=user)

 self.assertTrue(mock_item.save.called) #

 We mock out the two collaborators for our form from the models layer below.

We need to call is_valid() so that the form populates the .cleaned_data
dictionary where it stores validated data.
We use the side_effect method to make sure that, when we save the new item
object, we’re doing so with a saved List and with the correct item text.
As always, we double-check that our side-effect function was actually called.

Yuck! What an ugly test!

Keep Listening to Your Tests: Removing ORM Code from Our
Application
Again, these tests are trying to tell us something: the Django ORM is hard to mock out,
and our form class needs to know too much about how it works. Programming by
wishful thinking again, what would be a simpler API that our form could use? How
about something like this:

 def save(self):
 List.create_new(first_item_text=self.cleaned_data['text'])

Our wishful thinking says: how about we had a helper method that would live on the
List class1 and it will encapsulate all the logic of saving a new list object and its associated
first item.

So let’s write a test for that instead:

350 | Chapter 19: Test Isolation, and “Listening to Your Tests”

lists/tests/test_forms.py (ch19l021).
import unittest
from unittest.mock import patch, Mock
from django.test import TestCase

from lists.forms import (
 DUPLICATE_ITEM_ERROR, EMPTY_ITEM_ERROR,
 ExistingListItemForm, ItemForm, NewListForm
)
from lists.models import Item, List
[...]

class NewListFormTest(unittest.TestCase):

 @patch('lists.forms.List.create_new')
 def test_save_creates_new_list_from_post_data_if_user_not_authenticated(
 self, mock_List_create_new
):
 user = Mock(is_authenticated=lambda: False)
 form = NewListForm(data={'text': 'new item text'})
 form.is_valid()
 form.save(owner=user)
 mock_List_create_new.assert_called_once_with(
 first_item_text='new item text'
)

And while we’re at it we can test the case where the user is an authenticated user too:
lists/tests/test_forms.py (ch19l022).

 @patch('lists.forms.List.create_new')
 def test_save_creates_new_list_with_owner_if_user_authenticated(
 self, mock_List_create_new
):
 user = Mock(is_authenticated=lambda: True)
 form = NewListForm(data={'text': 'new item text'})
 form.is_valid()
 form.save(owner=user)
 mock_List_create_new.assert_called_once_with(
 first_item_text='new item text', owner=user
)

You can see this is a much more readable test. Let’s start implementing our new form.
We start with the import:

lists/forms.py (ch19l023).
from lists.models import Item, List

Now mock tells us to create a placeholder for our create_new method:
AttributeError: <class 'lists.models.List'> does not have the attribute
'create_new'

lists/models.py.
class List(models.Model):

Moving Down to the Forms Layer | 351

 def get_absolute_url(self):
 return reverse('view_list', args=[self.id])

 def create_new():
 pass

And after a few steps, we should end up with a form save method like this:
lists/forms.py (ch19l025).

class NewListForm(ItemForm):

 def save(self, owner):
 if owner.is_authenticated():
 List.create_new(first_item_text=self.cleaned_data['text'], owner=owner)
 else:
 List.create_new(first_item_text=self.cleaned_data['text'])

And passing tests:
$ python3 manage.py test lists
Ran 44 tests in 0.192s
OK

Hiding ORM Code Behind Helper Methods
One of the techniques that emerged from our use of isolated tests was the “ORM helper
method”.

Django’s ORM lets you get things done quickly with a reasonably readable syntax (it’s
certainly much nicer than raw SQL!). But some people like to try and minimise the
amount of ORM code in the application—particularly removing it from the views and
forms layers.

One reason is that it makes it much easier to test those layers. But another is that it forces
us to build helper functions that express our domain logic more clearly. Compare:

 list_ = List()
 list_.save()
 item = Item()
 item.list = list_
 item.text = self.cleaned_data['text']
 item.save()

With:
 List.create_new(first_item_text=self.cleaned_data['text'])

This also applies to read queries as well as write. Imagine something like this:
 Book.objects.filter(in_print=True, pub_date__lte=datetime.today())

Versus a helper method, like:
 Book.all_available_books()

352 | Chapter 19: Test Isolation, and “Listening to Your Tests”

When we build helper functions, we can give them names that express what we are doing
in terms of the business domain, which can actually make our code more legible, as well
as giving us the benefit of keeping all ORM calls at the model layer, and thus making
our whole application more loosely coupled.

Finally, Moving Down to the Models Layer
At the models layer, we no longer need to write isolated tests—the whole point of the
models layer is to integrate with the database, so it’s appropriate to write integrated tests:

lists/tests/test_models.py (ch19l026).
class ListModelTest(TestCase):

 def test_get_absolute_url(self):
 list_ = List.objects.create()
 self.assertEqual(list_.get_absolute_url(), '/lists/%d/' % (list_.id,))

 def test_create_new_creates_list_and_first_item(self):
 List.create_new(first_item_text='new item text')
 new_item = Item.objects.first()
 self.assertEqual(new_item.text, 'new item text')
 new_list = List.objects.first()
 self.assertEqual(new_item.list, new_list)

Which gives:
TypeError: create_new() got an unexpected keyword argument 'first_item_text'

And that will take us to a first cut implementation that looks like this:
lists/models.py (ch19l027).

class List(models.Model):

 def get_absolute_url(self):
 return reverse('view_list', args=[self.id])

 @staticmethod
 def create_new(first_item_text):
 list_ = List.objects.create()
 Item.objects.create(text=first_item_text, list=list_)

Notice we’ve been able to get all the way down to the models layer, driving a nice design
for the views and forms layers, and the List model still doesn’t support having an owner!

Now let’s test the case where the list should have an owner, and add:
lists/tests/test_models.py (ch19l028).

from django.contrib.auth import get_user_model
User = get_user_model()
[...]

Finally, Moving Down to the Models Layer | 353

 def test_create_new_optionally_saves_owner(self):
 user = User.objects.create()
 List.create_new(first_item_text='new item text', owner=user)
 new_list = List.objects.first()
 self.assertEqual(new_list.owner, user)

And while we’re at it, we can write the tests for the new owner attribute:
lists/tests/test_models.py (ch19l029).

class ListModelTest(TestCase):
 [...]

 def test_lists_can_have_owners(self):
 List(owner=User()) # should not raise

 def test_list_owner_is_optional(self):
 List().full_clean() # should not raise

These two are almost exactly the same tests we used in the last chapter, but I’ve re-written
them slightly so they don’t actually save objects—just having them as in-memory objects
is enough to for this test.

Use in-memory (unsaved) model objects in your tests whenever you
can, it makes your tests faster.

That gives:
$ python3 manage.py test lists
[...]
ERROR: test_create_new_optionally_saves_owner
TypeError: create_new() got an unexpected keyword argument 'owner'
[...]
ERROR: test_lists_can_have_owners (lists.tests.test_models.ListModelTest)
TypeError: 'owner' is an invalid keyword argument for this function
[...]
Ran 48 tests in 0.204s
FAILED (errors=2)

We implement, just like we did in the last chapter:
lists/models.py (ch19l030-1).

from django.conf import settings
[...]

class List(models.Model):
 owner = models.ForeignKey(settings.AUTH_USER_MODEL, blank=True, null=True)
 [...]

354 | Chapter 19: Test Isolation, and “Listening to Your Tests”

That will give us the usual integrity failures, until we do a migration:
django.db.utils.OperationalError: no such column: lists_list.owner_id

Building the migration will get us down to three failures:
ERROR: test_create_new_optionally_saves_owner
TypeError: create_new() got an unexpected keyword argument 'owner'
[...]
ValueError: Cannot assign "<SimpleLazyObject:
<django.contrib.auth.models.AnonymousUser object at 0x7f5b2380b4e0>>":
"List.owner" must be a "User" instance.
ValueError: Cannot assign "<SimpleLazyObject:
<django.contrib.auth.models.AnonymousUser object at 0x7f5b237a12e8>>":
"List.owner" must be a "User" instance.

Let’s deal with the first one, which is for our create_new method:
lists/models.py (ch19l030-3).

 @staticmethod
 def create_new(first_item_text, owner=None):
 list_ = List.objects.create(owner=owner)
 Item.objects.create(text=first_item_text, list=list_)

Back to Views
Two of our old integrated tests for the views layer are failing. What’s happening?

ValueError: Cannot assign "<SimpleLazyObject:
<django.contrib.auth.models.AnonymousUser object at 0x7fbad1cb6c10>>":
"List.owner" must be a "User" instance.

Ah, the old view isn’t discerning enough about what it does with list owners yet:
lists/views.py.

 if form.is_valid():
 list_ = List()
 list_.owner = request.user
 list_.save()

This is the point at which we realise that our old code wasn’t fit for purpose. Let’s fix it
to get all our tests passing:

lists/views.py (ch19l031).
def new_list(request):
 form = ItemForm(data=request.POST)
 if form.is_valid():
 list_ = List()
 if request.user.is_authenticated():
 list_.owner = request.user
 list_.save()
 form.save(for_list=list_)
 return redirect(list_)
 else:

Finally, Moving Down to the Models Layer | 355

 return render(request, 'home.html', {"form": form})

def new_list2(request):
 [...]

One of the benefits of integrated tests is that they help you to catch
less predictable interactions like this. We’d forgotten to write a test for
the case where the user is not authenticated, but because the integra‐
ted tests use the stack all the way down, errors from the model layer
came up to let us know we’d forgotten something:

$ python3 manage.py test lists
[...]
Ran 48 tests in 0.175s
OK

The Moment of Truth (and the Risks of Mocking)
So let’s try switching out our old view, and activating our new view. We can make the
swap in urls.py:

lists/urls.py.
[...]
 url(r'^new$', views.new_list2, name='new_list'),

We should also remove the unittest.skip from our integrated test class, and make it
point at our new view (new_list2), to see if our new code for list owners really works:

lists/tests/test_views.py (ch19l033).
class NewListViewIntegratedTest(TestCase):

 def test_saving_a_POST_request(self):
 [...]

 def test_list_owner_is_saved_if_user_is_authenticated(self):
 request = HttpRequest()
 request.user = User.objects.create(email='a@b.com')
 request.POST['text'] = 'new list item'
 new_list2(request)
 list_ = List.objects.first()
 self.assertEqual(list_.owner, request.user)

So what happens when we run our tests? Oh no!
ERROR: test_list_owner_is_saved_if_user_is_authenticated
[...]
ERROR: test_saving_a_POST_request
[...]
ERROR: test_redirects_after_POST
(lists.tests.test_views.NewListViewIntegratedTest)
 File "/workspace/superlists/lists/views.py", line 30, in new_list2

356 | Chapter 19: Test Isolation, and “Listening to Your Tests”

 return redirect(list_)
[...]
TypeError: argument of type 'NoneType' is not iterable

FAILED (errors=3)

Here’s an important lesson to learn about test isolation: it might help you to drive out
good design for individual layers, but it won’t automatically verify the integration be‐
tween your layers.

What’s happened here is that the view was expecting the form to return a list item:
lists/views.py.

 list_ = form.save(owner=request.user)
 return redirect(list_)

But we forgot to make it return anything:
lists/forms.py.

 def save(self, owner):
 if owner.is_authenticated():
 List.create_new(first_item_text=self.cleaned_data['text'], owner=owner)
 else:
 List.create_new(first_item_text=self.cleaned_data['text'])

Thinking of Interactions Between Layers as “Contracts”
Ultimately, even if we had been writing nothing but isolated unit tests, our functional
tests would have picked up this particular slip-up. But ideally we’d want our feedback
cycle to be quicker—functional tests may take a couple of minutes to run, or even a few
hours once your app starts to grow. Is there any way to avoid this sort of problem before
it happens?

Methodologically, the way to do it is to think about the interaction between your layers
in terms of contracts. Whenever we mock out the behaviour of one layer, we have to
make a mental note that there is now an implicit contract between the layers, and that
a mock on one layer should probably translate into a test at the layer below.

Here’s the part of the contract that we missed:
lists/tests/test_views.py.

 @patch('lists.views.redirect')
 def test_redirects_to_form_returned_object_if_form_valid(
 self, mock_redirect, mockNewListForm
):
 mock_form = mockNewListForm.return_value
 mock_form.is_valid.return_value = True

 response = new_list2(self.request)

 self.assertEqual(response, mock_redirect.return_value)
 mock_redirect.assert_called_once_with(mock_form.save.return_value) #

Thinking of Interactions Between Layers as “Contracts” | 357

The mocked form.save function is returning an object, which we expect our
view to be able to use.

Identifying Implicit Contracts
It’s worth reviewing each of the tests in NewListViewUnitTest and seeing what each
mock is saying about the implicit contract:

lists/tests/test_views.py.
 def test_passes_POST_data_to_NewListForm(self, mockNewListForm):
 [...]
 mockNewListForm.assert_called_once_with(data=self.request.POST) #

 def test_saves_form_with_owner_if_form_valid(self, mockNewListForm):
 mock_form = mockNewListForm.return_value
 mock_form.is_valid.return_value = True #
 new_list2(self.request)
 mock_form.save.assert_called_once_with(owner=self.request.user) #

 def test_does_not_save_if_form_invalid(self, mockNewListForm):
 [...]
 mock_form.is_valid.return_value = False #
 [...]

 @patch('lists.views.redirect')
 def test_redirects_to_form_returned_object_if_form_valid(
 self, mock_redirect, mockNewListForm
):
 [...]
 mock_redirect.assert_called_once_with(mock_form.save.return_value) #

 def test_renders_home_template_with_form_if_form_invalid(
 [...]

We need to be able to initialise our form by passing it a POST request as data.
 It should have an is_valid() function which returns True or False

appropriately, based on the input data.
The form should have a .save method which will accept a request.user, which
may or may not be a logged-in user, and deal with it appropriately.
The form’s .save method should return a new list object, for our view to redirect
the user to.

If we have a look through our form tests, we’ll see that, actually, only item ➌ is tested
explicitly. On items ➊ and ➋ we were lucky—they’re default features of a Django
ModelForm, and they are actually covered by our tests for the parent ItemForm class.

358 | Chapter 19: Test Isolation, and “Listening to Your Tests”

But contract clause number ➍ managed to slip through the net.

When doing outside-in TDD with isolated tests, you need to keep
track of each test’s implicit assumptions about the contract which the
next layer should implement, and remember to test each of those in
turn later. You could use our scratchpad for this, or create a place‐
holder test with a self.fail.

Fixing the Oversight
Let’s add a new test that our form should return the new saved list:

lists/tests/test_forms.py (ch19l038-1).
 @patch('lists.forms.List.create_new')
 def test_save_returns_new_list_object(self, mock_List_create_new):
 user = Mock(is_authenticated=lambda: True)
 form = NewListForm(data={'text': 'new item text'})
 form.is_valid()
 response = form.save(owner=user)
 self.assertEqual(response, mock_List_create_new.return_value)

And, actually, this is a good example—we have an implicit contract with the List.cre
ate_new, we want it to return the new list object. Let’s add a placeholder test for that.

lists/tests/test_models.py (ch19l038-2).
class ListModelTest(TestCase):
 [...]

 def test_create_returns_new_list_object(self):
 self.fail()

So, we have one test failures that’s telling us to fix the form save:
AssertionError: None != <MagicMock name='create_new()' id='139802647565536'>
FAILED (failures=2, errors=3)

Like this:
lists/forms.py (ch19l039-1).

class NewListForm(ItemForm):

 def save(self, owner):
 if owner.is_authenticated():
 return List.create_new(first_item_text=self.cleaned_data['text'], owner=owner)
 else:
 return List.create_new(first_item_text=self.cleaned_data['text'])

That’s a start, now we should look at our placeholder test:
[...]
FAIL: test_create_returns_new_list_object
 self.fail()
AssertionError: None

FAILED (failures=1, errors=3)

Thinking of Interactions Between Layers as “Contracts” | 359

We flesh it out:
lists/tests/test_models.py (ch19l039-2).

 def test_create_returns_new_list_object(self):
 returned = List.create_new(first_item_text='new item text')
 new_list = List.objects.first()
 self.assertEqual(returned, new_list)

…
AssertionError: None != <List: List object>

And we add our return value:
lists/models.py (ch19l039-3).

 @staticmethod
 def create_new(first_item_text, owner=None):
 list_ = List.objects.create(owner=owner)
 Item.objects.create(text=first_item_text, list=list_)
 return list_

And that gets us to a fully passing test suite:
$ python3 manage.py test lists
[...]
Ran 50 tests in 0.169s

OK

One More Test
That’s our code for saving list owners test-driven all the way down and working. But
our functional test isn’t passing quite yet:

$ python3 manage.py test functional_tests.test_my_lists
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"link text","selector":"Reticulate splines"}

It’s because we have one last feature to implement, the .name attribute on list objects.
Again, we can grab the test and code from the last chapter:

lists/tests/test_models.py (ch19l040).
 def test_list_name_is_first_item_text(self):
 list_ = List.objects.create()
 Item.objects.create(list=list_, text='first item')
 Item.objects.create(list=list_, text='second item')
 self.assertEqual(list_.name, 'first item')

(Again, since this is a model-layer test, it’s OK to use the ORM. You could conceivably
write this test using mocks, but there wouldn’t be much point).

lists/models.py (ch19l041).
 @property
 def name(self):
 return self.item_set.first().text

360 | Chapter 19: Test Isolation, and “Listening to Your Tests”

And that gets us to a passing FT!
$ python3 manage.py test functional_tests.test_my_lists

Ran 1 test in 21.428s

OK

Tidy Up: What to Keep from Our Integrated Test Suite
Now everything is working, we can remove some redundant tests, and decide whether
we want to keep any of our old integrated tests.

Removing Redundant Code at the Forms Layer
We can get rid of the test for the old save method on the ItemForm:

lists/tests/test_forms.py.
--- a/lists/tests/test_forms.py
+++ b/lists/tests/test_forms.py
@@ -23,14 +23,6 @@ class ItemFormTest(TestCase):

 self.assertEqual(form.errors['text'], [EMPTY_ITEM_ERROR])

- def test_form_save_handles_saving_to_a_list(self):
- list_ = List.objects.create()
- form = ItemForm(data={'text': 'do me'})
- new_item = form.save(for_list=list_)
- self.assertEqual(new_item, Item.objects.first())
- self.assertEqual(new_item.text, 'do me')
- self.assertEqual(new_item.list, list_)
-

And in our actual code, we can get rid of two redundant save methods in forms.py:
lists/forms.py.

--- a/lists/forms.py
+++ b/lists/forms.py
@@ -22,11 +22,6 @@ class ItemForm(forms.models.ModelForm):

 self.fields['text'].error_messages['required'] = EMPTY_ITEM_ERROR

- def save(self, for_list):
- self.instance.list = for_list
- return super().save()
-
-

 class NewListForm(ItemForm):

Tidy Up: What to Keep from Our Integrated Test Suite | 361

@@ -52,8 +47,3 @@ class ExistingListItemForm(ItemForm):

 e.error_dict = {'text': [DUPLICATE_ITEM_ERROR]}
 self._update_errors(e)
-
-
- def save(self):
- return forms.models.ModelForm.save(self)
-

Removing the Old Implementation of the View
We can now completely remove the old new_list view, and rename new_list2 to
new_list:

lists/tests/test_views.py.
-from lists.views import new_list, new_list2
+from lists.views import new_list

 class HomePageTest(TestCase):
@@ -75,7 +75,7 @@ class NewListViewIntegratedTest(TestCase):
 request = HttpRequest()
 request.user = User.objects.create(email='a@b.com')
 request.POST['text'] = 'new list item'
- new_list2(request)
+ new_list(request)
 list_ = List.objects.first()
 self.assertEqual(list_.owner, request.user)

@@ -91,21 +91,21 @@ class NewListViewUnitTest(unittest.TestCase):

 def test_passes_POST_data_to_NewListForm(self, mockNewListForm):
- new_list2(self.request)
+ new_list(self.request)

[.. several more]

lists/urls.py.
--- a/lists/urls.py
+++ b/lists/urls.py
@@ -3,7 +3,7 @@ from django.conf.urls import url
 from lists import views

 urlpatterns = [
- url(r'^new$', views.new_list2, name='new_list'),
+ url(r'^new$', views.new_list, name='new_list'),
 url(r'^(\d+)/$', views.view_list, name='view_list'),
 url(r'^users/(.+)/$', views.my_lists, name='my_lists'),
]

lists/views.py (ch19l047).
def new_list(request):
 form = NewListForm(data=request.POST)

362 | Chapter 19: Test Isolation, and “Listening to Your Tests”

 if form.is_valid():
 list_ = form.save(owner=request.user)
 [...]

And a quick check that all the tests still pass:
OK

Removing Redundant Code at the Forms Layer
Finally, we have to decide what (if anything) to keep from our integrated test suite.

One option is to throw them all away, and decide that the FTs will pick up any integration
problems. That’s perfectly valid.

On the other hand, we saw how integrated tests can warn you when you’ve made small
mistakes in integrating your layers. We could keep just a couple of tests around as
“sanity-checks”, to give us a quicker feedback cycle.

How about these three:
lists/tests/test_views.py (ch19l048).

class NewListViewIntegratedTest(TestCase):

 def test_saving_a_POST_request(self):
 self.client.post(
 '/lists/new',
 data={'text': 'A new list item'}
)
 self.assertEqual(Item.objects.count(), 1)
 new_item = Item.objects.first()
 self.assertEqual(new_item.text, 'A new list item')

 def test_for_invalid_input_doesnt_save_but_shows_errors(self):
 response = self.client.post('/lists/new', data={'text': ''})
 self.assertEqual(List.objects.count(), 0)
 self.assertContains(response, escape(EMPTY_ITEM_ERROR))

 def test_saves_list_owner_if_user_logged_in(self):
 request = HttpRequest()
 request.user = User.objects.create(email='a@b.com')
 request.POST['text'] = 'new list item'
 new_list(request)
 list_ = List.objects.first()
 self.assertEqual(list_.owner, request.user)

If you’re going to keep any intermediate-level tests at all, I like these three because they
feel like they’re doing the most “integration” jobs: they test the full stack, from the request
down to the actual database, and they cover the three most important use cases of our
view.

Tidy Up: What to Keep from Our Integrated Test Suite | 363

Conclusions: When to Write Isolated Versus Integrated
Tests
Django’s testing tools make it very easy to quickly put together integrated tests. The test
runner helpfully creates a fast, in-memory version of your database and resets it for you
in between each tests. The TestCase class and the Test Client make it easy to test your
views, from checking whether database objects are modified, confirming that your URL
mappings work, and inspecting the rendering of the templates. This lets you get started
with testing very easily and get good coverage across your whole stack.

On the other hand, these kinds of integrated tests won’t necessarily deliver the full benefit
that rigorous unit testing and outside-in TDD are meant to confer in terms of design.

If we look at the example in this chapter, compare the code we had before and after:
Before.

def new_list(request):
 form = ItemForm(data=request.POST)
 if form.is_valid():
 list_ = List()
 if not isinstance(request.user, AnonymousUser):
 list_.owner = request.user
 list_.save()
 form.save(for_list=list_)
 return redirect(list_)
 else:
 return render(request, 'home.html', {"form": form})

After.
def new_list(request):
 form = NewListForm(data=request.POST)
 if form.is_valid():
 list_ = form.save(owner=request.user)
 return redirect(list_)
 return render(request, 'home.html', {'form': form})

If we hadn’t bothered to go down the isolation route, would we have bothered to refactor
the view function? I know I didn’t in the first draft of this book. I’d like to think I would
have “in real life”, but it’s hard to be sure. But writing isolated tests does make you very
aware of where the complexities in your code lie.

Let Complexity Be Your Guide
I’d say the point at which isolated tests start to become worth it is to do with complexity.
The example in this book is extremely simple, so it’s not often been worth it so far. Even
in the example in this chapter, I can convince myself I didn’t really need to write those
isolated tests.

364 | Chapter 19: Test Isolation, and “Listening to Your Tests”

But once an application gains a little more complexity—if it starts growing any more
layers between views and models, if you find yourself writing helper methods, or your
own classes, then you will probably gain from writing more isolated tests.

Should You Do Both?
We already have our suite of functional tests, which will serve the purpose of telling us
if we ever make any mistakes in integrating the different parts of our code together.
Writing isolated tests can help us to drive out better design for our code, and to verify
correctness in finer detail. Would a middle layer of integration tests serve any additional
purpose?

I think the answer is potentially yes, if they can provide a faster feedback cycle, and help
you identify more clearly what integration problems you suffer from—their tracebacks
may provide you with better debug information than you would get from a functional
test, for example.

There may even be a case for building them as a separate test suite—you could have one
suite of fast, isolated unit tests that don’t even use manage.py, because they don’t need
any of the database cleanup and teardown that the Django test runner gives you, and
then the intermediate layer that uses Django, and finally the functional tests layer that,
say, talks to a staging server. It may be worth it if each layer delivers incremental benefits.

It’s a judgement call. I hope that, by going through this chapter, I’ve given you a feel for
what the trade-offs are.

Onwards!
We’re happy with our new version, so let’s bring them across to master:

$ git add .
$ git commit -m "add list owners via forms. more isolated tests"
$ git checkout master
$ git checkout -b master-noforms-noisolation-bak # optional backup
$ git checkout master
$ git reset --hard more-isolation # reset master to our branch.

In the meantime—those FTs are taking an annoyingly long time to run. I wonder if
there’s something we can do about that?

Conclusions: When to Write Isolated Versus Integrated Tests | 365

On the Pros and Cons of Different Types of Test,
and Decoupling ORM code

Functional tests
• Provide the best guarantee that your application really works correctly, from

the point of view of the user.
• But: it’s a slower feedback cycle,
• And they don’t necessarily help you write clean code.

Integrated tests (reliant on, e.g., the ORM or the Django Test Client)
• Are quick to write,
• Easy to understand,
• Will warn you of any integration issues,
• But may not always drive good design (that’s up to you!).
• And are usually slower than isolated tests

Isolated (“mocky”) tests
• These involve the most hard work.
• They can be harder to read and understand,
• But: these are the best ones for guiding you towards better design.
• And they run the fastest.

Decoupling our application from ORM code
When striving to write isolated tests, one of the consequences is that we find our‐
selves forced to remove ORM code from places like views and forms, by hiding it
behind helper functions or methods. This can be beneficial in terms of decoupling
your application from the ORM, but also just because it makes your code more
readable. As with all things, it’s a judgement call as to whether the additional effort
is worth it in particular circumstances.

366 | Chapter 19: Test Isolation, and “Listening to Your Tests”

CHAPTER 20
Continuous Integration (CI)

As our site grows, it takes longer and longer to run all of our functional tests. If this
continues, the danger is that we’re going to stop bothering.

Rather than let that happen, we can automate the running of functional tests by setting
up a “Continuous Integration” or CI server. That way, in day-to-day development, we
can just run the FT that we’re working on at that time, and rely on the CI server to run
all the tests automatically, and let us know if we’ve broken anything accidentally. The
unit tests should stay fast enough that we can keep running them every few seconds.

The CI server of choice these days is called Jenkins. It’s a bit Java, a bit crashy, a bit ugly,
but it’s what everyone uses, and it has a great plugin ecosystem, so let’s get it up and
running.

Installing Jenkins
There are several hosted-CI services out there that essentially provide you with a Jenkins
server, ready to go. I’ve come across Sauce Labs, Travis, Circle-CI, ShiningPanda, and
there are probably lots more. But I’m going to assume we’re installing everything on a
server we control.

It’s not a good idea to install Jenkins on the same server as our stag‐
ing or production servers. Apart from anything else, we may want
Jenkins to be able to reboot the staging server!

We’ll install the latest version from the official Jenkins apt repo, because the Ubuntu
default still has a few annoying bugs with locale/unicode support, and it also doesn’t set
itself up to listen on the public Internet by default:

367

instructions taken from jenkins site
user@server:$ wget -q -O - http://pkg.jenkins-ci.org/debian/jenkins-ci.org.key |\
 sudo apt-key add -
user@server:$ echo deb http://pkg.jenkins-ci.org/debian binary/ | sudo tee \
 /etc/apt/sources.list.d/jenkins.list
user@server:$ sudo apt-get update
user@server:$ sudo apt-get install jenkins

While we’re at we’ll install a few other dependencies:
user@server:$ sudo apt-get install git firefox python3 python-virtualenv xvfb

You should then be able to visit it at the URL for your server on port 8080, as in
Figure 20-1.

Figure 20-1. A butler! How quaint…

368 | Chapter 20: Continuous Integration (CI)

1. If you miss that screen, you can still hit “signup”, and as long as you use the same username you specified
earlier, you’ll have an account set up.

Configuring Jenkins Security
The first thing we’ll do is set up some authentication, since our server is available on
the public Internet:

• Manage Jenkins → Configure Global Security → Enable security.
• Choose “Jenkins’ own user database”, “Matrix-based security”.
• Disable all permissions for Anonymous.
• And add a user for yourself; give it all the permissions (Figure 20-2).
• The next screen offers you the option to create an account that matches that user‐

name, and set a password.1

Figure 20-2. Locking it down…

Installing Jenkins | 369

Adding Required Plugins
Next we install a few plugins, to help us work with Git, Python, and virtual displays; see
Figure 20-3:

• Manage Jenkins → Manage Plugins → Available

We’ll want the plugins for:

• Git
• ShiningPanda
• Xvfb

Figure 20-3. Installing plugins…

Restart afterwards using either the tick-box on that last screen, or from the command
line with a sudo service jenkins restart.

370 | Chapter 20: Continuous Integration (CI)

Telling Jenkins where to find Python 3 and Xvfb
We need to tell the ShiningPanda plugin where Python 3 is installed (usually /usr/bin/
python3, but you can check with a which python3): * Manage Jenkins → Configure
System.

• Python → Python installations → Add Python (Figure 20-4).
• Xvfb installation → Add Xvfb installation; enter /usr/bin as the installation direc‐

tory.

Figure 20-4. Where did I leave that Python?

Setting Up Our Project
Now we’ve got the basic Jenkins configured, let’s set up our project:

• New Job → Build a free-style software project.
• Add the Git repo, as in Figure 20-5.

Setting Up Our Project | 371

Figure 20-5. Get it from Git

• Set it to poll every hour (Figure 20-6) (check out the help text here—there are many
other options for ways of triggering builds).

Figure 20-6. Poll Github for changes

• Run the tests inside a Python 3 virtualenv.
• Run the unit tests and functional tests separately. See Figure 20-7.

372 | Chapter 20: Continuous Integration (CI)

Figure 20-7. Virtualenv build steps

First Build!
Hit “Build Now!”, then go and take a look at the “Console Output”. You should see
something like this:

Started by user harry
Building in workspace /var/lib/jenkins/jobs/Superlists/workspace
Fetching changes from the remote Git repository
Fetching upstream changes from https://github.com/hjwp/book-example.git
Checking out Revision d515acebf7e173f165ce713b30295a4a6ee17c07 (origin/master)
[workspace] $ /bin/sh -xe /tmp/shiningpanda7260707941304155464.sh
+ pip install -r requirements.txt
Requirement already satisfied (use --upgrade to upgrade): Django==1.8 in
/var/lib/jenkins/shiningpanda/jobs/ddc1aed1/virtualenvs/d41d8cd9/lib/python3.3/site-packages
(from -r requirements.txt (line 1))

Requirement already satisfied (use --upgrade to upgrade): gunicorn==17.5 in
/var/lib/jenkins/shiningpanda/jobs/ddc1aed1/virtualenvs/d41d8cd9/lib/python3.3/site-packages
(from -r requirements.txt (line 3))
Downloading/unpacking requests==2.0.0 (from -r requirements.txt (line 4))
 Running setup.py egg_info for package requests

Installing collected packages: requests
 Running setup.py install for requests

Successfully installed requests
Cleaning up...
+ python manage.py test lists accounts
...

Ran 51 tests in 0.323s

OK
Creating test database for alias 'default'...
Destroying test database for alias 'default'...
+ python manage.py test functional_tests
ImportError: No module named 'selenium'
Build step 'Virtualenv Builder' marked build as failure

First Build! | 373

2. At the time of writing, the latest Selenium (2.41) was causing me some trouble, so that’s why I’m pinning it
to 2.39 here. By all means experiment with newer versions!

Ah. We need Selenium in our virtualenv.

Let’s add a manual installation of Selenium to our build steps:2

 pip install -r requirements.txt
 pip install selenium==2.39
 python manage.py test accounts lists
 python manage.py test functional_tests

Some people like to use a file called test-requirements.txt to
specify packages that are needed for the tests, but not the
main app.

Now what?
 File
 "/var/lib/jenkins/shiningpanda/jobs/ddc1aed1/virtualenvs/d41d8cd9/lib/python3.
 line 100, in _wait_until_connectable
 self._get_firefox_output())
selenium.common.exceptions.WebDriverException: Message: 'The browser appears to
have exited before we could connect. The output was: b"\\n(process:19757):
GLib-CRITICAL **: g_slice_set_config: assertion \'sys_page_size == 0\'
failed\\nError: no display specified\\n"'

Setting Up a Virtual Display so the FTs Can Run Headless
As you can see from the traceback, Firefox is unable to start because the server doesn’t
have a display.

There are two ways to deal with this problem. The first is to switch to using a headless
browser, like PhantomJS or SlimerJS. Those tools definitely have their place—they’re
faster, for one thing—but they also have disadvantages. The first is that they’re not “real”
web browsers, so you can’t be sure you’re going to catch all the strange quirks and
behaviours of the actual browsers your users use. The second is that they behave quite
differently inside Selenium, and will require substantial amounts of rewriting of FT
code.

I would look into using headless browsers as a “dev-only” tool,
to speed up the running of FTs on the developer’s machine,
while the tests on the CI server use actual browsers.

374 | Chapter 20: Continuous Integration (CI)

https://code.google.com/p/selenium/issues/detail?id=7073

3. Check out pyvirtualdisplay as a way of controlling virtual displays from Python.

The alternative is to set up a virtual display: we get the server to pretend it has a screen
attached to it, so Firefox runs happily. There’s a few tools out there to do this; we’ll use
one called “Xvfb” (X Virtual Framebuffer)3 because it’s easy to install and use, and be‐
cause it has a convenient Jenkins plugin.

We go back to our project and hit “Configure” again, then find the section called “Build
Environment”. Using the virtual display is as simple as ticking the box marked “Start
Xvfb before the build, and shut it down after,” as in Figure 20-8.

Figure 20-8. Sometimes config is easy

The build does much better now:
[...]
Xvfb starting$ /usr/bin/Xvfb :2 -screen 0 1024x768x24 -fbdir
/var/lib/jenkins/2013-11-04_03-27-221510012427739470928xvfb
[...]
+ python manage.py test lists accounts
...

Ran 51 tests in 0.410s

OK
Creating test database for alias 'default'...
Destroying test database for alias 'default'...
+ pip install selenium
Requirement already satisfied (use --upgrade to upgrade): selenium in
/var/lib/jenkins/shiningpanda/jobs/ddc1aed1/virtualenvs/d41d8cd9/lib/python3.3/site-packages
Cleaning up...

+ python manage.py test functional_tests
.....F.
==
FAIL: test_logged_in_users_lists_are_saved_as_my_lists
(functional_tests.test_my_lists.MyListsTest)

Traceback (most recent call last):

Setting Up a Virtual Display so the FTs Can Run Headless | 375

https://pypi.python.org/pypi/PyVirtualDisplay

 File
"/var/lib/jenkins/jobs/Superlists/workspace/functional_tests/test_my_lists.py",
line 44, in test_logged_in_users_lists_are_saved_as_my_lists
 self.assertEqual(self.browser.current_url, first_list_url)
AssertionError: 'http://localhost:8081/accounts/edith@example.com/' !=
'http://localhost:8081/lists/1/'
- http://localhost:8081/accounts/edith@example.com/
+ http://localhost:8081/lists/1/

Ran 7 tests in 89.275s

FAILED (errors=1)
Creating test database for alias 'default'...
[{'secure': False, 'domain': 'localhost', 'name': 'sessionid', 'expiry':
1920011311, 'path': '/', 'value': 'a8d8bbde33nreq6gihw8a7r1cc8bf02k'}]
Destroying test database for alias 'default'...
Build step 'Virtualenv Builder' marked build as failure
Xvfb stopping
Finished: FAILURE

Pretty close! To debug that failure, we’ll need screenshots though.

As we’ll see, this error is due to a race condition, which means it’s not
always reproducible. You may see a different error, or none at all. In
any case, the tools below for taking screenshots and dealing with race
conditions will come in useful. Read on!

Taking Screenshots
To be able to debug unexpected failures that happen on a remote PC, it would be good
to see a picture of the screen at the moment of the failure, and maybe also a dump of
the HTML of the page. We can do that using some custom logic in our FT class tear
Down. We have to do a bit of introspection of unittest internals, a private attribute called
_outcomeForDoCleanups, but this will work:

functional_tests/base.py (ch20l006).
import os
from datetime import datetime

SCREEN_DUMP_LOCATION = os.path.join(
 os.path.dirname(os.path.abspath(__file__)), 'screendumps'
)
[...]

 def tearDown(self):
 if self._test_has_failed():
 if not os.path.exists(SCREEN_DUMP_LOCATION):
 os.makedirs(SCREEN_DUMP_LOCATION)
 for ix, handle in enumerate(self.browser.window_handles):
 self._windowid = ix
 self.browser.switch_to_window(handle)

376 | Chapter 20: Continuous Integration (CI)

 self.take_screenshot()
 self.dump_html()
 self.browser.quit()
 super().tearDown()

 def _test_has_failed(self):
 # for 3.4. In 3.3, can just use self._outcomeForDoCleanups.success:
 for method, error in self._outcome.errors:
 if error:
 return True
 return False

We first create a directory for our screenshots if necessary. Then we iterate through all
the open browser tabs and pages, and use some Selenium methods, get_screen
shot_as_file and browser.page_source, for our image and HTML dumps:

functional_tests/base.py (ch20l007).
 def take_screenshot(self):
 filename = self._get_filename() + '.png'
 print('screenshotting to', filename)
 self.browser.get_screenshot_as_file(filename)

 def dump_html(self):
 filename = self._get_filename() + '.html'
 print('dumping page HTML to', filename)
 with open(filename, 'w') as f:
 f.write(self.browser.page_source)

And finally here’s a way of generating a unique filename identifier, which includes the
name of the test and its class, as well as a timestamp:

functional_tests/base.py (ch20l008).
 def _get_filename(self):
 timestamp = datetime.now().isoformat().replace(':', '.')[:19]
 return '{folder}/{classname}.{method}-window{windowid}-{timestamp}'.format(
 folder=SCREEN_DUMP_LOCATION,
 classname=self.__class__.__name__,
 method=self._testMethodName,
 windowid=self._windowid,
 timestamp=timestamp
)

You can test this first locally by deliberately breaking one of the tests, with a self.fail()
for example, and you’ll see something like this:

[...]
screenshotting to /workspace/superlists/functional_tests/screendumps/MyListsTes
t.test_logged_in_users_lists_are_saved_as_my_lists-window0-2014-03-09T11.19.12.
png
dumping page HTML to /workspace/superlists/functional_tests/screendumps/MyLists
Test.test_logged_in_users_lists_are_saved_as_my_lists-window0-2014-03-09T11.19.
12.html

Taking Screenshots | 377

Revert the self.fail(), then commit and push:
$ git diff # changes in base.py
$ echo "functional_tests/screendumps" >> .gitignore
$ git commit -am "add screenshot on failure to FT runner"
$ git push

And when we rerun the build on Jenkins, we see something like this:
screenshotting to /var/lib/jenkins/jobs/Superlists/workspace/functional_tests/
screendumps/LoginTest.test_login_with_persona-window0-2014-01-22T17.45.12.png
dumping page HTML to /var/lib/jenkins/jobs/Superlists/workspace/functional_tests/
screendumps/LoginTest.test_login_with_persona-window0-2014-01-22T17.45.12.html

We can go and visit these in the “workspace”, which is the folder which Jenkins uses to
store our source code and run the tests in, as in Figure 20-9.

Figure 20-9. Visiting the project workspace

And then we look at the screenshot, as shown in Figure 20-10.

378 | Chapter 20: Continuous Integration (CI)

Figure 20-10. Screenshot looking normal

Well, that didn’t help much.

A Common Selenium Problem: Race Conditions
Whenever you see an inexplicable failure in a Selenium test, one of the most likely
explanations is a hidden race condition. Let’s look at the line that failed:

functional_tests/test_my_lists.py.
 # She sees that her list is in there, named according to its
 # first list item
 self.browser.find_element_by_link_text('Reticulate splines').click()
 self.assertEqual(self.browser.current_url, first_list_url)

Immediately after we click the “Reticulate splines” link, we ask Selenium to check
whether the current URL matches the URL for our first list. But it doesn’t:

AssertionError: 'http://localhost:8081/accounts/edith@example.com/' !=
'http://localhost:8081/lists/1/'

It looks like the current URL is still the URL of the “My Lists” page. What’s going on?

A Common Selenium Problem: Race Conditions | 379

Do you remember that we set an implicitly_wait on the browser, way back in Chap‐
ter 2? Do you remember I mentioned it was unreliable?

implicitly_wait works reasonably well for any calls to any of the Selenium find_el
ement_ calls, but it doesn’t apply to browser.current_url. Selenium doesn’t “wait” after
you tell it to click an element, so what’s happened is that the browser hasn’t finished
loading the new page yet, so current_url is still the old page. We need to use some
more wait code, like we did for the various Persona pages.

At this point it’s time for a “wait for” helper function. To see how this is going to work,
it helps to see how I expect to use it (outside-in!):

functional_tests/test_my_lists.py (ch20l012).
 # She sees that her list is in there, named according to its
 # first list item
 self.browser.find_element_by_link_text('Reticulate splines').click()
 self.wait_for(
 lambda: self.assertEqual(self.browser.current_url, first_list_url)
)

We’re going to take our assertEqual call and turn it into a lambda function, then pass
it into our wait_for helper.

functional_tests/base.py (ch20l013).
import time
from selenium.common.exceptions import WebDriverException
[...]

 def wait_for(self, function_with_assertion, timeout=DEFAULT_WAIT):
 start_time = time.time()
 while time.time() - start_time < timeout:
 try:
 return function_with_assertion()
 except (AssertionError, WebDriverException):
 time.sleep(0.1)
 # one more try, which will raise any errors if they are outstanding
 return function_with_assertion()

wait_for then tries to execute that function, but instead of letting the test fail if the
assertion fails, it catches the AssertionError that assertEqual would ordinarily raise,
waits for a brief moment, and then loops around retrying it. The while loop lasts until
a given timeout. It also catches any WebDriverException that might happen if, say, an
element hasn’t appeared on the page yet. It tries one last time after the timeout has
expired, this time without the try/except, so that if there really is still an AssertionEr
ror, the test will fail appropriately.

380 | Chapter 20: Continuous Integration (CI)

We’ve seen that Selenium provides WebdriverWait as a tool for do‐
ing waits, but it’s a little restrictive. This hand-rolled version lets us
pass a function that does a unittest assertion, with all the benefits
of the readable error messages that it gives us.

I’ve added the timeout there as an optional argument, and I’m basing it on a constant
we’ll add to base.py. We’ll also use it in our original implicitly_wait:

functional_tests/base.py (ch20l014).
[...]
DEFAULT_WAIT = 5
SCREEN_DUMP_LOCATION = os.path.join(
 os.path.dirname(os.path.abspath(__file__)), 'screendumps'
)

class FunctionalTest(StaticLiveServerTestCase):

 [...]

 def setUp(self):
 self.browser = webdriver.Firefox()
 self.browser.implicitly_wait(DEFAULT_WAIT)

Now we can rerun the test to confirm it still works locally:
$ python3 manage.py test functional_tests.test_my_lists
[...]
.

Ran 1 test in 9.594s

OK

And, just to be sure, we’ll deliberately break our test to see it fail too:
functional_tests/test_my_lists.py (ch20l015).

 self.wait_for(
 lambda: self.assertEqual(self.browser.current_url, 'barf')
)

Sure enough, that gives:
$ python3 manage.py test functional_tests.test_my_lists
[...]
AssertionError: 'http://localhost:8081/lists/1/' != 'barf'

And we see it pause on the page for three seconds. Let’s revert that last change, and then
commit our changes:

$ git diff # base.py, test_my_lists.py
$ git commit -am "use wait_for function for URL checks in my_lists"
$ git push

A Common Selenium Problem: Race Conditions | 381

Then we can rerun the build on Jenkins using “Build now”, and confirm it now works,
as in Figure 20-11.

Figure 20-11. The outlook is brighter

Jenkins uses blue to indicate passing builds rather than green, which is a bit disappoint‐
ing, but look at the sun peeking through the clouds: that’s cheery! It’s an indicator of a
moving average ratio of passing builds to failing builds. Things are looking up!

Running Our QUnit JavaScript Tests in Jenkins with
PhantomJS
There’s a set of tests we almost forgot—the JavaScript tests. Currently our “test runner”
is an actual web browser. To get Jenkins to run them, we need a command-line test
runner. Here’s a chance to use PhantomJS.

382 | Chapter 20: Continuous Integration (CI)

4. Make sure you get the latest version. On Ubuntu, use the PPA rather than the default package.

Installing node
It’s time to stop pretending we’re not in the JavaScript game. We’re doing web develop‐
ment. That means we do JavaScript. That means we’re going to end up with node.js on
our computers. It’s just the way it has to be.

Follow the instructions on the node.js download page. There are installers for Windows
and Mac, and repositories for popular Linux distros.4

Once we have node, we can install phantom:
$ npm install -g phantomjs # the -g means "system-wide". May need sudo.

Next we pull down a QUnit/PhantomJS test runner. There are several out there (I even
wrote a basic one to be able to test the QUnit listings in this book), but the best one to
get is probably the one that’s linked from the QUnit plugins page. At the time of writing,
its repo was at https://github.com/jonkemp/qunit-phantomjs-runner. The only file you
need is runner.js.
You should end up with this:

$ tree superlists/static/tests/
superlists/static/tests/
├── qunit.css
├── qunit.js
├── runner.js
└── sinon.js

0 directories, 4 files

Let’s try it out:
$ phantomjs superlists/static/tests/runner.js lists/static/tests/tests.html
Took 24ms to run 2 tests. 2 passed, 0 failed.
$ phantomjs superlists/static/tests/runner.js accounts/static/tests/tests.html
Took 29ms to run 11 tests. 11 passed, 0 failed.

Just to be sure, let’s deliberately break something:
lists/static/list.js (ch20l019).

$('input').on('keypress', function () {
 //$('.has-error').hide();
});

Sure enough:
$ phantomjs superlists/static/tests/runner.js lists/static/tests/tests.html
Test failed: undefined: errors should be hidden on keypress
 Failed assertion: expected: false, but was: true
 at file:///workspace/superlists/superlists/static/tests/qunit.js:556
 at file:///workspace/superlists/lists/static/tests/tests.html:26

Running Our QUnit JavaScript Tests in Jenkins with PhantomJS | 383

http://nodejs.org/download/
http://qunitjs.com/plugins/
https://github.com/jonkemp/qunit-phantomjs-runner

 at file:///workspace/superlists/superlists/static/tests/qunit.js:203
 at file:///workspace/superlists/superlists/static/tests/qunit.js:361
 at process
(file:///workspace/superlists/superlists/static/tests/qunit.js:1453)
 at file:///workspace/superlists/superlists/static/tests/qunit.js:479
Took 27ms to run 2 tests. 1 passed, 1 failed.
[...]

All right! Let’s unbreak that, commit and push the runner, and then add it to our Jenkins
build:

$ git checkout lists/static/list.js
$ git add superlists/static/tests/runner.js
$ git commit -m "Add phantomjs test runner for javascript tests"
$ git push

Adding the Build Steps to Jenkins
Edit the project configuration again, and add a step for each set of JavaScript tests, as
per Figure 20-12.

Figure 20-12. Add a build step for our JavaScript unit tests

You’ll also need to install PhantomJS on the server:
elspeth@server:$ sudo add-apt-repository -y ppa:chris-lea/node.js
elspeth@server:$ sudo apt-get update
elspeth@server:$ sudo apt-get install nodejs
elspeth@server:$ sudo npm install -g phantomjs

And there we are! A complete CI build featuring all of our tests!
Started by user harry
Building in workspace /var/lib/jenkins/jobs/Superlists/workspace
Fetching changes from the remote Git repository
Fetching upstream changes from https://github.com/hjwp/book-example.git
Checking out Revision 936a484038194b289312ff62f10d24e6a054fb29 (origin/chapter_1
Xvfb starting$ /usr/bin/Xvfb :1 -screen 0 1024x768x24 -fbdir /var/lib/jenkins/20
[workspace] $ /bin/sh -xe /tmp/shiningpanda7092102504259037999.sh

384 | Chapter 20: Continuous Integration (CI)

+ pip install -r requirements.txt
[...]

+ python manage.py test lists
.................................

Ran 33 tests in 0.229s

OK
Creating test database for alias 'default'...
Destroying test database for alias 'default'...

+ python manage.py test accounts
..................

Ran 18 tests in 0.078s

OK
Creating test database for alias 'default'...
Destroying test database for alias 'default'...

[workspace] $ /bin/sh -xe /tmp/hudson2967478575201471277.sh
+ phantomjs superlists/static/tests/runner.js lists/static/tests/tests.html
Took 32ms to run 2 tests. 2 passed, 0 failed.
+ phantomjs superlists/static/tests/runner.js accounts/static/tests/tests.html
Took 47ms to run 11 tests. 11 passed, 0 failed.

[workspace] $ /bin/sh -xe /tmp/shiningpanda7526089957247195819.sh
+ pip install selenium
Requirement already satisfied (use --upgrade to upgrade): selenium in /var/lib/

Cleaning up...
[workspace] $ /bin/sh -xe /tmp/shiningpanda2420240268202055029.sh
+ python manage.py test functional_tests
.......

Ran 7 tests in 76.804s

OK

Nice to know that, no matter how lazy I get about running the full test suite on my own
machine, the CI server will catch me. Another one of the Testing Goat’s agents in cy‐
berspace, watching over us…

More Things to Do with a CI Server
I’ve only scratched the surface of what you can do with Jenkins and CI servers. For
example, you can make it much smarter about how it monitors your repo for new
commits.

More Things to Do with a CI Server | 385

Perhaps more interestingly, you can use your CI server to automate your staging tests
as well as your normal functional tests. If all the FTs pass, you can add a build step that
deploys the code to staging, and then reruns the FTs against that—automating one more
step of the process, and ensuring that your staging server is automatically kept up to
date with the latest code.

Some people even use a CI server as the way of deploying their production releases!

Tips on CI and Selenium Best Practices
Set up CI as soon as possible for your project

As soon as your functional tests take more than a few seconds to run, you’ll find
yourself avoiding running them all. Give this job to a CI server, to make sure that
all your tests are getting run somewhere.

Set up screenshots and HTML dumps for failures
Debugging test failures is easier if you can see what the page looked at when the
failure occurs. This is particularly useful for debugging CI failures, but it’s also very
useful for tests that you run locally.

Use waits in Selenium tests
Selenium’s implicitly_wait only applies to uses of its find_element functions,
and even that can be unreliable (it can find an element that’s still on the old page).
Build a wait_for helper function, and alternate between actions on the site, and
then some sort of wait to see that they’ve taken effect.

Look in to hooking up CI and staging
Tests that use LiveServerTestCase are all very well for dev boxes, but the true
reassurance comes from running your tests against a real server. Look into getting
your CI server to deploy to your staging server, and run the functional tests against
that instead. It has the side benefit of testing your automated deploy scripts.

386 | Chapter 20: Continuous Integration (CI)

CHAPTER 21
The Token Social Bit, the Page Pattern, and

an Exercise for the Reader

Are jokes about how “everything has to be social now” slightly old hat? Everything has
to be all A/B tested big data get-more-clicks lists of 10 Things This Inspiring Teacher
Said That Will Make You Change Your Mind About Blah Blah now…anyway. Lists, be
they Inspirational or otherwise, are often better shared. Let’s allow our users to collab‐
orate on their lists with other users.

Along the way we’ll improve our FTs by starting to implement the interact/wait Selenium
pattern that we learned in the last chapter. We’ll also experiment with something called
the Page Object pattern.

Then, rather than showing you explicitly what to do, I’m going to let you write your unit
tests and application code by yourself. Don’t worry, you won’t be totally on your own!
I’ll give an outline of the steps to take, as well as some hints and tips.

An FT with Multiple Users, and addCleanup
Let’s get started—we’ll need two users for this FT:

functional_tests/test_sharing.py.
from selenium import webdriver
from .base import FunctionalTest

def quit_if_possible(browser):
 try: browser.quit()
 except: pass

class SharingTest(FunctionalTest):

 def test_logged_in_users_lists_are_saved_as_my_lists(self):
 # Edith is a logged-in user
 self.create_pre_authenticated_session('edith@example.com')

387

 edith_browser = self.browser
 self.addCleanup(lambda: quit_if_possible(edith_browser))

 # Her friend Oniciferous is also hanging out on the lists site
 oni_browser = webdriver.Firefox()
 self.addCleanup(lambda: quit_if_possible(oni_browser))
 self.browser = oni_browser
 self.create_pre_authenticated_session('oniciferous@example.com')

 # Edith goes to the home page and starts a list
 self.browser = edith_browser
 self.browser.get(self.server_url)
 self.get_item_input_box().send_keys('Get help\n')

 # She notices a "Share this list" option
 share_box = self.browser.find_element_by_css_selector('input[name=email]')
 self.assertEqual(
 share_box.get_attribute('placeholder'),
 'your-friend@example.com'
)

The interesting feature to note about this section is the addCleanup function, whose
documentation you can find here. It can be used as an alternative to the tearDown
function as a way of cleaning up resources used during the test. It’s most useful when
the resource is only allocated halfway through a test, so you don’t have to spend time in
tearDown figuring out what does or doesn’t need cleaning up.

addCleanup is run after tearDown, which is why we need that try/except formulation
for quit_if_possible—whichever of edith_browser and oni_browser is also assigned
to self.browser at the point at which the test ends will already have been quit by the
tearDown function.

We’ll also need to move create_pre_authenticated_session from test_my_lists.py
into base.py.

OK, let’s see if that all works:
$ python3 manage.py test functional_tests.test_sharing
[...]
Traceback (most recent call last):
 File "/workspace/superlists/functional_tests/test_sharing.py", line 29, in
test_logged_in_users_lists_are_saved_as_my_lists
 share_box = self.browser.find_element_by_css_selector('input[name=email]')
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"css selector","selector":"input[name=email]"}

Great! It seems to have got through creating the two user sessions, and it gets onto an
expected failure—there is no input for an email address of a person to share a list with
on the page.

388 | Chapter 21: The Token Social Bit, the Page Pattern, and an Exercise for the Reader

http://bit.ly/SuW8Hv

Let’s do a commit at this point, because we’ve got at least a placeholder for our FT, we’ve
got a useful modification of the create_pre_authenticated_session function, and
we’re about to embark on a bit of an FT refactor:

$ git add functional_tests
$ git commit -m "New FT for sharing, move session creation stuff to base"

Implementing the Selenium Interact/Wait Pattern
Before we continue, let’s take a closer look at the interactions with the site which we
have in our FT so far:

functional_tests/test_sharing.py.
 # Edith goes to the home page and starts a list
 self.browser = edith_browser
 self.browser.get(self.server_url)
 self.get_item_input_box().send_keys('Get help\n') #

 # She notices a "Share this list" option
 share_box = self.browser.find_element_by_css_selector('input[name=email]') #
 self.assertEqual(
 share_box.get_attribute('placeholder'),
 'your-friend@example.com'
)

Interaction with site
Assumption about updated state of page

We learned in the last chapter that it’s dangerous to assume too much about the state of
the browser after we do an interaction (like send_keys). In theory, implicitly_wait
will make sure that, if the call to find_element_by_css_selector doesn’t find our
input[name=email] at first, it will silently retry a few times. But it can also go wrong—
imagine if there was an input on the previous page, with the same name=email, but a
different placeholder text? We’d get a strange failure, because Selenium could theoret‐
ically pick up the element from the previous page while the new page is loading. That
tends to raise a StaleElementException.

Unexpected StaleElementException errors from Selenium often
mean you have some kind of race condition. You should probably
specify an explicit interaction/wait pattern.

Instead, it’s always prudent to follow the “wait-for” pattern whenever we want to check
on the effects of an interaction that we’ve just triggered. Something like this:

functional_tests/test_sharing.py.
 self.get_item_input_box().send_keys('Get help\n')

Implementing the Selenium Interact/Wait Pattern | 389

 # She notices a "Share this list" option
 self.wait_for(
 lambda: self.assertEqual(
 self.browser.find_element_by_css_selector(
 'input[name=email]'
).get_attribute('placeholder'),
 'your-friend@example.com'
)
)

The Page Pattern
But do you know what would be even better? This is an occasion for a “three strikes and
refactor”. This test, and many others, all begin off with the user starting a new list. What
if we had a helper function called “start new list” that would do the wait_for as well as
the list item input?

We’ve already seen how to use helper methods on the base FunctionalTest class, but
if we continue using too many of them, it’s going to get very crowded. I’ve worked on a
base FT class that was over 1,500 lines long, and that got pretty unwieldy.

One accepted pattern for splitting up your FT helper code is called the Page pattern,
and it involves having objects to represent the different pages on your site, and to be the
single place to store information about how to interact with them.

Let’s see how we would create Page objects for the home and lists pages. Here’s one for
the home page:

functional_tests/home_and_list_pages.py.
class HomePage(object):

 def __init__(self, test):
 self.test = test #

 def go_to_home_page(self): #
 self.test.browser.get(self.test.server_url)
 self.test.wait_for(self.get_item_input)
 return self #

 def get_item_input(self):
 return self.test.browser.find_element_by_id('id_text')

 def start_new_list(self, item_text): #
 self.go_to_home_page()
 inputbox = self.get_item_input()
 inputbox.send_keys(item_text + '\n')
 list_page = ListPage(self.test) #

390 | Chapter 21: The Token Social Bit, the Page Pattern, and an Exercise for the Reader

http://www.seleniumhq.org/docs/06_test_design_considerations.jsp#page-object-design-pattern

 list_page.wait_for_new_item_in_list(item_text, 1) #
 return list_page #

It’s initialised with an object that represents the current test. That gives us the
ability to make assertions, access the browser instance via self.test.brows
er, and use the wait_for function.
Most Page objects have a “go to this page” function. Notice that it implements
the interaction/wait pattern—first we get the page URL, then we wait for an
element that we know is on the home page.
Returning self is just a convenience. It enables method chaining.
Here’s our function that starts a new list. It goes to the home page, finds the input
box, and sends the new item text to it, as well as a carriage return. Then it uses
a wait to check that the interaction has completed, but as you can see that wait
is actually on a different Page object:
The ListPage, which we’ll see the code for shortly. It’s initialised just like a
HomePage.
We use the ListPage to wait_for_new_item_in_list. We specify the expected
text of the item, and its expected position in the list.
Finally, we return the list_page object to the caller, because they will probably
find it useful (as we’ll see shortly).

Here’s how ListPage looks:
functional_tests/home_and_list_pages.py (ch21l006).

[...]

class ListPage(object):

 def __init__(self, test):
 self.test = test

 def get_list_table_rows(self):
 return self.test.browser.find_elements_by_css_selector(
 '#id_list_table tr'
)

 def wait_for_new_item_in_list(self, item_text, position):
 expected_row = '{}: {}'.format(position, item_text)
 self.test.wait_for(lambda: self.test.assertIn(
 expected_row,
 [row.text for row in self.get_list_table_rows()]
))

The Page Pattern | 391

https://en.wikipedia.org/wiki/Method_chaining

It’s usually best to have a separate file for each Page object. In this case,
HomePage and ListPage are so closely related it’s easier to keep them
together.

Let’s see how to use it in our test:
functional_tests/test_sharing.py (ch21l007).

from .home_and_list_pages import HomePage
[...]

 # Edith goes to the home page and starts a list
 self.browser = edith_browser
 list_page = HomePage(self).start_new_list('Get help')

Let’s continue rewriting our test, using the Page object whenever we want to access
elements from the lists page:

functional_tests/test_sharing.py (ch21l008).
 # She notices a "Share this list" option
 share_box = list_page.get_share_box()
 self.assertEqual(
 share_box.get_attribute('placeholder'),
 'your-friend@example.com'
)

 # She shares her list.
 # The page updates to say that it's shared with Oniciferous:
 list_page.share_list_with('oniciferous@example.com')

We add the following three functions to our ListPage:
functional_tests/home_and_list_pages.py (ch21l009).

 def get_share_box(self):
 return self.test.browser.find_element_by_css_selector(
 'input[name=email]'
)

 def get_shared_with_list(self):
 return self.test.browser.find_elements_by_css_selector(
 '.list-sharee'
)

 def share_list_with(self, email):
 self.get_share_box().send_keys(email + '\n')
 self.test.wait_for(lambda: self.test.assertIn(
 email,
 [item.text for item in self.get_shared_with_list()]
))

392 | Chapter 21: The Token Social Bit, the Page Pattern, and an Exercise for the Reader

The idea behind the Page pattern is that it should capture all the information about a
particular page in your site, so that if, later, you want to go and make changes to that
page—even just simple tweaks to its HTML layout for example—you have a single place
to go and look for to adjust your functional tests, rather than having to dig through
dozens of FTs.

The next step would be to pursue the FT refactor through our other tests. I’m not going
to show that here, but it’s something you could do, for practice, to get a feel for what the
trade-offs between D.R.Y. and test readability are like…

Extend the FT to a Second User, and the “My Lists” Page
Let’s spec out just a little more detail of what we want our sharing user story to be. Edith
has seen on her list page that the list is now “shared with” Oniciferous, and then we can
have Oni log in and see the list on his “My Lists” page, maybe in a section called “lists
shared with me”:

functional_tests/test_sharing.py (ch21l010).
 [...]
 list_page.share_list_with('oniciferous@example.com')

 # Oniciferous now goes to the lists page with his browser
 self.browser = oni_browser
 HomePage(self).go_to_home_page().go_to_my_lists_page()

 # He sees Edith's list in there!
 self.browser.find_element_by_link_text('Get help').click()

That means another function in our HomePage class:
functional_tests/home_and_list_pages.py (ch21l011).

class HomePage(object):

 [...]

 def go_to_my_lists_page(self):
 self.test.browser.find_element_by_link_text('My lists').click()
 self.test.wait_for(lambda: self.test.assertEqual(
 self.test.browser.find_element_by_tag_name('h1').text,
 'My Lists'
))

Once again, this is a function that would be good to carry across into test_my_lists.py,
along with maybe a MyListsPage object. Exercise for the reader!

In the meantime, Oniciferous can also add things to the list:
functional_tests/test_sharing.py (ch21l012).

 # On the list page, Oniciferous can see says that it's Edith's list
 self.wait_for(lambda: self.assertEqual(
 list_page.get_list_owner(),
 'edith@example.com'

Extend the FT to a Second User, and the “My Lists” Page | 393

))

 # He adds an item to the list
 list_page.add_new_item('Hi Edith!')

 # When Edith refreshes the page, she sees Oniciferous's addition
 self.browser = edith_browser
 self.browser.refresh()
 list_page.wait_for_new_item_in_list('Hi Edith!', 2)

That’s a couple more additions to our Page object:
functional_tests/home_and_list_pages.py (ch21l013).

ITEM_INPUT_ID = 'id_text'
[...]

class HomePage(object):
 [...]

 def get_item_input(self):
 return self.test.browser.find_element_by_id(ITEM_INPUT_ID)

class ListPage(object):
 [...]

 def get_item_input(self):
 return self.test.browser.find_element_by_id(ITEM_INPUT_ID)

 def add_new_item(self, item_text):
 current_pos = len(self.get_list_table_rows())
 self.get_item_input().send_keys(item_text + '\n')
 self.wait_for_new_item_in_list(item_text, current_pos + 1)

 def get_list_owner(self):
 return self.test.browser.find_element_by_id('id_list_owner').text

It’s long past time to run the FT and check if all of this works!
$ python3 manage.py test functional_tests.test_sharing

 share_box = list_page.get_share_box()
 [...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"css selector","selector":"input[name=email]"}

That’s the expected failure; we don’t have an input for email addresses of people to share
with. Let’s do a commit:

$ git add functional_tests
$ git commit -m "Create Page objects for Home and List pages, use in sharing FT"

394 | Chapter 21: The Token Social Bit, the Page Pattern, and an Exercise for the Reader

An Exercise for the Reader
I probably didn’t really understand what I was doing until after having completed the

“Exercise for the reader” in Chapter 21.”
— Iain H. (reader)

There’s nothing that cements learning like taking the training wheels off, and getting
something working on your own, so I hope you’ll give this a go.

Here’s an outline of the steps you could take:

1. We’ll need a new section in list.html, with, at first, a form with an input box for an
email address. That should get the FT one step further.

2. Next, we’ll need a view for the form to submit to. Start by defining the URL in the
template, maybe something like lists/<list_id>/share.

3. Then, our first unit test. It can be just enough to get a placeholder view in. We want
the view to respond to POST requests, and it should respond with a redirect back
to the list page, so the test could be called something like ShareList
Test.test_post_redirects_to_lists_page.

4. We build out our placeholder view, as just a two-liner that finds a list and redirects
to it.

5. We can then write a new unit test which creates a user and a list, does a POST with
their email address, and checks the user is added to list_.shared_with.all() (a
similar ORM usage to “My Lists”). That shared_with attribute won’t exist yet, we’re
going outside-in.

6. So before we can get this test to pass, we have to move down to the model layer.
The next test, in test_models.py, can check that a list has a shared_with.add meth‐
od, which can be called with a user’s email address and then check the lists’
shared_with.all() queryset, which will subsequently contain that user.

7. You’ll then need a ManyToManyField. You’ll probably see an error message about a
clashing related_name, which you’ll find a solution to if you look around the
Django docs.

8. It will need a database migration.
9. That should get the model tests passing. Pop back up to fix the view test.

10. You may find the redirect view test fails, because it’s not sending a valid POST
request. You can either choose to ignore invalid inputs, or adjust the test to send a
valid POST.

11. Then back up to the template level; on the “My Lists” page we’ll want a with
a for loop of the lists shared with the user. On the lists page, we also want to show
who the list is shared with, as well as mention of who the list owner is. Look back

An Exercise for the Reader | 395

at the FT for the correct classes and IDs to use. You could have brief unit tests for
each of these if you like, as well.

12. You might find that spinning up the site with runserver will help you iron out any
bugs, as well as fine-tune the layout and aesthetics. If you use a private browser
session, you’ll be able to log multiple users in.

By the end, you might end up with something that looks like Figure 21-1.

Figure 21-1. Sharing lists

The Page Pattern, and the Real Exercise for the Reader
Apply DRY to your functional tests

Once your FT suite starts to grow, you’ll find that different tests will inevitably find
themselves using similar parts of the UI. Try to avoid having constants, like the
HTML IDs or classes of particular UI elements duplicated between your FTs.

The Page pattern
Moving helper methods into a base FunctionalTest class can become unwieldy.
Consider using individual Page objects to hold all the logic for dealing with par‐
ticular parts of your site.

An exercise for the reader
I hope you’ve actually tried this out! Try to follow the “Outside-In” method, and
occasionally try things out manually if you get stuck. The real exercise for the reader,
of course, is to apply TDD to your next project. I hope you’ll enjoy it!

In the next chapter, we’ll wrap up with a discussion of testing “best practices”.

396 | Chapter 21: The Token Social Bit, the Page Pattern, and an Exercise for the Reader

CHAPTER 22
Fast Tests, Slow Tests, and Hot Lava

The database is Hot Lava!
— Casey Kinsey

Right up until Chapter 19, almost all of the “unit” tests in the book should perhaps have
been called integrated tests, because they either rely on the database, or they use the
Django test client, which does too much magic with the middleware layers that sit be‐
tween requests, responses, and view functions.

There is an argument that a true unit test should always be isolated, because it’s meant
to test a single unit of software.

Some TDD veterans say you should strive to write “pure”, isolated unit tests wherever
possible, instead of writing integrated tests. It’s one of the ongoing (occasionally heated)
debates in the testing community.

Being merely a young whippersnapper myself, I’m only part way towards all the sub‐
tleties of the argument. But in this chapter, I’d like to try and talk about why people feel
strongly about it, and try and give you some idea of when you can get away with mud‐
dling through with integrated tests (which I confess I do a lot of!), and when it’s worth
striving for more “pure” unit tests.

Terminology: Different Types of Test
Isolated tests (“pure” unit tests) vs. integrated tests

The primary purpose of a unit test should be to verify the correctness of the logic
of your application. An isolated test is one that tests exactly one chunk of code, and
whose success or failure does not depend on any other external code. This is what
I call a “pure” unit test: a test for a single function, for example, written in such a
way that only that function can make it fail. If the function depends on another
system, and breaking that system breaks our test, we have an integrated test. That

397

https://www.youtube.com/watch?v=bsmFVb8guMU

system could be an external system, like a database, but it could also be another
function which we don’t control. In either case, if breaking the system makes our
test fail, our test is not properly isolated, it is not a “pure” unit test. That’s not
necessarily a bad thing, but it may mean the test is doing two jobs at once.

Integration tests
An integration test checks that the code you control is integrated correctly with
some external system which you don’t control. Integration tests are typically also
integrated tests.

System tests
If an integration test checks the integration with one external system, a system test
checks the integration of multiple systems in your application—for example, check‐
ing that we’ve wired up our database, static files, and server config together in such
a way that they all work.

Functional tests and acceptance tests
An acceptance test is meant to test that our system works from the point of view of
the user (“would the user accept this behaviour?”). It’s hard to write an acceptance
test that’s not a full-stack, end-to-end test. We’ve been using our functional tests to
play the role of both acceptance tests and system tests.

If you’ll forgive me the pretentious philosophical terminology, I’m going to follow a
Hegelian dialectical structure:

• The Thesis: the case for “pure” unit tests that are fast.
• The Antithesis: some of the risks associated with a (naive) pure unit testing

approach.
• The Synthesis: a discussion of best practices like “Ports and Adapters” or “Func‐

tional Core, Imperative Shell”, and of just what it is that we want from our tests,
anyway.

Thesis: Unit Tests Are Superfast and Good Besides That
One of the things you often hear about unit tests is that they’re much faster. I don’t think
that’s actually the primary benefit of unit tests, but it’s worth exploring the theme of
speed.

Faster Tests Mean Faster Development
Other things being equal, the faster your unit tests run, the better. To a lesser extent, the
faster all your tests run, the better.

398 | Chapter 22: Fast Tests, Slow Tests, and Hot Lava

I’ve outlined the TDD test/code cycle in this book. You’ve started to get a feel for the
TDD workflow, the way you flick between writing tiny amounts of code, and running
your tests. You end up running your unit tests several times a minute, and your func‐
tional tests several times a day.

So, on a very basic level, the longer they take, the more time you spend waiting for your
tests, and that will slow down your development. But there’s more to it than that.

The Holy Flow State
Thinking sociology for a moment, we programmers have our own culture, and our own
tribal religion in a way. It has many congregations within it, such as the cult of TDD to
which you are now initiated. There are the followers of vi and the heretics of emacs. But
one thing we all agree on, one particular spiritual practice, our own transcendental
meditation, is the holy flow state. That feeling of pure focus, of concentration, where
hours pass like no time at all, where code flows naturally from our fingers, where prob‐
lems are just tricky enough to be interesting but not so hard that they defeat us…

There is absolutely no hope of achieving flow if you spend your time waiting for a slow
test suite to run. Anything longer than a few seconds and you’re going to let your at‐
tention wander, you context-switch, and the flow state is gone. And the flow state is a
fragile dream. Once it’s gone, it takes at least 15 minutes to live again.

Slow Tests Don’t Get Run as Often, Which Causes Bad Code
If your test suite is slow and ruins your concentration, the danger is that you’ll start to
avoid running your tests, which may lead to bugs getting through. Or, it may lead to
our being shy of refactoring the code, since we know that any refactor will mean having
to wait ages while all the tests run. In either case, bad code can be the result.

We’re Fine Now, but Integrated Tests Get Slower Over Time
You might be thinking, OK, but our test suite has lots of integrated tests in it—over 50
of them, and it only takes 0.2 seconds to run.

But remember, we’ve got a very simple app. Once it starts to get more complex, as your
database grows more and more tables and columns, integrated tests will get slower and
slower. Having Django reset the database between each test will take longer and longer.

Don’t Take It from Me
Gary Bernhardt, a man with far more experience of testing than me, put these points
eloquently in a talk called Fast Test, Slow Test. I encourage you to watch it.

Thesis: Unit Tests Are Superfast and Good Besides That | 399

https://www.youtube.com/watch?v=RAxiiRPHS9k

And Unit Tests Drive Good Design
But perhaps more importantly than any of this, remember the lesson from Chapter 19.
Going through the process of writing good, isolated unit tests can help us drive out
better designs for our code, by forcing us to identify dependencies, and encouraging us
towards a decoupled architecture in a way that integrated tests don’t.

The Problems with “Pure” Unit Tests
All of this comes with a huge “but”. Writing isolated united tests comes with its own
hazards, particularly if, like you or I, we are not yet advanced TDD’ers.

Isolated Tests Can Be Harder to Read and Write
Cast your mind back to the first isolated unit test we wrote. Wasn’t it ugly? Admittedly,
things improved when we refactored things out into the forms, but imagine if we hadn’t
followed through? We’d have been left with a rather unreadable test in our codebase.
And even the final version of the tests we ended up with contain some pretty mind-
bending bits.

Isolated Tests Don’t Automatically Test Integration
As we saw a little later on, isolated tests by their nature only test the unit under test, in
isolation. They won’t test the integration between your units.

This problem is well known, and there are ways of mitigating it. But, as we saw, those
mitigations involve a fair bit of hard work on the part of the programmer—you need to
remember to keep track of the interfaces between your units, to identify the implicit
contract that each component needs to honour, and you need to write tests for those
contracts as well as for the internal functionality of your unit.

Unit Tests Seldom Catch Unexpected Bugs
Unit tests will help you catch off-by-one errors and logic snafus, which are the kinds of
bugs we know we introduce all the time, so in a way we are expecting them. But they
don’t warn you about some of the more unexpected bugs. They won’t remind you when
you forgot to create a database migration. They won’t tell you when the middleware
layer is doing some clever HTML-entity escaping that’s interfering with the way your
data is rendered…something like Donald Rumsfeld’s unknown unknowns?

Mocky Tests Can Become Closely Tied to Implementation
And finally, mocky tests can become very tightly coupled with the implementation. If
you choose to use List.objects.create() to build your objects but your mocks are

400 | Chapter 22: Fast Tests, Slow Tests, and Hot Lava

expecting you to use List() and .save(), you’ll get failing tests even though the actual
effect of the code would be the same. If you’re not careful, this can start to work against
one of the supposed benefits of having tests, which was to encourage refactoring. You
can find yourself having to change dozens of mocky tests and contract tests when you
want to change an internal API.

Notice that this may be more of a problem when you’re dealing with an API you don’t
control. You may remember the contortions we had to go through to test our form,
mocking out two Django model classes and using side_effect to check on the state of
the world. If you’re writing code that’s totally under your own control, you’re likely to
design your internal APIs so that they are cleaner and require less contortions to test.

But All These Problems Can Be Overcome
But, isolation advocates will come back and say, all that stuff can be mitigated, you just
need to get better at writing isolated tests, and, remember the holy flow state? The holy
flow state!

So where are we?

Synthesis: What Do We Want from Our Tests, Anyway?
Let’s step back and have a think about what benefits we want our tests to deliver. Why
are we writing them in the first place?

Correctness
We want our application to be free of bugs—both low-level logic errors, like off-by-one
errors, and high-level bugs like the software ultimately should deliver what our users
want. We want to find out if we ever introduce regressions which break something that
used to work, and we want to find that out before our users see something broken. We
expect our tests to tell us our application is correct.

Clean, Maintainable Code
We want our code to obey rules like “YAGNI” and “DRY”. We want code that clearly
expresses its intentions, which is broken up into sensible components that have well-
defined responsibilities and are easily understood. We expect our tests to give us the
confidence to refactor our application constantly, so that we’re never scared to try and
improve its design, and we would also like it if they would actively help us to find the
right design.

Synthesis: What Do We Want from Our Tests, Anyway? | 401

Productive Workflow
Finally, we want our tests to help enable a fast and productive workflow. We want them
to help take some of the stress out of development, we want them to protect us from
stupid mistakes. We want them to help keep us in the “flow” state not just because we
enjoy it, but because it’s highly productive. We want our tests to give us feedback about
our work as quickly as possible, so that we can try out new ideas and evolve them quickly.
And we don’t want to feel like our tests are more of a hindrance than a help when it
comes to evolving our codebase.

Evaluate Your Tests Against the Benefits You Want from Them
I don’t think there are any universal rules about how many tests you should write and
what the correct balance between functional, integrated, and isolated tests should be.
Circumstances vary between projects. But, by thinking about all of your tests and asking
whether they are delivering the benefits you want, you can make some decisions.

Objective Some considerations

Correctness • Do I have enough functional tests to reassure myself that my application really works, from the point of
view of the user?

• Am I testing all the edge cases thoroughly? This feels like a job for low-level, isolated tests.
• Do I have tests that check whether all my components fit together properly? Could some integrated tests

do this, or are functional tests enough?

Clean,
maintainable
code

• Are my tests giving me the confidence to refactor my code, fearlessly and frequently?
• Are my tests helping me to drive out a good design? If I have a lot of integrated tests and few isolated

tests, are there any parts of my application where putting in the effort to write more isolated tests would
give me better feedback about my design?

Productive
workflow

• Are my feedback cycles as fast as I would like them? When do I get warned about bugs, and is there any
practical way to make that happen sooner?

• If I have a lot of high-level, functional tests, that take a long time to run, and I have to wait overnight
to get feedback about accidental regressions, is there some way I could write some faster tests, integrated
tests perhaps, that would get me feedback quicker?

• Can I run a subset of the full test suite when I need to?
• Am I spending too much time waiting for tests to run, and thus less time in a productive flow state?

Architectural Solutions
There are also some architectural solutions that can help to get the most out of your test
suite, and particularly that help avoid some of the disadvantages of isolated tests.

Mainly these involve trying to identify the boundaries of your system—the points at
which your code interacts with external systems, like the database or the filesystem, or

402 | Chapter 22: Fast Tests, Slow Tests, and Hot Lava

the Internet, or the UI—and trying to keep them separate from the core business logic
of your application.

Ports and Adapters/Hexagonal/Clean Architecture
Integrated tests are most useful at the boundaries of a system—at the points where our
code integrates with external systems, like a database, filesystem, or UI components.

Similarly, it’s at the boundaries that the downsides of test isolation and mocks are at
their worst, because it’s at the boundaries that you’re most likely to be annoyed if your
tests are tightly coupled to an implementation, or to need more reassurance that things
are integrated properly.

Conversely, code at the core of our application—code that’s purely concerned with our
business domain and business rules, code that’s entirely under our control—this code
has less need for integrated tests, since we control and understand all of it.

So one way of getting what we want is to try and minimise the amount of our code that
has to deal with boundaries. Then we test our core business logic with isolated tests and
test our integration points with integrated tests.

Steve Freeman and Nat Pryce, in their book Growing Object-Oriented Software, call
this approach “Ports and Adapters” (see Figure 22-1).

We actually started moving towards a ports and adapters architecture in Chapter 19,
when we found that writing isolated unit tests was encouraging us to push ORM code
out of the main application, and hide it in helper functions from the model layer.

This pattern is also sometimes known as “The Clean architecture” or “Hexagonal Ar‐
chitecture”. See the further reading section at the end for more info.

Functional Core, Imperative Shell
Gary Bernhardt pushes this further, recommending an architecture he calls “Functional
Core, Imperative Shell”, whereby the “shell” of the application, the place where interac‐
tion with boundaries happens, follows the imperative programming paradigm, and can
be tested by integrated tests, acceptance tests, or even (gasp!) not at all, if it’s kept minimal
enough. But the core of the application is actually written following the functional pro‐
gramming paradigm (complete with the “no side effects” corollary), which actually
allows fully isolated, “pure” unit tests, entirely without mocks.
Check out Gary’s presentation titled “Boundaries” for more on this approach.

Architectural Solutions | 403

https://www.youtube.com/watch?v=eOYal8elnZk

Figure 22-1. Ports and Adapters (diagram by Nat Pryce)

Conclusion
I’ve tried to give an overview of some of the more advanced considerations that come
into the TDD process. Mastery of these topics is something that comes from long years
of practice, and therefore I’m grossly underqualified to talk about these things. So I
heartily encourage you to take everything I’ve said with a pinch of salt, to go out there
and find out what works for you, and most importantly to go and find the opinions of
some real experts!

Here are some places to go for further reading.

404 | Chapter 22: Fast Tests, Slow Tests, and Hot Lava

Further Reading
Fast Test, Slow Test and Boundaries

Gary Bernhardt’s talks from Pycon 2012 and 2013. His screencasts are also well
worth a look.

Ports and Adapters
Steve Freeman and Nat Pryce wrote about this in their book. You can also catch a
good discussion of the idea in this talk. See also Uncle Bob’s description of the clean
architecture, and Alistair Cockburn coining the term Hexagonal Architecture.

Hot Lava
Casey Kinsey’s memorable warning about avoiding the database whenever you can.

Inverting the Pyramid
The idea that projects end up with too great a ratio of slow, high-level tests to unit
tests, and a visual metaphor for the effort to invert that ratio.

Integrated tests are a scam
J.B. Rainsberger has a famous rant about the way integrated tests will ruin your life,
here. Watch the video presentation here or here (there are two videos available,
though neither has perfect cinematography). Then check out a couple of follow-up
posts, particularly this defence of acceptance tests (what I call functional tests), and
this analysis of how slow tests kill productivity.

A pragmatic view
Martin Fowler (author of Refactoring) presents a reasonably balanced, pragmatic
approach.

Conclusion | 405

https://www.youtube.com/watch?v=RAxiiRPHS9k
https://www.youtube.com/watch?v=eOYal8elnZk
http://www.destroyallsoftware.com
http://vimeo.com/83960706
http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html
http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html
http://alistair.cockburn.us/Hexagonal+architecture
https://www.youtube.com/watch?v=bsmFVb8guMU
http://watirmelon.com/tag/testing-pyramid/
http://blog.thecodewhisperer.com/2010/10/16/integrated-tests-are-a-scam/
http://www.infoq.com/presentations/integration-tests-scam
http://vimeo.com/80533536
http://www.jbrains.ca/permalink/using-integration-tests-mindfully-a-case-study
http://www.jbrains.ca/permalink/part-2-some-hidden-costs-of-integration-tests
http://martinfowler.com/bliki/UnitTest.html
http://martinfowler.com/bliki/UnitTest.html

Obey the Testing Goat!

Back to the Testing Goat.

Groan, I hear you say, Harry, the Testing Goat stopped being funny about 17 chapters
ago. Bear with me, I’m going to use it to make a serious point.

Testing Is Hard
I think the reason the phrase “Obey the Testing Goat” first grabbed me when I saw it
was that it really spoke to the fact that testing is hard—not hard to do in and of itself,
but hard to stick to, and hard to keep doing.

It always feels easier to cut corners and skip a few tests. And it’s doubly hard psycho‐
logically because the payoff is so disconnected from the point at which you put in the
effort. A test you spend time writing now doesn’t reward you immediately, it only helps
much later—perhaps months later when it saves you from introducing a bug while
refactoring, or catches a regression when you upgrade a dependency. Or, perhaps it pays
you back in a way that’s hard to measure, by encouraging you to write better designed
code, but you convince yourself you could have written it just as elegantly without tests.

I myself started slipping when I was writing the test framework for this book. Being a
quite complex beast, it has tests of its own, but I cut several corners, coverage isn’t perfect,
and I now regret it because it’s turned out quite unwieldy and ugly (I’ll open source it
one day so you can all point and laugh).

Keep Your CI Builds Green
Another area that takes real hard work is continuous integration. You saw in Chap‐
ter 20 that strange and unpredictable bugs sometimes occur on CI. When you’re looking
at these and thinking “it works fine on my machine”, there’s a strong temptation to just
ignore them … but, if you’re not careful, you start to tolerate a failing test suite in CI,
and pretty soon your CI build is actually useless, and it feels like too much work to get

407

it going again. Don’t fall into that trap. Persist, and you’ll find the reason that your test
is failing, and you’ll find a way to lock it down and make it deterministic, and green,
again.

Take Pride in Your Tests, as You Do in Your Code
One of the things that helps is to stop thinking of your tests as being an incidental add-
on to the “real” code, and to start thinking of them as being a part of the finished product
that you’re building—a part that should be just as finely polished, just as aesthetically
pleasing, and a part you can be justly proud of delivering…

So do it because the Testing Goat says so. Do it because you know the payoff will be
worth it, even if it’s not immediate. Do it out of a sense of duty, or professionalism, or
OCD, or sheer bloody-mindedness. Do it because it’s a good thing to practice. And,
eventually, do it because it makes software development more fun.

Remember to Tip the Bar Staff
This book wouldn’t have been possible without the backing of my publisher, the won‐
derful O’Reilly Media. If you’re reading the free edition online, I hope you’ll consider
buying a real copy … if you don’t need one for yourself, then maybe as a gift for a friend?

Don’t Be a Stranger!
I hope you enjoyed the book. Do get in touch and tell me what you thought!

Harry.

• @hjwp
• obeythetestinggoat@gmail.com

408 | Obey the Testing Goat!

http://www.jdoqocy.com/click-7347114-11724864
https://twitter.com/hjwp
mailto:obeythetestinggoat@gmail.com

APPENDIX A
PythonAnywhere

This book is based on the assumption that you’re running Python and coding on your
own computer. Of course, that’s not the only way to code Python these days, you could
use an online platform like PythonAnywhere (which is where I work, incidentally).

It is possible to follow along with the book on PythonAnywhere, but it does require
several tweaks and changes — you’ll need to use a virtualenv from the very beginning,
you’ll need to set up a web app instead of the test server, you’l need to use Xvfb to run
the Functional Tests, and, once you get to the deployment chapters, you’ll need to up‐
grade to a paying account. So, it is possible, but it might be easier to follow along on
your own PC.

With that caveat, if you’re still keen to give it a try, here are some details on what you
need to do.

If you haven’t already, you’ll need to sign up for a PythonAnywhere account. A free one
should be fine.

Then, start a Bash Console from the consoles page. That’s where we’ll do most of our
work.

Starting a virtualenv
At the time of writing, PythonAnywhere had Django 1.6 as its default version under
Python 3. Since we need a newer version than that, we’re going to use a virtualenv (in
the book, we start using a virtualenv a bit later, in Chapter 8).

Here’s how to create a virtualenv named “superlists” and install Django and Selenium
into it:

$ mkvirtualenv --python=/usr/bin/python3.4 superlists
Running virtualenv with interpreter /usr/bin/python3.4
Using base prefix /usr

409

New python executable in superlists/bin/python3.4
Also creating executable in superlists/bin/python
Installing setuptools, pip, wheel...done.
(superlists)$ pip install django==1.8.4 selenium
Collecting django==1.8.4
[...]
Successfully installed django-1.8.4 selenium-2.46.0

Notice how the prompt changed to have (superlists) at the beginning of it; that tells
you your virtualenv is active. You can check it’s active by seeing what the versions of
Python and Django are:

(superlists)$ python --version
Python 3.4.0
(superlists)$ python3 --version
Python 3.4.0
(superlists)$ python3 -c"import django; print(django.get_version())"
1.8.4
(superlists)$ deactivate
$ python --version
Python 2.7.6
$ python3 --version
Python 3.3.6
$ python3 -c"import django; print(django.get_version())"
1.6.6

From now on, always look out for that (superlists)$ prompt. If it’s not there, you need
to activate your virtualenv, using the workon command:

$ *python3 -c"import django; print(django.get_version())"*
1.6.6
$ *workon superlists*
(superlists)$ *python3 -c"import django; print(django.get_version())"*
1.8.4

Running Firefox Selenium Sessions with Xvfb
The next thing is that PythonAnywhere is a console-only environment, so it doesn’t
have a display in which to pop up Firefox. But we can use a virtual display.

In Chapter 1, when we write our first ever test, you’ll find things don’t work as expected.
The first test looks like this, and you can type it in using the PythonAnywhere editor
just fine:

from selenium import webdriver
browser = webdriver.Firefox()
browser.get('http://localhost:8000')
assert 'Django' in browser.title

But when you try and run it (in a Bash console), you’ll get an error:

410 | Appendix A: PythonAnywhere

(superlists)$ python3 functional_tests.py
Traceback (most recent call last):
File "tests.py", line 3, in <module>
browser = webdriver.Firefox()
[...]
selenium.common.exceptions.WebDriverException: Message: 'The browser appears to
have exited before we could connect. The output was: Error: no display
specified\n'

The fix is to use Xvfb, which stands for X Virtual Framebuffer. It will start up a “virtual”
display, which Firefox can use even though the server doesn’t have a real one.

The command xvfb-run will run the next command in Xvfb. Using that will give us our
expected failure:

(superlists)$ xvfb-run python3 functional_tests.py
Traceback (most recent call last):
File "tests.py", line 11, in <module>
assert 'Django' in browser.title
AssertionError

So the lesson is to use xvfb-run whenever you need to run the functional tests.

Setting Up Django as a PythonAnywhere Web App
Shortly after that, we set up Django, using the django-admin.py startproject com‐
mand. But, instead of using manage.py runserver to run the local development server,
we’ll set up our site as a real PythonAnywhere web app.

Go to the Web tab and hit the button to add a new web app. Choose “Manual configu‐
ration” and then “Python 3.4”.

On the next screen, enter your virtualenv name (“superlists”), and when you submit it
should autocomplete to /home/yourusername/.virtualenvs/superlists.
Finally, click through to the link to edit your wsgi file and find and uncomment the
section for Django. Hit Save and then Reload to refresh your web app.

From now on, instead of running the test server from a console on localhost:8000,
you can use the real URL of your PythonAnywhere web app:

 browser.get('http://my-username.pythonanywhere.com')

You’ll need to remember to hit Reload whenever you make changes
to the code, to update the site.

Setting Up Django as a PythonAnywhere Web App | 411

1. You could run the Django dev server from a console instead, but the problem is that PythonAnywhere consoles
don’t always run on the same server, so there’s no guarantee that the console you’re running your tests in is
the same as the one you’re running the server in. Plus, when it’s running in the console, there’s no easy way
of visually inspecting how the site looks.

That should work better.1 You’ll need to keep using this pattern of pointing the FTs at
the PythonAnywhere version of the site, and hitting Reload before each FT run, until
Chapter 6, when we switch to using LiveServerTestCase and self.live_server_url.

Cleaning Up /tmp
Selenium and Xvfb tend to leave a lot of junk lying around in /tmp, especially when
they’re not shut down tidily (that’s why I included a try/finally earlier).

In fact they leave so much stuff lying around that they might max out your storage quota.
So do a tidy-up in /tmp every so often:

$ rm -rf /tmp/*

Screenshots
In Chapter 5, I suggest using a time.sleep to pause the FT as it runs, so that we can see
what the Selenium browser is showing on screen. We can’t do that on PythonAnywhere,
because the browser runs in a virtual display. Instead, you can inspect the live site, or
you could “take my word for it” regarding what you should see.

The best way of doing visual inspections of tests that run in a virtual display is to use
screenshots. Take a look at Chapter 20 if you’re curious—there’s some example code in
there.

The Deployment Chapter
When you hit Chapter 8, you’ll have the choice of continuing to use PythonAnywhere,
or of learning how to build a “real” server. I recommend the latter, because you’ll get
the most out of it.

If you really want to stick with PythonAnywhere, which is cheating really, you could
sign up for a second PythonAnywhere account and use that as your staging site. Or you
could add a second domain to your existing account. But most of the instructions in
the chapter will be irrelevant (there’s no need for nginx or gunicorn or domain sockets
on PythonAnywhere).

412 | Appendix A: PythonAnywhere

One way or another, at this point, you’ll probably need a paying account:

• If you want to run your staging site on a non-PythonAnywhere domain
• If you want to be able to run the FTs against a non-PythonAnywhere domain (be‐

cause it won’t be on our whitelist)
• Once you get to Chapter 9, if you want to run fabric against a PythonAnywhere

account (because you need SSH).

If you want to just “cheat”, you could try running the FTs in “staging” mode against your
existing web app, and just skip the fabric stuff, although that’s a big cop-out if you ask
me. Hey, you can always upgrade your account and then cancel again straight away, and
claim a refund under the 30-day guarantee. ;)

If you are using PythonAnywhere to follow through with the book,
I’d love to hear how you get on! Do send me an email at obeythetes
tinggoat@gmail.com.

The Deployment Chapter | 413

mailto:obeythetestinggoat@gmail.com
mailto:obeythetestinggoat@gmail.com

APPENDIX B
Django Class-Based Views

This appendix follows on from Chapter 12, in which we implemented Django forms for
validation, and refactored our views. By the end of that chapter, our views were still
using functions.

The new shiny in the Django world, however, is class-based views. In this appendix,
we’ll refactor our application to use them instead of view functions. More specifically,
we’ll have a go at using class-based generic views.

Class-Based Generic Views
There’s a difference between class-based views and class-based generic views. Class-
based views are just another way of defining view functions. They make few assumptions
about what your views will do, and they offer one main advantage over view functions,
which is that they can be subclassed. This comes, arguably, at the expense of being less
readable than traditional function-based views. The main use case for plain class-based
views is when you have several views that reuse the same logic. We want to obey the
DRY principle. With function-based views, you would use helper functions or decora‐
tors. The theory is that using a class structure may give you a more elegant solution.

Class-based generic views are class-based views that attempt to provide ready-made
solutions to common use cases: fetching an object from the database and passing it to
a template, fetching a list of objects, saving user input from a POST request using a
ModelForm, and so on. These sound very much like our use cases, but as we’ll soon see,
the devil is in the detail.

I should say at this point that I’ve not used either kind of class-based views much. I can
definitely see the sense in them, and there are potentially many use cases in Django apps
where CBGVs would fit in perfectly. However, as soon as your use case is slightly outside
the basics—as soon as you have more than one model you want to use, for example—I

415

find that using class-based views can (again, debatably) lead to code that’s much harder
to read than a classic view function.

Still, because we’re forced to use several of the customisation options for class-based
views, implementing them in this case can teach us a lot about how they work, and how
we can unit test them.

My hope is that the same unit tests we use for function-based views should work just as
well for class-based views. Let’s see how we get on.

The Home Page as a FormView
Our home page just displays a form on a template:

def home_page(request):
 return render(request, 'home.html', {'form': ItemForm()})

Looking through the options, Django has a generic view called FormView—let’s see how
that goes:

lists/views.py (ch31l001).
from django.views.generic import FormView
[...]

class HomePageView(FormView):
 template_name = 'home.html'
 form_class = ItemForm

We tell it what template we want to use, and which form. Then, we just need to update
urls.py, replacing the line that used to say lists.views.home_page:

superlists/urls.py (ch31l002).
from lists.views import HomePageView
[...]

 url(r'^$', HomePageView.as_view(), name='home'),

And the tests all check out! That was easy…
$ python3 manage.py test lists
[...]

Ran 34 tests in 0.119s
OK

$ python3 manage.py test functional_tests
[...]

Ran 4 tests in 15.160s
OK

So far so good. We’ve replaced a one-line view function with a two-line class, but it’s still
very readable. This would be a good time for a commit…

416 | Appendix B: Django Class-Based Views

https://docs.djangoproject.com/en/1.6/ref/class-based-views/

Using form_valid to Customise a CreateView
Next we have a crack at the view we use to create a brand new list, currently the new_list
function. Here’s what it looks like now:

lists/views.py.
def new_list(request):
 form = ItemForm(data=request.POST)
 if form.is_valid():
 list = List.objects.create()
 form.save(for_list=list_)
 return redirect(list_)
 else:
 return render(request, 'home.html', {"form": form})

Looking through the possible CBGVs, we probably want a CreateView, and we know
we’re using the ItemForm class, so let’s see how we get on with them, and whether the
tests will help us:

lists/views.py (ch31l003).
from django.views.generic import FormView, CreateView
[...]

class NewListView(CreateView):
 form_class = ItemForm

def new_list(request):
 [...]

I’m going to leave the old view function in views.py, so that we can copy code across
from it. We can delete it once everything is working. It’s harmless as soon as we switch
over the URL mappings, this time in:

lists/urls.py (ch31l004).
from django.conf.urls import patterns, url
from lists.views import NewListView

urlpatterns = patterns('',
 url(r'^(\d+)/$', 'lists.views.view_list', name='view_list'),
 url(r'^new$', NewListView.as_view(), name='new_list'),
)

Now running the tests gives three errors:
$ python3 manage.py test lists

ERROR: test_for_invalid_input_passes_form_to_template
(lists.tests.test_views.NewListTest)
django.core.exceptions.ImproperlyConfigured: TemplateResponseMixin requires
either a definition of 'template_name' or an implementation of
'get_template_names()'

ERROR: test_for_invalid_input_renders_home_template (lists.tests.test_views.NewListTest)
django.core.exceptions.ImproperlyConfigured: TemplateResponseMixin requires
either a definition of 'template_name' or an implementation of

Using form_valid to Customise a CreateView | 417

'get_template_names()'

ERROR: test_invalid_list_items_arent_saved (lists.tests.test_views.NewListTest)
django.core.exceptions.ImproperlyConfigured: TemplateResponseMixin requires
either a definition of 'template_name' or an implementation of
'get_template_names()'

ERROR: test_redirects_after_POST (lists.tests.test_views.NewListTest)
TypeError: save() missing 1 required positional argument: 'for_list'

ERROR: test_saving_a_POST_request (lists.tests.test_views.NewListTest)
TypeError: save() missing 1 required positional argument: 'for_list'

ERROR: test_validation_errors_are_shown_on_home_page (lists.tests.test_views.NewListTest)
django.core.exceptions.ImproperlyConfigured: TemplateResponseMixin requires
either a definition of 'template_name' or an implementation of
'get_template_names()'

Ran 34 tests in 0.125s

FAILED (errors=6)

Let’s start with the third—maybe we can just add the template?
lists/views.py (ch31l005).

class NewListView(CreateView):
 form_class = ItemForm
 template_name = 'home.html'

That gets us down to just two failures: we can see they’re both happening in the generic
view’s form_valid function, and that’s one of the ones that you can override to provide
custom behaviour in a CBGV. As its name implies, it’s run when the view has detected
a valid form. We can just copy some of the code from our old view function, that used
to live after if form.is_valid()::

lists/views.py (ch31l005).
class NewListView(CreateView):
 template_name = 'home.html'
 form_class = ItemForm

 def form_valid(self, form):
 list_ = List.objects.create()
 form.save(for_list=list_)
 return redirect(list_)

That gets us a full pass!
$ python3 manage.py test lists
Ran 34 tests in 0.119s
OK
$ python3 manage.py test functional_tests
Ran 4 tests in 15.157s
OK

And we could even save two more lines, trying to obey “DRY”, by using one of the main
advantages of CBVs: inheritance!

418 | Appendix B: Django Class-Based Views

lists/views.py (ch31l007).
class NewListView(CreateView, HomePageView):

 def form_valid(self, form):
 list = List.objects.create()
 Item.objects.create(text=form.cleaned_data['text'], list=list)
 return redirect('/lists/%d/' % (list.id,))

And all the tests would still pass:
OK

This is not really good object-oriented practice. Inheritance im‐
plies an “is-a” relationship, and it’s probably not meaningful to say
that our new list view “is-a” home page view…so, probably best not
to do this.

With or without that last step, how does it compare to the old version? I’d say that’s not
bad. We save some boilerplate code, and the view is still fairly legible. So far, I’d say we’ve
got one point for CBGVs, and one draw.

A More Complex View to Handle Both Viewing and Adding
to a List
This took me several attempts. And I have to say that, although the tests told me when
I got it right, they didn’t really help me to figure out the steps to get there…mostly it
was just trial and error, hacking about in functions like get_context_data,
get_form_kwargs, and so on.

One thing it did made me realise was the value of having lots of individual tests, each
testing one thing. I went back and rewrote some of Chapters 10–12 as a result.

The Tests Guide Us, for a While
Here’s how things might go. Start by thinking we want a DetailView, something that
shows you the detail of an object:

lists/views.py.
from django.views.generic import FormView, CreateView, DetailView
[...]

class ViewAndAddToList(DetailView):
 model = List

That gives:
[...]
AttributeError: Generic detail view ViewAndAddToList must be called with either
an object pk or a slug.

A More Complex View to Handle Both Viewing and Adding to a List | 419

FAILED (failures=5, errors=6)

Not totally obvious, but a bit of Googling around led me to understand that I needed
to use a “named” regex capture group:

lists/urls.py (ch31l011).
@@ -1,7 +1,7 @@
 from django.conf.urls import patterns, url
-from lists.views import NewListView
+from lists.views import NewListView, ViewAndAddToList

 urlpatterns = patterns('',
- url(r'^(\d+)/$', 'lists.views.view_list', name='view_list'),
+ url(r'^(?P<pk>\d+)/$', ViewAndAddToList.as_view(), name='view_list'),
 url(r'^new$', NewListView.as_view(), name='new_list'),
)

The next error was fairly helpful:
[...]
django.template.base.TemplateDoesNotExist: lists/list_detail.html

FAILED (failures=5, errors=6)

That’s easily solved:
lists/views.py.

class ViewAndAddToList(DetailView):
 model = List
 template_name = 'list.html'

That takes us down three errors:
[...]
ERROR: test_displays_item_form (lists.tests.test_views.ListViewTest)
KeyError: 'form'

FAILED (failures=5, errors=2)

Until We’re Left with Trial and Error
So I figured, our view doesn’t just show us the detail of an object, it also allows us to
create new ones. Let’s make it both a DetailView and a CreateView:

lists/views.py.
class ViewAndAddToList(DetailView, CreateView):
 model = List
 template_name = 'list.html'
 form_class = ExistingListItemForm

But that gives us a lot of errors saying:
[...]
TypeError: __init__() missing 1 required positional argument: 'for_list'

420 | Appendix B: Django Class-Based Views

And the KeyError: 'form' was still there too!

At this point the errors stopped being quite as helpful, and it was no longer obvious
what to do next. I had to resort to trial and error. Still, the tests did at least tell me when
I was getting things more right or more wrong.

My first attempts to use get_form_kwargs didn’t really work, but I found that I could
use get_form:

lists/views.py.
 def get_form(self, form_class):
 self.object = self.get_object()
 return form_class(for_list=self.object, data=self.request.POST)

But it would only work if I also assigned to self.object, as a side effect, along the way,
which was a bit upsetting. Still, that takes us down to just three errors, but we’re still
apparently not passing that form to the template!

KeyError: 'form'

FAILED (errors=3)

Back on Track
A bit more experimenting led me to swap out the DetailView for a SingleObjectMix
in (the docs had some useful pointers here):

from django.views.generic.detail import SingleObjectMixin
[...]

class ViewAndAddToList(CreateView, SingleObjectMixin):
 [...]

That takes us down to just two errors:
django.core.exceptions.ImproperlyConfigured: No URL to redirect to. Either
provide a url or define a get_absolute_url method on the Model.

And for this final failure, the tests are being helpful again. It’s quite easy to define a
get_absolute_url on the Item class, such that items point to their parent list’s page:

lists/models.py.
class Item(models.Model):
 [...]

 def get_absolute_url(self):
 return reverse('view_list', args=[self.list.id])

A More Complex View to Handle Both Viewing and Adding to a List | 421

Is That Your Final Answer?
We end up with a view class that looks like this:

lists/views.py (ch31l010).
class ViewAndAddToList(CreateView, SingleObjectMixin):
 template_name = 'list.html'
 model = List
 form_class = ExistingListItemForm

 def get_form(self, form_class):
 self.object = self.get_object()
 return form_class(for_list=self.object, data=self.request.POST)

Compare Old and New
Let’s see the old version for comparison?

lists/views.py.
def view_list(request, list_id):
 list_ = List.objects.get(id=list_id)
 form = ExistingListItemForm(for_list=list_)
 if request.method == 'POST':
 form = ExistingListItemForm(for_list=list_, data=request.POST)
 if form.is_valid():
 form.save()
 return redirect(list_)
 return render(request, 'list.html', {'list': list_, "form": form})

Well, it has reduced the number of lines of code from nine to seven. Still, I find the
function-based version a little easier to understand, in that it has a little bit less magic
—“explicit is better than implicit”, as the Zen of Python would have it. I mean…Single
ObjectMixin? What? And, more offensively, the whole thing falls apart if we don’t assign
to self.object inside get_form? Yuck.

Still, I guess some of it is in the eye of the beholder.

Best Practices for Unit Testing CBGVs?
As I was working through this, I felt like my “unit” tests were sometimes a little too high-
level. This is no surprise, since tests for views that involve the Django test client are
probably more properly called integrated tests.

They told me whether I was getting things right or wrong, but they didn’t always offer
enough clues on exactly how to fix things.

I occasionally wondered whether there might be some mileage in a test that was closer
to the implementation—something like this:

422 | Appendix B: Django Class-Based Views

def test_cbv_gets_correct_object(self):
 our_list = List.objects.create()
 view = ViewAndAddToList()
 view.kwargs = dict(pk=our_list.id)
 self.assertEqual(view.get_object(), our_list)

But the problem is that it requires a lot of knowledge of the internals of Django CBVs
to be able to do the right test setup for these kinds of tests. And you still end up getting
very confused by the complex inheritance hierarchy.

Take-Home: Having Multiple, Isolated View Tests with Single
Assertions Helps
One thing I definitely did conclude from this appendix was that having many short unit
tests for views was much more helpful than having few tests with a narrative series of
assertions.

Consider this monolithic test:
def test_validation_errors_sent_back_to_home_page_template(self):
 response = self.client.post('/lists/new', data={'text': ''})
 self.assertEqual(List.objects.all().count(), 0)
 self.assertEqual(Item.objects.all().count(), 0)
 self.assertTemplateUsed(response, 'home.html')
 expected_error = escape("You can't have an empty list item")
 self.assertContains(response, expected_error)

That is definitely less useful than having three individual tests, like this:
 def test_invalid_input_means_nothing_saved_to_db(self):
 self.post_invalid_input()
 self.assertEqual(List.objects.all().count(), 0)
 self.assertEqual(Item.objects.all().count(), 0)

 def test_invalid_input_renders_list_template(self):
 response = self.post_invalid_input()
 self.assertTemplateUsed(response, 'list.html')

 def test_invalid_input_renders_form_with_errors(self):
 response = self.post_invalid_input()
 self.assertIsinstance(response.context['form'], ExistingListItemForm)
 self.assertContains(response, escape(empty_list_error))

The reason is that, in the first case, an early failure means not all the assertions are
checked. So, if the view was accidentally saving to the database on invalid POST, you
would get an early fail, and so you wouldn’t find out whether it was using the right
template or rendering the form. The second formulation makes it much easier to pick
out exactly what was or wasn’t working.

Best Practices for Unit Testing CBGVs? | 423

Lessons Learned from CBGVs
Class-based generic views can do anything

It might not always be clear what’s going on, but you can do just about anything
with class-based generic views.

Single-assertion unit tests help refactoring
With each unit test providing individual guidance on what works and what doesn’t,
it’s much easier to change the implementation of our views to using this funda‐
mentally different paradigm.

424 | Appendix B: Django Class-Based Views

APPENDIX C
Provisioning with Ansible

We used Fabric to automate deploying new versions of the source code to our servers.
But provisioning a fresh server, and updating the Nginx and Gunicorn config files, was
all left as a manual process.

This is the kind of job that’s increasingly given to tools called “Configuration Manage‐
ment” or “Continuous Deployment” tools. Chef and Puppet were the first popular ones,
and in the Python world there’s Salt and Ansible.

Of all of these, Ansible is the easiest to get started with. We can get it working with just
two files:

pip install ansible # Python 2 sadly

An “inventory file” at deploy_tools/inventory.ansible defines what servers we can
run against:

deploy_tools/inventory.ansible.
[live]
superlists.ottg.eu

[staging]
superlists-staging.ottg.eu

[local]
localhost ansible_ssh_port=6666 ansible_host=127.0.0.1

(The local entry is just an example, in my case a Virtualbox VM, with port forwarding
for ports 22 and 80 set up.)

Installing System Packages and Nginx
Next the Ansible “playbook”, which defines what to do on the server. This uses a syntax
called YAML:

425

deploy_tools/provision.ansible.yaml.

- hosts: all

 sudo: yes

 tasks:
 - name: make sure required packages are installed
 apt: pkg=nginx,git,python3,python3-pip state=present
 - name: make sure virtualenv is installed
 command: pip3 install virtualenv

 - name: allow long hostnames in nginx
 lineinfile:
 dest=/etc/nginx/nginx.conf
 regexp='(\s+)#? ?server_names_hash_bucket_size'
 backrefs=yes
 line='\1server_names_hash_bucket_size 64;'

 - name: add nginx config to sites-available
 template: src=./nginx.conf.j2
 dest=/etc/nginx/sites-available/{{ inventory_hostname }}
 notify:
 - restart nginx

 - name: add symlink in nginx sites-enabled
 file: src=/etc/nginx/sites-available/{{ inventory_hostname }}
 dest=/etc/nginx/sites-enabled/{{ inventory_hostname }} state=link
 notify:
 - restart nginx

The inventory_hostname variable is the domain name of the server we’re running
against. In this section, we install our required software using apt, tweak the Nginx
config to allow long hostnames using a regular expression replacer, and then we write
the Nginx config file using a template. This is a modified version of the template file we
saved into deploy_tools/nginx.template.conf in Chapter 8, but it now uses a specific
templating syntax—Jinja2, which is actually a lot like the Django template syntax:

deploy_tools/nginx.conf.j2.
server {
 listen 80;
 server_name {{ inventory_hostname }};

 location /static {
 alias /home/harry/sites/{{ inventory_hostname }}/static;
 }

 location / {
 proxy_set_header Host {{ inventory_hostname }};
 proxy_pass http://unix:/tmp/{{ inventory_hostname }}.socket;

426 | Appendix C: Provisioning with Ansible

 }
}

Configuring Gunicorn, and Using Handlers to Restart
Services
Here’s the second half of our playbook:

deploy_tools/provision.ansible.yaml.
 - name: write gunicorn init script
 template: src=./gunicorn-upstart.conf.j2
 dest=/etc/init/gunicorn-{{ inventory_hostname }}.conf
 notify:
 - restart gunicorn

 - name: make sure nginx is running
 service: name=nginx state=running
 - name: make sure gunicorn is running
 service: name=gunicorn-{{ inventory_hostname }} state=running

 handlers:
 - name: restart nginx
 service: name=nginx state=restarted

 - name: restart gunicorn
 service: name=gunicorn-{{ inventory_hostname }} state=restarted

Once again we use a template for our Gunicorn config:
deploy_tools/gunicorn-upstart.conf.j2.

description "Gunicorn server for {{ inventory_hostname }}"

start on net-device-up
stop on shutdown

respawn

chdir /home/harry/sites/{{ inventory_hostname }}/source
exec ../virtualenv/bin/gunicorn \
 --bind unix:/tmp/{{ inventory_hostname }}.socket \
 --access-logfile ../access.log \
 --error-logfile ../error.log \
 superlists.wsgi:application

Then we have two “handlers” to restart Nginx and Gunicorn. Ansible is clever, so if it
sees multiple steps all call the same handlers, it waits until the last one before calling it.

And that’s it! The command to kick all these off is:
ansible-playbook -i inventory.ansible provision.ansible.yaml --limit=staging

Lots more info in the Ansible docs.

Configuring Gunicorn, and Using Handlers to Restart Services | 427

http://www.ansibleworks.com/docs/

What to Do Next
I’ve just given a little taster of what’s possible with Ansible. But the more you automate
about your deployments, the more confidence you will have in them. Here’s a few more
things to look into.

Move Deployment out of Fabric and into Ansible
We’ve seen that Ansible can help with some aspects of provisioning, but it can also do
pretty much all of our deployment for us. See if you can extend the playbook to do
everything that we currently do in our fabric deploy script, including notifying the
restarts as required.

Use Vagrant to Spin Up a Local VM
Running tests against the staging site gives us the ultimate confidence that things are
going to work when we go live, but we can also use a VM on our local machine.

Download Vagrant and Virtualbox, and see if you can get Vagrant to build a dev server
on your own PC, using our Ansible playbook to deploy code to it. Rewire the FT runner
to be able to test against the local VM.

Having a Vagrant config file is particularly helpful when working in a team—it helps
new developers to spin up servers that look exactly like yours.

428 | Appendix C: Provisioning with Ansible

APPENDIX D
Testing Database Migrations

Django-migrations and its predecessor South have been around for ages, so it’s not
usually necessary to test database migrations. But it just so happens that we’re intro‐
ducing a dangerous type of migration, ie one that introduces a new integrity constraint
on our data. When I first ran the migration script against staging, I saw an error.

On larger projects, where you have sensitive data, you may want the additional confi‐
dence that comes from testing your migrations in a safe environment before applying
them to production data, so this toy example will hopefully be a useful rehearsal.

Another common reason to want to test migrations is for speed—migrations often
involve downtime, and sometimes, when they’re applied to very large datasets, they can
take time. It’s good to know in advance how long that might be.

An Attempted Deploy to Staging
Here’s what happened to me when I first tried to deploy our new validation constraints
in Chapter 14:

$ cd deploy_tools
$ fab deploy:host=elspeth@superlists-staging.ottg.eu
[...]
Running migrations:
 Applying lists.0005_list_item_unique_together...Traceback (most recent call
last):
 File "/usr/local/lib/python3.3/dist-packages/django/db/backends/utils.py",
line 61, in execute
 return self.cursor.execute(sql, params)
 File
"/usr/local/lib/python3.3/dist-packages/django/db/backends/sqlite3/base.py",
line 475, in execute
 return Database.Cursor.execute(self, query, params)
sqlite3.IntegrityError: columns list_id, text are not unique
[...]

429

What happened was that some of the existing data in the database violated the integrity
constraint, so the database was complaining when I tried to apply it.

In order to deal with this sort of problem, we’ll need to build a “data migration”. Let’s
first set up a local environment to test against.

Running a Test Migration Locally
We’ll use a copy of the live database to test our migration against.

Be very, very, very careful when using real data for testing. For ex‐
ample, you may have real customer email addresses in there, and you
don’t want to accidentally send them a bunch of test emails. Ask me
how I know this.

Entering Problematic Data
Start a list with some duplicate items on your live site, as shown in Figure D-1.

Figure D-1. A list with duplicate items

Copying Test Data from the Live Site
Copy the database down from live:

430 | Appendix D: Testing Database Migrations

$ scp elspeth@superlists.ottg.eu:\
/home/elspeth/sites/superlists.ottg.eu/database/db.sqlite3 .
$ mv ../database/db.sqlite3 ../database/db.sqlite3.bak
$ mv db.sqlite3 ../database/db.sqlite3

Confirming the Error
We now have a local database that has not been migrated, and that contains some prob‐
lematic data. We should see an error if we try to run migrate:

$ python3 manage.py migrate --migrate
python3 manage.py migrate
Operations to perform:
[...]
Running migrations:
[...]
 Applying lists.0005_list_item_unique_together...Traceback (most recent call
last):
[...]
 return Database.Cursor.execute(self, query, params)
sqlite3.IntegrityError: columns list_id, text are not unique

Inserting a Data Migration
Data migrations are a special type of migration that modifies data in the database rather
than changing the schema. We need to create one that will run before we apply the
integrity constraint, to preventively remove any duplicates. Here’s how we can do that:

$ git rm lists/migrations/0005_list_item_unique_together.py
$ python3 manage.py makemigrations lists --empty
Migrations for 'lists':
 0005_auto_20140414_2325.py:
$ mv lists/migrations/0005_*.py lists/migrations/0005_remove_duplicates.py

Check out the Django docs on data migrations for more info, but here’s how we add
some instructions to change existing data:

lists/migrations/0005_remove_duplicates.py.
encoding: utf8
from django.db import models, migrations

def find_dupes(apps, schema_editor):
 List = apps.get_model("lists", "List")
 for list_ in List.objects.all():
 items = list_.item_set.all()
 texts = set()
 for ix, item in enumerate(items):
 if item.text in texts:
 item.text = '{} ({})'.format(item.text, ix)
 item.save()
 texts.add(item.text)

Inserting a Data Migration | 431

https://docs.djangoproject.com/en/dev/topics/migrations/#data-migrations
https://docs.djangoproject.com/en/dev/topics/migrations/#data-migrations

class Migration(migrations.Migration):

 dependencies = [
 ('lists', '0004_item_list'),
]

 operations = [
 migrations.RunPython(find_dupes),
]

Re-creating the Old Migration
We re-create the old migration using makemigrations, which will ensure it is now the
sixth migration and has an explicit dependency on 0005, the data migration:

$ python3 manage.py makemigrations
Migrations for 'lists':
 0006_auto_20140415_0018.py:
 - Alter unique_together for item (1 constraints)
$ mv lists/migrations/0006_* lists/migrations/0006_unique_together.py

Testing the New Migrations Together
We’re now ready to run our test against the live data:

$ cd deploy_tools
$ fab deploy:host=elspeth@superlists-staging.ottg.eu
[...]

We’ll need to restart the live Gunicorn job too:
elspeth@server:$ sudo restart gunicorn-superlists.ottg.eu

And we can now run our FTs against staging:
$ python3 manage.py test functional_tests --liveserver=superlists-staging.ottg.eu
Creating test database for alias 'default'...
....

Ran 4 tests in 17.308s

OK

Everything seems in order! Let’s do it against live:
$ fab deploy --host=superlists.ottg.eu
[superlists.ottg.eu] Executing task 'deploy'
[...]

And that’s a wrap. git add lists/migrations, git commit, etc.

432 | Appendix D: Testing Database Migrations

Conclusions
This exercise was primarily aimed at building a data migration and testing it against
some real data. Inevitably, this is only a drop in the ocean of the possible testing you
could do for a migration. You could imagine building automated tests to check that all
your data was preserved, comparing the database contents before and after. You could
write individual unit tests for the helper functions in a data migration. You could spend
more time measuring the time taken for migrations, and experiment with ways to speed
it up by, e.g., breaking up migrations into more or fewer component steps.

Remember that this should be a relatively rare case. In my experience, I haven’t felt the
need to test 99% of the migrations I’ve worked on. But, should you ever feel the need
on your project, I hope you’ve found a few pointers here to get started with.

On Testing Database Migrations
Be wary of migrations which introduce constraints

99% of migrations happen without a hitch, but be wary of any situations, like this
one, where you are introducing a new constraint on columns that already exist.

Test migrations for speed
Once you have a larger project, you should think about testing how long your
migrations are going to take. Database migrations typically involve downtime, as,
depending on your database, the schema update operation may lock the table it’s
working on until it completes. It’s a good idea to use your staging site to find out
how long a migration will take.

Be extremely careful if using a dump of production data
In order to do so, you’ll want fill your staging site’s database with an amount of data
that’s commensurate to the size of your production data. Explaining how to do that
is outside of the scope of this book, but I will say this: if you’re tempted to just take
a dump of your production database and load it into staging, be very careful. Pro‐
duction data contains real customer details, and I’ve personally been responsible
for accidentally sending out a few hundred incorrect invoices after an automated
process on my staging server started processing the copied production data I’d just
loaded into it. Not a fun afternoon.

Conclusions | 433

APPENDIX E
Behaviour-Driven Development (BDD)

Now I haven’t used BDD “in anger,” so I can’t claim any sort of expertise, but I really like
what I have seen of it, and I thought that you deserved at least a whirlwind tour. In this
appendix, we’ll take some of the tests we wrote in a “normal” FT, and convert them to
using BDD tools.

What is BDD?
BDD, strictly speaking, is a methodology rather than a toolset—it’s the approach of
testing your application by testing the behaviour that we expect it to display to a user
(the Wikipedia entry has quite a good overview). So, in some ways, the selenium-based
FTs that I’ve shown in the rest of the book could be called BDD.

But the term has become closely associated with a particular set of tools for doing BDD,
most importantly the Gherkin syntax, which is a human-readable DSL for writing func‐
tional (or acceptance) tests. Gherkin originally came out of the Ruby world, where it’s
associated with a test runner called Cucumber.

In the Python world, we have a couple of equivalent test running tools, Lettuce and
Behave. Of these, only Behave was compatible with Python 3 at the time of writing, so
that’s what we’ll use. We’ll also use a plugin called behave-django.

435

https://en.wikipedia.org/wiki/Behavior-driven_development
https://github.com/cucumber/cucumber/wiki/Gherkin
http://cukes.info/
http://lettuce.it/
http://pythonhosted.org/behave/
https://pythonhosted.org/behave-django/

Getting the Code for These Examples
I’m going to use the example from Chapter 18. We have a basic to-do lists site, and we
want to add a new feature: logged-in users should be able to view the lists they’ve auth‐
ored in one place. Up until this point, all lists are effectively anonymous.

If you’ve been following along with the book, I’m going to assume you can skip back to
the code for that point. If you want to pull it from my repo, the place to go is the
chapter_17 branch.

Basic Housekeeping
We make a directory for our BDD “features,” add a steps directory (we’ll find out what
these are shortly!), and placeholder for our first feature:

$ mkdir -p features/steps
$ touch features/my_lists.feature
$ touch features/steps/my_lists.py
$ tree features
features
├── my_lists.feature
└── steps
 └── my_lists.py

We install behave-django, and add it to settings.py:
$ pip install behave-django

lists/tests.py.
--- a/superlists/settings.py
+++ b/superlists/settings.py
@@ -41,6 +41,7 @@ INSTALLED_APPS = (
 'lists',
 'accounts',
 'functional_tests',
+ 'behave_django',
)

And then run python manage.py behave as a sanity check:
$ python manage.py behave
Creating test database for alias default...
0 features passed, 0 failed, 0 skipped
0 scenarios passed, 0 failed, 0 skipped
0 steps passed, 0 failed, 0 skipped, 0 undefined
Took 0m0.000s

436 | Appendix E: Behaviour-Driven Development (BDD)

https://github.com/hjwp/book-example/tree/chapter_17

Writing an FT as a “Feature” using Gherkin Syntax
Up until now, we’ve been writing our FTs using human-readable comments that describe
the new feature in terms of a user story, interspersed with the selenium code required
to execute each step in the story.

BDD enforces a distinction between those two—we write our human-readable story
using a human-readable (if occasionally somewhat awkward) syntax called “Gherkin”,
and that is called the “Feature”. Later, we’ll map each line of Gherkin to a function that
contains the selenium code necessary to implement that “step.”

Here’s what a Feature for our new “My lists” page could look like:
features/my_lists.feature.

Feature: My Lists
 As a logged-in user
 I want to be able to see all my lists in one page
 So that I can find them all after I've written them

 Scenario: Create two lists and see them on the My Lists page

 Given I am a logged-in user

 When I create a list with first item "Reticulate Splines"
 And I add an item "Immanentize Eschaton"
 And I create a list with first item "Buy milk"

 Then I will see a link to "My lists"

 When I click the link to "My lists"
 Then I will see a link to "Reticulate Splines"
 And I will see a link to "Buy milk"

 When I click the link to "Reticulate Splines"
 Then I will be on the "Reticulate Splines" list page

As-a /I want to/So that
At the top you’ll notice the As-a/I want to/So that clause. This is optional, and it has no
executable counterpart—it’s just a slightly formalised way of capturing the “Who and
Why?” aspects of a user story, gently encouraging the team to think about the justifi‐
cations for each feature.

Given/When/Then
Given/When/Then is the real core of a BDD test. This trilobite formulation matches
the setup/exercise/assert pattern we’ve seen in our unit tests, and it represents the setup
and assumptions phase, an exercise/action phase, and a subsequent assertion/observa‐
tion phase. There’s more info on the Cucumber wiki.

Writing an FT as a “Feature” using Gherkin Syntax | 437

https://github.com/cucumber/cucumber/wiki/Given-When-Then

Not Always A Perfect Fit!
As you can see, it’s not always easy to shoe-horn a user story into exactly three steps!
We can use the And clause to expand on a step, and I’ve added multiple When steps and
subsequent Thens to illustrate further aspects of our My lists page.

Coding the Step Functions
We now build the counterpart to our Gherkin-syntax feature, which are the “step” func‐
tions which will actually implement them in code.

Generating Placeholder Steps
When we run behave, it helpfully tells us about all the steps we need to implement:

$ python manage.py behave
Feature: My Lists # features/my_lists.feature:1
 As a logged-in user
 I want to be able to see all my lists in one page
 So that I can find them all after I've written them
 Scenario: Create two lists and see them on the My Lists page # my_lists.feature:6
 Given I am a logged-in user # None
 Given I am a logged-in user # None
 When I create a list with first item "Reticulate Splines" # None
 And I add an item "Immanentize Eschaton" # None
 And I create a list with first item "Buy milk" # None
 Then I will see a link to "My lists" # None
 When I click the link to "My lists" # None
 Then I will see a link to "Reticulate Splines" # None
 And I will see a link to "Buy milk" # None
 When I click the link to "Reticulate Splines" # None
 Then I will be on the "Reticulate Splines" list page # None

Failing scenarios:
 features/my_lists.feature:6 Create two lists and see them on the My Lists page

0 features passed, 1 failed, 0 skipped
0 scenarios passed, 1 failed, 0 skipped
0 steps passed, 0 failed, 0 skipped, 10 undefined
Took 0m0.000s

You can implement step definitions for undefined steps with these snippets:

@given(u'I am a logged-in user')
def step_impl(context):
 raise NotImplementedError(u'STEP: Given I am a logged-in user')

@when(u'I create a list with first item "Reticulate Splines"')
def step_impl(context):
[...]

And you’ll notice all this output is nicely coloured, as shown in Figure E-1.

438 | Appendix E: Behaviour-Driven Development (BDD)

Figure E-1. Behave with coloured console ouptut

It’s encouraging us to copy and paste these snippets, and use them as starting points to
build our steps.

First Step Definition
Here’s a first stab at making a step for our “Given I am a logged-in user” step. I started
by stealing the code for self.create_pre_authenticated_session from function‐
al_tests/test_my_lists.py, and adapting it slightly (removing the server-side version, for
example, although it would be easy to re-add later).

features/steps/my_lists.py.
from behave import given, when, then
from functional_tests.management.commands.create_session import \
 create_pre_authenticated_session
from django.conf import settings

@given('I am a logged-in user')
def given_i_am_logged_in(context):
 session_key = create_pre_authenticated_session(email='edith@example.com')
 ## to set a cookie we need to first visit the domain.
 ## 404 pages load the quickest!
 context.browser.get(context.server_url + "/404_no_such_url/")

First Step Definition | 439

 context.browser.add_cookie(dict(
 name=settings.SESSION_COOKIE_NAME,
 value=session_key,
 path='/',
))

The context variable needs a little explaining — it’s a sort of global variable, in the sense
that it’s passed to each step that’s executed, and it can be used to store information that
we need to share between steps. Here we’ve assumed we’ll be storing a browser object
on it, and the server_url. We end up using it a lot like we used self when we were
writing unittest FTs.

setUp and tearDown Equivalents in environment.py
Steps can make changes to state in the context, but the place to do preliminary set-up,
the equivalent of setUp, is in a file called environment.py:

features/environment.py.
from selenium import webdriver

def before_all(context):
 context.browser = webdriver.Firefox()
 context.browser.implicitly_wait(2)
 context.server_url = 'http://localhost:8081'

def after_all(context):
 context.browser.quit()

def before_feature(context, feature):
 pass

Another Run
As a sanity check, we can do another run, to see if the new step works and that we really
can start a browser:

$ python manage.py behave
[...]
1 step passed, 0 failed, 0 skipped, 9 undefined

The usual reams of output, but we can see that it seems to have made it through the first
step; let’s define the rest of them.

Capturing Parameters in Steps
We’ll see how behave allows you to capture parameters from step descriptions. Our next
step says:

features/my_lists.feature.
 And I create a list with first item "Reticulate Splines"

440 | Appendix E: Behaviour-Driven Development (BDD)

And the auto-generated step definition looked like this:
features/steps/test_my_lists.py.

@given('I create a list with first item "Reticulate Splines"')
def step_impl(context):
 raise NotImplementedError(
 u'STEP: When I create a list with first item "Reticulate Splines"'
)

We want to be able to create lists with arbitrary first items, so it would be nice to somehow
capture whatever is between those quotes, and pass them in as an argument to a more
generic function. That’s a common requirement in BDD, and behave has a nice syntax
for it, reminiscent of the new-style Python string formatting syntax:

features/steps/test_my_lists.py.
@when('I create a list with first item "{first_item_text}"')
def create_a_list(context, first_item_text):
 context.browser.get(context.server_url)
 context.browser.find_element_by_id('id_text').send_keys(first_item_text)
 context.browser.find_element_by_id('id_text').send_keys('\n')

Neat, huh?

Capturing parameters for steps is one of the most powerful features
of the BDD syntax.

Similarly, we can do adding to an existing list, and see or click on links:
features/steps/test_my_lists.py.

@when('I add an item "{item_text}"')
def add_an_item(context, item_text):
 context.browser.find_element_by_id('id_text').send_keys(item_text)
 context.browser.find_element_by_id('id_text').send_keys('\n')

@then('I will see a link to "{link_text}"')
def see_a_link(context, link_text):
 context.browser.find_element_by_link_text(link_text)

@when('I click the link to "{link_text}"')
def click_link(context, link_text):
 context.browser.find_element_by_link_text(link_text).click()

And finally the slightly more complex step that says I am on the page for a particular
list:

features/steps/test_my_lists.py.
@then('I will be on the "{first_item_text}" list page')
def step_impl(context, first_item_text):
 table = context.browser.find_element_by_id('id_list_table')
 rows = table.find_elements_by_tag_name('tr')

Capturing Parameters in Steps | 441

 expected_row_text = '1: ' + first_item_text
 assert rows[0].text == expected_row_text

Now we can run it and see our first expected failure:
$./manage.py behave
Creating test database for alias 'default'...
Feature: My Lists # features/my_lists.feature:1
 As a logged-in user
 I want to be able to see all my lists in one page
 So that I can find them all after I've written them
 Scenario: Create two lists and see them on the My Lists page # my_lists.feature:6
 Given I am a logged-in user # steps/my_lists.py:7
Not Found: /404_no_such_url/
Not Found: /favicon.ico
 Given I am a logged-in user # steps/my_lists.py:7 0.09s
 When I create a list with first item "Reticulate Splines" # steps/my_lists.py:20 8.46s
 And I add an item "Immanentize Eschaton" # steps/my_lists.py:27 0.82s
 And I create a list with first item "Buy milk" # steps/my_lists.py:20 0.40s
 Then I will see a link to "My lists" # steps/my_lists.py:33 8.27s
 Traceback (most recent call last):
 [...]
 selenium.common.exceptions.NoSuchElementException: Message: Unable to
 locate element: {"method":"link text","selector":"My lists"}

 [...]

Failing scenarios:
 features/my_lists.feature:6 Create two lists and see them on the My Lists page

0 features passed, 1 failed, 0 skipped
0 scenarios passed, 1 failed, 0 skipped
4 steps passed, 1 failed, 5 skipped, 0 undefined
Took 0m18.064s
Destroying test database for alias 'default'...

You can see how the output really gives you a sense of how far through the “story” of
the test we got: we manage to create our two lists successfully, but the “My lists” link
does not appear.

Comparing the Inline-Style FT
I’m not going to run through the implementation of the feature, but you can see how
the test will drive development just as well as the inline-style FT would have.

Let’s have a look at it, for comparison:

442 | Appendix E: Behaviour-Driven Development (BDD)

lists/tests.py.
def test_logged_in_users_lists_are_saved_as_my_lists(self):
 # Edith is a logged-in user
 self.create_pre_authenticated_session('edith@example.com')

 # She goes to the home page and starts a list
 self.browser.get(self.server_url)
 self.get_item_input_box().send_keys('Reticulate splines\n')
 self.get_item_input_box().send_keys('Immanentize eschaton\n')
 first_list_url = self.browser.current_url

 # She notices a "My lists" link, for the first time.
 self.browser.find_element_by_link_text('My lists').click()

 # She sees that her list is in there, named according to its
 # first list item
 self.browser.find_element_by_link_text('Reticulate splines').click()
 self.assertEqual(self.browser.current_url, first_list_url)

 # She decides to start another list, just to see
 self.browser.get(self.server_url)
 self.get_item_input_box().send_keys('Click cows\n')
 second_list_url = self.browser.current_url

 # Under "my lists", her new list appears
 self.browser.find_element_by_link_text('My lists').click()
 self.browser.find_element_by_link_text('Click cows').click()
 self.assertEqual(self.browser.current_url, second_list_url)

 # She logs out. The "My lists" option disappears
 self.browser.find_element_by_id('id_logout').click()
 self.assertEqual(
 self.browser.find_elements_by_link_text('My lists'),
 []
)

It’s not entirely an apples-to-apples comparison, but we can look at the number of lines
of code in Table E-1.

Table E-1. Lines of code comparison
BDD Standard FT

Feature file: 20 (3 optional) test function body: 34

Steps file: 40 lines helper functions: 20

The comparison isn’t perfect, but you might say that the feature file and the body of a
“standard FT” test function are equivalent in that they present the main “story” of a test,
while the steps and helper functions represent the “hidden” implementation details. If
you add them up, the total numbers are pretty similar, but notice that they’re spread out
differently: the BDD tests have made the story more concise, and pushed more work
out into the hidden implementation details.

Comparing the Inline-Style FT | 443

BDD Encourages Structured Test Code
This is the real appeal, for me: the BDD tool has forced us to structure our test code. In
the inline-style FT, we’re free to use as many lines as we want to implement a step, as
described by its comment line. It’s very hard to resist the urge to just copy-and-paste
code from elsewhere, or just from earlier on in the test. You can see that, by this point
in the book, I’ve built just a couple of helper functions (like get_item_input_box).

In contrast, the BDD syntax has immediately forced me to have a separate function for
each step, so I’ve already built some very reusable code to:

• Start a new list
• Add an item to an existing list
• Click a on a link with particular text
• Assert that I’m looking at a particular list’s page

BDD really encourages you to write test code that seems to match well with the business
domain, and to use a layer of abstraction between the story of your FT and its imple‐
mentation in code.

The ultimate expression of this is that, theoretically, if you wanted to change program‐
ming languages, you could keep all your features in Gherkin syntax exactly as they are,
and throw away the Python steps and replace them with steps implemented in another
language.

The Page Pattern as an Alternative
In Chapter 21 of the book, I present an example of the “Page pattern”, which is an object-
oriented approach to structuring your selenium tests. Here’s a reminder of what it looks
like:

functional_tests/test_sharing.py.
from .home_and_list_pages import HomePage
[...]

class SharingTest(FunctionalTest):

 def test_logged_in_users_lists_are_saved_as_my_lists(self):
 # [...]
 list_page = HomePage(self).start_new_list('Get help')

 # She notices a "Share this list" option
 share_box = list_page.get_share_box()
 self.assertEqual(
 share_box.get_attribute('placeholder'),
 'your-friend@example.com'

444 | Appendix E: Behaviour-Driven Development (BDD)

)

 # She shares her list.
 # The page updates to say that it's shared with Oniciferous:
 list_page.share_list_with('oniciferous@example.com')

 # Oniciferous now goes to the lists page with his browser
 self.browser = oni_browser
 HomePage(self).go_to_home_page().go_to_my_lists_page()

And the Page classes look like this:
functional_tests/home_and_lists_pages.py.

class HomePage(object):

 def __init__(self, test):
 self.test = test

 def go_to_home_page(self):
 self.test.browser.get(self.test.server_url)
 self.test.wait_for(self.get_item_input)
 return self

 def get_item_input(self):
 return self.test.browser.find_element_by_id(ITEM_INPUT_ID)

 def start_new_list(self, item_text):
 self.go_to_home_page()
 inputbox = self.get_item_input()
 inputbox.send_keys(item_text + '\n')
 list_page = ListPage(self.test)
 list_page.wait_for_new_item_in_list(item_text, 1)
 return list_page

 def go_to_my_lists_page(self):
 [...]

So it’s definitely possible to implement a similar layer of abstraction, and a sort of DSL,
in inline-style FTs, whether it’s by using the Page pattern or whatever structure you
prefer — but now it’s a matter of self-discipline, rather than having a framework that
pushes you towards it.

In fact, you can actually use the Page pattern with BDD as well, as a
resource for your steps to use when navigating the pages of your site.

The Page Pattern as an Alternative | 445

BDD Might Be Less Expressive than Inline Comments
On the other hand, I can also see potential for the Gherkin syntax to feel somewhat
restrictive. Compare how expressive and readable the inline-style comments are, with
the slightly awkward BDD feature:

Edith is a logged-in user
She goes to the home page and starts a list
She notices a "My lists" link, for the first time.
She sees that her list is in there, named according to its
first list item
She decides to start another list, just to see
Under "my lists", her new list appears
She logs out. The "My lists" option disappears

That’s much more readable and natural than our slightly forced Given/Then/When
incantations, and, in a way, might encourage more user-centric thinking. (There is a
syntax in Gherkin for including “comments” in a feature file, which would mitigate this
somewhat, but I gather that it’s not widely used.)

Will Nonprogrammers Write Tests?
I haven’t touched on one of the original promises of BDD, which is that nonprogram‐
mers—business or client representatives perhaps—might actually write the Gherkin
syntax. I’m quite skeptical about whether this would actually work in the real world, but
I don’t think that detracts from the other potential benefits of BDD.

Some Tentative Conclusions
I’ve only dipped my toes into the BDD world, so I’m hesitant to draw any firm conclu‐
sions. I find the “forced” structuring of FTs into steps very appealing though—it looks
like it has the potential to encourage a lot of reuse in your FT code, and that it neatly
separates concerns between describing the story, and implementing it, and that it forces
us to think about things in terms of the business domain, rather than in terms of “what
we need to do with selenium.”

But there’s no free lunch. The Gherkin syntax is restrictive, compared to the total free‐
dom offered by inline FT comments.

I also would like to see how BDD scales once you have not just one or two features, and
four or five steps, but several dozen features and hundreds of lines of steps code.

Overall, I would say it’s definitely worth investigating, and I will probably use BDD for
my next personal project.

My thanks to Daniel Pope, Rachel Willmer, and Jared Contrascere for their feedback
on this chapter.

446 | Appendix E: Behaviour-Driven Development (BDD)

BDD Conclusions
Encourages structured, reusable test code

By separating concerns, breaking your FTs out into the human-readable, Gherkin
syntax “feature” file and a separate implementation of steps functions, BDD has the
potential to encourage more reusable and manageable test code

It may come at the expense of readability
The Gherkin syntax, for all its attempt to be human-readable, is ultimately a con‐
straint on human language, and so it may not capture nuance and intention as well
as inline comments do.

Try it! I will
As I keep saying, I haven’t used BDD on a real project, so you should take my words
with a heavy pinch of salt, but I’d like to give it a hearty endorsement. I’m going to
try it out on the next project I can, and I’d encourage you to do so as well.

Some Tentative Conclusions | 447

APPENDIX F
Cheat Sheet

By popular demand, this “cheat sheet” is loosely based on the little recap/summary boxes
from the end of each chapter. The idea is to provide a few reminders, and links to the
chapters where you can find out more to jog your memory. I hope you find it useful!

Initial Project Setup
• Start with a User Story and map it to a first functional test.
• Pick a test framework—unittest is fine, options like py.test, nose or Green can

also offer some advantages.
• Run the functional test and see your first expected failure.
• Pick a web framework such as Django, and find out how to run unit tests against

it.
• Create your first unit test to address the current FT failure, and see it fail.
• Do your first commit to a VCS like Git.

Relevant chapters: Chapter 1, Chapter 2, Chapter 3

The Basic TDD Workflow
• Double-loop TDD (Figure F-1)
• Red, Green, Refactor
• Triangulation
• The scratchpad
• “3 Strikes and Refactor”

449

• “Working State to Working State”
• “YAGNI”

Figure F-1. The TDD process with Functional and Unit tests

Relevant chapters: Chapter 4, Chapter 5, Chapter 6

Moving Beyond dev-only Testing
• Start system testing early. Ensure your components work together: web server, static

content, database.
• Build a staging environment to match your production environment, and run your

FT suite against it.
• Automate your staging and production environments:

— PaaS vs. VPS
— Fabric

450 | Appendix F: Cheat Sheet

— Configuration management (Chef, Puppet, Salt, Ansible)
— Vagrant

• Think through deployment pain points: the database, static files, dependencies, how
to customise settings, etc.

• Build a CI server as soon as possible, so that you don’t have to rely on self-discipline
to see the tests run.

Relevant chapters: Chapter 8, Chapter 9, Chapter 20, Appendix C

General Testing Best Practices
• Each test should test one thing.
• One test file per application code source file.
• Consider at least a placeholder test for every function and class, no matter how

simple.
• “Don’t test constants”.
• Try to test behaviour rather than implementation.
• Try to think beyond the charmed path through the code, and think through edge

cases and error cases.

Relevant chapters: Chapter 4, Chapter 10, Chapter 11

Selenium/Functional Testing Best Practices
• Use explicit rather than implicit waits, and the interaction/wait pattern.
• Avoid duplication of test code—helper methods in base class, or Page pattern are

one way to go.
• Avoid double-testing functionality. If you have a test that covers a time-consuming

process (e.g., login), consider ways of skipping it in other tests (but be aware of
unexpected interactions between seemingly unrelated bits of functionality).

• Look into BDD tools as another way of structuring your FTs.

Relevant chapters: Chapter 17, Chapter 20, Chapter 21

General Testing Best Practices | 451

Outside-In, Test Isolation Versus Integrated Tests, and
Mocking
Be reminded of the reason we write tests in the first place:

• To ensure correctness, and prevent regressions
• To help us to write clean, maintainable code
• To enable a fast, productive workflow

And with those objectives in mind, think of different types of tests, and the tradeoffs
between them:
Functional tests

• Provide the best guarantee that your application really works correctly, from
the point of view of the user.

• But: it’s a slower feedback cycle,
• And they don’t necessarily help you write clean code.

Integrated tests (reliant on, e.g., the ORM or the Django Test Client)
• Are quick to write,
• Easy to understand,
• Will warn you of any integration issues,
• But may not always drive good design (that’s up to you!).
• And are usually slower than isolated tests.

Isolated (“mocky”) tests
• These involve the most hard work.
• They can be harder to read and understand,
• But: these are the best ones for guiding you towards better design.
• And they run the fastest.

If you do find yourself writing tests with lots of mocks, and they feel painful, remember
“listen to your tests”—ugly, mocky tests may be trying to tell you that your code could
be simplified.

Relevant chapters: Chapter 18, Chapter 19, Chapter 22

452 | Appendix F: Cheat Sheet

APPENDIX G
What to Do Next

Here follow a few suggestions for things to investigate next, to develop your testing
skills, and to apply them to some of the cool new technologies in web development (at
the time of writing!).

I hope to turn each one of these into at least some sort of blog post, if not a future
appendix to the book. I hope to also produce code examples for all of them, as time goes
by. So do check out http://www.obeythetestinggoat.com, and see if there are any updates.

Or, why not try and beat me to it, and write your own blog post chronicling your attempt
at any one of these?

I’m very happy to answer questions and provide tips and guidance on all these topics,
so if you find yourself attempting one and getting stuck, please don’t hesitate to get in
touch at obeythetestinggoat@gmail.com!

Notifications—Both on the Site and by Email
It would be nice if users were notified when someone shares a list with them.

You can use django-notifications to show a message to users the next time they refresh
the screen. You’ll need two browsers in your FT for this.

And/or, you could send notifications by email. Investigate Django’s email test capabil‐
ities. Then, decide this is so critical that you need real tests with real emails. Use the
IMAPClient library to fetch actual emails from a test webmail account.

Switch to Postgres
SQLite is a wonderful little database, but it won’t deal well once you have more than one
web worker process fielding your site’s requests. Postgres is everyone’s favourite database
these days, so find out how to install and configure it.

453

http://www.obeythetestinggoat.com
mailto:obeythetestinggoat@gmail.com

You’ll need to figure out a place to store the usernames and passwords for your local,
staging, and production Postgres servers. Since, for security, you probably don’t want
them in your code repository, look into ways of modifying your deploy scripts to pass
them in at the command line. Environment variables are one popular solution for where
to keep them…

Experiment with keeping your unit tests running with SQLite, and compare how much
faster they are than running against Postgres. Set it up so that your local machine uses
SQLite for testing, but your CI server uses Postgres.

Run Your Tests Against Different Browsers
Selenium supports all sorts of different browsers, including Chrome and Internet Ex‐
ploder. Try them both out and see if your FT suite behaves any differently.

You should also check out a “headless” browser like PhantomJS.

In my experience, switching browsers tends to expose all sorts of race conditions in
Selenium tests, and you will probably need to use the interaction/wait pattern a lot more
(particularly for PhantomJS).

404 and 500 Tests
A professional site needs good looking error pages. Testing a 404 page is easy, but you’ll
probably need a custom “raise an exception on purpose” view to test the 500 page.

The Django Admin Site
Imagine a story where a user emails you wanting to “claim” an anonymous list. Let’s say
we implement a manual solution to this, involving the site administrator manually
changing the record using the Django admin site.

Find out how to switch on the admin site, and have a play with it. Write an FT that shows
a normal, non-logged-in user creating a list, then have an admin user log in, go to the
admin site, and assign the list to the user. The user can then see it in their “My Lists”
page.

Write Some Security Tests
Expand on the login, my lists, and sharing tests—what do you need to write to assure
yourself that users can only do what they’re authorized to?

454 | Appendix G: What to Do Next

Test for Graceful Degradation
What would happen if Persona went down? Can we at least show an apologetic error
message to our users?

• Tip: one way of simulating Persona being down is to hack your hosts file (at /etc/
hosts or c:\Windows\Sytem32\drivers\etc). Remember to revert it in the test tear
Down!

• Think about the server side as well as the client side.

Caching and Performance Testing
Find out how to install and configure memcached. Find out how to use Apache’s ab to
run a performance test. How does it perform with and without caching? Can you write
an automated test that will fail if caching is not enabled? What about the dreaded prob‐
lem of cache invalidation? Can tests help you to make sure your cache invalidation logic
is solid?

JavaScript MVC Frameworks
JavaScript libraries that let you implement a Model-View-Controller pattern on the
client side are all the rage these days. To-do lists are one of the favourite demo applica‐
tions for them, so it should be pretty easy to convert the site to being a single-page site,
where all list additions happen in JavaScript.

Pick a framework—perhaps Backbone.js or Angular.js—and spike in an implementa‐
tion. Each framework has its own preferences for how to write unit tests, so learn the
one that goes along with it, and see how you like it.

Async and Websockets
Supposing two users are working on the same list at the same time. Wouldn’t it be nice
to see real-time updates, so if the other person adds an item to the list, you see it im‐
mediately? A persistent connection between client and server using websockets is the
way to get this to work.

Check out one of the Python async web servers—Tornado, gevent, Twisted—and see if
you can use it to implement dynamic notifications.

To test it, you’ll need two browser instances (like we used for the list sharing tests), and
check that notifications of the actions from one appear in the other, without needing to
refresh the page…

Test for Graceful Degradation | 455

Switch to Using py.test
py.test lets you write unit tests with less boilerplate. Try converting some of your unit
tests to using py.test. You may need to use a plugin to get it to play nicely with Django.

Check out coverage.py
Ned Batchelder’s coverage.py will tell you what your test coverage is — what percentage
of your code is covered by tests. Now, in theory, because we’ve been using rigorous TDD,
we should always have 100% coverage. But it’s nice to know for sure, and it’s also a very
useful tool for working on projects that didn’t have tests from the beginning.

Client-Side Encryption
Here’s a fun one: what if our users are paranoid about the NSA, and decide they no
longer want to trust their lists to The Cloud? Can you build a JavaScript encryption
system, where the user can enter a password to encypher their list item text before it
gets sent to the server?

One way of testing it might be to have an “administrator” user that goes to the Django
admin view to inspect users’ lists, and checks that they are stored encrypted in the
database.

Your Suggestion Here
What do you think I should put here? Suggestions please!

456 | Appendix G: What to Do Next

APPENDIX H
Bibliography

• [dip] Mark Pilgrim, Dive Into Python: http://www.diveintopython.net/
• [lpthw] Zed A. Shaw, Learn Python The Hard Way: http://learnpythonthehard

way.org/
• [iwp] Al Sweigart, Invent Your Own Computer Games With Python: http://invent

withpython.com
• [tddbe] Kent Beck, TDD By Example, Addison-Wesley
• [refactoring] Martin Fowler, Refactoring, Addison-Wesley
• [seceng] Ross Anderson, Security Engineering, Second Edition, Addison-Wesley:

http://www.cl.cam.ac.uk/~rja14/book.html
• [jsgoodparts] Douglas Crockford, JavaScript: The Good Parts, O’Reilly
• [twoscoops] Daniel Greenfeld and Audrey Roy, Two Scoops of Django, http://

twoscoopspress.com/products/two-scoops-of-django-1-6
• [mockfakestub] Emily Bache, Mocks, Fakes and Stubs, https://leanpub.com/mocks-

fakes-stubs
• [GOOSGBT] Steve Freeman and Nat Pryce, Growing Object-Oriented Software

Guided by Tests, Addison-Wesley

457

http://www.diveintopython.net/
http://learnpythonthehardway.org/
http://learnpythonthehardway.org/
http://inventwithpython.com
http://inventwithpython.com
http://www.cl.cam.ac.uk/~rja14/book.html
http://oreil.ly/SuXjXq
http://twoscoopspress.com/products/two-scoops-of-django-1-6
http://twoscoopspress.com/products/two-scoops-of-django-1-6
https://leanpub.com/mocks-fakes-stubs
https://leanpub.com/mocks-fakes-stubs

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
acceptance test (see functional tests/testing

(FT))
acceptance tests, 398
aesthetics (see layout and style)
agile movement in software development, 81
Ajax, 251, 271
ALLOWED_HOSTS, 153
Anderson, Ross, 54
Ansible, 168, 425–428
any function, 39, 46
architectural solutions to test problems, 402
assertion messages, 16, 18, 57, 265
AssertionError, 46
assertRegex, 85
assertTemplateUsed, 90
assertTrue, 46
asynchronous JavaScript, 274–277
authentication, 243

backend, 287–295
customising, 247–250, 279
in Django, 284
login view, 283–286
minimum custom user model, 295–300
mocking (see mocks/mocking)
Mozilla Persona, 244
pre-authentication, 305–308
testing logout, 301
testing view, 280

tests as documentation, 298
automation, in deployment, 134, 159–168

(see also deployment)
automation, in provisioning, 168

B
Bash, 144
BDD, 435
Beck, Kent, 36, 44
Behave, 435
Bernhardt, Gary, 339, 399, 403
best practices in testing, 397
Big Design Up Front, 81
black box test (see functional tests/testing (FT))
Bootstrap, 118–126

jumbotron, 125
large inputs, 125
table styling, 126

boundaries, 403
browsers, 454
browsers, headless, 374

C
caching, 455
CI server (see continuous integration (CI))
class-based generic views, 415–423
class-based views, 415
clean architecture, 403

459

code smell, 59, 65, 195, 303
collectstatic, 127–130
comments, 15, 86
commits, 18, 24, 29, 110
configuration management tools, 169

(see also Fabric)
context managers, 179
continuous integration (CI), 367–386, cdvii

adding required plugins, 370
best practices, 386
configuring Jenkins, 369
debugging with screenshots, 376–379
installing Jenkins, 367
JavaScript tests, 382–385
project setup, 371
Selenium race conditions, 379–382
for staging server test automation, 386
virtual display setup, 374–376

contracts, implicit, 358
cookies, 284, 306
coverage.py, 456
Cross-Site Request Forgery (CSRF) error, 54
CSS (Cascading Style Sheets) framework, 116,

118
(see also Bootstrap)
where Bootstrap won’t work, 126

Cucumber, 435
cutting corners, cdvii

D
data migrations, 430–433
database deployment issues, 134
database location, 143
De-spiking, 253, 287–295
debugging, 21, 52, 251

Ajax, 251
Django debug screen, 148
improving error messages, 57
in continuous integration, 376–379
in JavaScript, 263
Server deployment debugging tips, 154
staging for, 308–313
switching DEBUG to false, 153

screenshots, for debugging, 376–379
dependencies

and deployment, 134
mocking out, 280
virtualenv, 144

deployment, 412
adjusting database location, 143
automating, 155–157, 159–168
danger areas, 134
dependencies and, 134
deploying to live, 165
further reading, 168
key points, 158
to live, 239
migrate, 149
Nginx, 147–149
overview, 155
production-ready, 150–155
vs. provisioning, 142
sample script, 160–163
saving progress, 158
staging, 239, 429
virtualenvs, 144–146

deployment testing, 133–158
domain name for, 137
manual provisioning for hosting, 138–142
overview, 135

design (see layout and style)
Django, 4

admin site, 454
apps, 22
authentication in, 247–250, 284
class-based views, 415–423

(see also class-based views)
collectstatic, 127–130
custom user model, 295–300
debugging screen, 148, 153
field types, 64
foreign key relationship, 99
forms in (see forms)
FormView, 416
functional tests (FT) in (see functional tests/

testing (FT))
and Gunicorn, 150
LiveServerTestCase, 77
management commands, 313–316, 322
migrations, 62–64, 71–74, 239
model adjustment in, 97
model-layer validation, 177–189
Model-View-Controller (MVC), 24
notifications, 453
Object-Relational Mapper (ORM), 61–64
POST requests (see POST requests)
as PythonAnywhere app, 411

460 | Index

startproject, 6
static files in, 123
static live server case, 124
template inheritance, 120–121
templates, 69–71, 90
test class in, 93
test client, 88, 93
test fixtures, 306
TestCase, 23
unit testing in, 23
URLs in, 24–29, 88, 94, 96, 102, 106, 108,

110
validation quirk, 180
view functions in, 24, 89, 94, 105–108, 328
and virtualenvs, 144–146

Django-BrowserID, 245
documentation, tests as, 298
domain names, 137
Don’t Test Constants rule, 40
double-loop TDD, 47, 325
DRY (don’t repeat yourself), 59, 396
duplicates, eliminating, 58, 213–223

E
encryption, 456
end-to-end test (see functional tests/testing

(FT))
error messages, 455
error pages, 454
evaluating third-party systems, 254
expected failure, 16, 19
explicit waits, 255
exploratory coding, 197, 244

(see also spiking)

F
Fabric, 169, 316, 428

configuration, 165
installing, 159
sample deployment script, 160–163

Fake XMLHttpRequest, 270
fixtures

in functional tests, 305
in JavaScript tests, 231
on staging server, 313–319

foreign key relationship, 99
forms

advanced, 213–225

autogeneration, 197
customising form field input, 196
experimenting with, 196
ModelForm, 197
save methods, 210
simple, 195–212
thin views, 212
tips for, 212
using in views, 200–209
validation testing and customising, 198

Functional Core, Imperative Shell architecture,
403

functional tests/testing (FT), 5, 398
automation of (see continuous integration

(CI))
cleanup, 77–80, 95, 387
de-duplication, 322
defining, 14
for de-spiking, 253
for duplicate items, 213–223
isolation in, 77–80, 112
in JavaScript, 234–236
for layout and style, 115–118, 150, 175
multiple users, 387, 393–394
pros and cons, 366
in provisioning, 142
running unit tests only, 80
safeguards with, 319
splitting, 173
for staging sites, 134, 135
unittest module, 13–19
vs. unit tests, 22, 305
in views, 225

G
generator expression, 39
GET requests, 200, 207
get_user, 293
Gherkin, 435
Git

repository setup, 8–11
reset --hard, 118
tags, 168, 240

global variables, 230
greedy regular expressions, 106
Gunicorn, 150–157, 167, 309, 427

Index | 461

H
headless browsers, 374
helper functions/methods, 60, 174, 177, 208,

228, 352, 390–393
hexagonal architecture, 403
hosting options, 138
hosting, manual provisioning, 138–142

I
Idempotency, 169
implicit waits, 18
in-memory model objects, 354
integrated tests, 353–365, 403

vs. integration test, 344
vs. isolated tests, 364, 398
pros and cons, 366
vs. unit tests, 61

integration tests, 344, 398
integrity errors, 219
isolated tests, 339, 403

(see also test isolation)
vs. integrated tests, 364, 398
problems with, 400
pros and cons, 366

J
JavaScript, 227

de-spiking in, 253
debug console, 263
functional test (FT) building in, 234–236
jQuery and Fixtures Div, 231–233
linters, 230
MVC frameworks, 455
onload boilerplate and namespacing, 236
QUnit, 229
running tests in continuous integration,

382–385
spiking with, 244–257

(see also spiking)
in TDD Cycle, 236
test runner setup, 228
testing notes, 237

Jenkins Security, 367–385
(see also continuous integration (CI))
adding required plugins, 370
configuring, 369
installing, 367

jQuery, 231–233, 236, 237
JSON fixtures, 306, 322
jumbotron, 125

L
layout and style, 115–130

Bootstrap for (see Bootstrap)
functional tests (FT) for, 175
large inputs, 125
overview, 130
rows and columns, 122
static files, 123, 127–130
table styling, 126
using a CSS framework for, 118

(see also Bootstrap)
using our own CSS in, 126
what to functionally test for, 115

Lettuce, 435
list comprehension, 39
LiveServerTestCase, 77
log messages, 322
logging, 309, 322
logging configuration, 320–322

M
manage.py, 6, 24, 63, 72, 127
Meta, 198
meta-comments, 86
migrate, 149
migrations, 62–64, 71–74, 99, 239, 240

(see also data migrations)
database, 429–433
deleting, 99
testing, 429–433

minimum viable application, 13–16, 81
MockMyID, 254
mocks/mocking

callbacks, 274–277
checking call arguments, 269
implicit contracts, 358
in JavaScript, 243, 259–277
initialize function test, 260–266
Internet requests, 287–295
for isolation, 340–343
mock library, 303
Mock side_effects, 341
namespacing, 260
in Outside-In TDD, 333

462 | Index

in Python, 280–286
risks, 356
sinon.js, 267
testing Django login, 286

model-layer validation, 177–189
changes to test, 218
enforcing, 188
errors in View, 180–184
integrity errors, 219
POST requests, 185–189
preventing duplicates, 214
refactoring, 177, 186–188
unit testing, 179–180
at views level, 220

Model-View-Controller (MVC), 24, 455
ModelForm, 197
Mozilla Persona, 244
MVC frameworks, 24, 455

N
namespacing, 260
Nginx, 140, 147–149, 151, 167, 426
nonroot user creation, 139
notifications, 453

O
ORM (Object-Relational Mapper), 61–64
Outside-In TDD, 325–337

advantages, 325
controller layer, 328
defined, 337
vs. Inside-Out, 325
model layer, 333–335
pitfalls, 337
presentation layer, 327
template hierarchy, 329–331
views layer, 328–333, 335

P
PaaS (Platform-as-a-Service), 138
Page pattern, 390–393, 396
patch decorator, 280, 303
patching, 289
payment systems, testing for, 254
performance testing, 455
Persona, 244, 254, 311–312, 455
PhantomJS, 382–385, 454

Platform-as-a-Service (PaaS), 138
POST requests, 205

processing, 54, 185–189
redirect after, 68
saving to database, 65–67
sending, 51–54, 91

Postgres, 453
private key authentication, 139
programming by wishful thinking, 330, 337

(see also Outside-In TDD)
property Decorator, 336
provisioning, 138–142

with Ansible, 425–428
automation in, 168
functional tests (FT) in, 142
overview, 155
vs. deployment, 142

pure unit tests (see isolated tests)
py.test, 456
Python

adding to Jenkins, 371
PythonAnywhere, 138, 409

Q
QuerySet, 61, 216–218
QUnit, 229, 237, 265, 270

R
race conditions, 376, 389
Red, Green, Refactor, 58, 89, 172
redirects, 68, 190
refactoring, 40–45

at application level, 185–188
Red, Green, Refactor, 58, 89, 172
removing hard-coded URLs, 189
and test isolation, 343, 364
tips, 192
unit tests, 177

Refactoring Cat, 44, 112
relative import, 163, 175
render to string, 56
REST (Representational Site Transfer), 82

S
screenshots, 412
scripts, automated, 134
secret key, 162

Index | 463

Security Engineering (Anderson), 54
security tests, 454
sed (stream editor), 167
Selenium, 4

and JavaScript, 237
best practices, 386
in continuous integration, 379–382
in continuous integration, 374
race conditions, 389
race conditions in, 379–382
upgrading, 86
for user interaction testing, 37–40
wait patterns, 18, 255, 387, 389
waits in, 380–382, 386

server configuration, 158
server options, 139
servers, 138–142

(see also staging server)
session key, 306
sessions, 284
Shining Panda, 371
sinon.js, 267, 270, 274
skips, 172
spiking, 244–257, 277

browser-ID protocol, 246
de-spiking, 253
frontend and JavaScript code, 245
logging, 252
server-side authentication, 247–250
with JavaScript, 244

SQLite, 453
staging server

creating sessions, 313
debugging in, 308–313
managing database on, 313–308
test automation with CI, 386

staging sites, 134, 135, 137
static files, 116, 123, 134, 151
static folder, site-wide, 258
static live server case, 124
string representation, 217
string substitutions, 103
style (see layout and style)
superlists, 8
system boundaries, 403
system tests, 398

T
table styling, 126

template inheritance, 120–121
template inheritance hierarchy, 329
template tag, 54
templates, 40, 55

rendering items in, 69–71
separate, 90

test coverage, 456
test fixtures, 306, 322
test isolation, 112, 339–365

cleanup after, 361–363
collaborators, 345–348
complexity in, 364
forms layer, 349–352
full isolation, 344
interactions between layers, 357
isolated vs. integrated tests, 364
mocks/mocking for, 340–343
models layer, 353–355
ORM code, 349–353, 366
refactoring in, 343, 364
views layer, 339, 340–349, 355

test methods, 17
test organisation, 192
test skips, 172
test types, 366, 397
test-driven development (TDD)

advanced considerations in, 397–404
and developer stupidity, 215
double-loop, 47, 325
further reading on, 404
Inside-Out, 325
iterating towards new design, 86
Java testing in, 236
justifications for, 35–37
new design implementation with, 83–86
Outside-In, 325–337

(see also Outside-In TDD)
process flowchart, 83
process recap, 47–50
trivial tests, 36–37
Working state to working state, 86, 110, 112

testing best practices, 397
Testing Goat, 3, 110, 112, cdvii
tests, as documentation, 298
thin views, 212
time.sleep, 52
tracebacks, 26, 56
triangulation, 58

464 | Index

U
Ubuntu, 139
unit tests

architectural solutions for, 402
context manager, 179
desired features of, 401
in Django, 23
for simple home page, 21–33
vs. functional tests, 305
vs. functional tests (FT), 22
vs. integrated tests, 61
pros and cons of, 398–401
refactoring, 177

unit-test/code cycle, 31–33
unittest, 136
Unix sockets, 152
Upstart, 153
URLs

capturing parameters in, 103
distinct, 102
in Django, 24–29, 88, 94, 96, 102, 106, 108
pointing forms to, 96

urls.py, 27–29
user authentication (see authentication)
user creation, 293
user input, saving, 51–74
user interaction testing, 37–40
user stories, 19, 172

V
Vagrant, 428

validation, 171
(see also functional tests/testing (FT))
model-layer, 177–189

(see also model-layer validation)
VCS (version control system), 8–11
view functions, in Django, 24, 89, 94, 105–108
views layer, 339, 340–349, 355

model validation errors in, 180–184
views, what to test in, 225
virtual displays, 374
Virtualbox, 428
virtualenvs, 134, 144–146

W
waits, 18, 255, 380–382, 386, 387, 389
warnings, 17
watch function, 267
websockets, 455
widgets, 196, 198

X
Xvfb, 371, 375, 411

Y
YAGNI, 82

Index | 465

About the Author
After an idyllic childhood spent playing with BASIC on French 8-bit computers like the
Thomson T-07 whose keys go “boop” when you press them, Harry spent a few years
being deeply unhappy with economics and management consultancy. Soon he redis‐
covered his true geek nature, and was lucky enough to fall in with a bunch of XP fanatics,
working on the pioneering but sadly defunct Resolver One spreadsheet. He now works
at PythonAnywhere LLP, and spreads the gospel of TDD worldwide at talks, workshops,
and conferences, with all the passion and enthusiasm of a recent convert.

Colophon
The animal on the cover of Test-Driven Development with Python is a cashmere goat.
Though all goats can produce a cashmere undercoat, only those goats selectively bred
to produce cashmere in commercially viable amounts are typically considered “cash‐
mere goats.” Cashmere goats thus belong to the domestic goat species Capra hircus.
The exceptionally fine, soft hair of the undercoat of a cashmere goat grows alongside
an outer coat of coarser hair as part of the goat’s double fleece. The cashmere undercoat
appears in winter to supplement the protection offered by the outer coat, called guard
hair. The crimped quality of cashmere hair in the undercoat accounts for its lightweight
yet effective insulation properties.

The name “cashmere” is derived from the Kashmir Valley region on the Indian sub‐
continent where the textile has been manufactured for thousands of years. A dimin‐
ishing population of cashmere goats in modern Kashmir has led to the cessation of
exports of cashmere fiber from the area. Most cashmere wool now originates in Afgha‐
nistan, Iran, Outer Mongolia, India, and—predominantly—China.

Cashmere goats grow hair of varying colors and color combinations. Both males and
females have horns, which serve to keep the animals cool in summer and provide the
goats’ owners with effective handles during farming activities.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Preface
	Why I Wrote a Book About Test-Driven Development
	Aims of This Book
	Outline
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	Contacting O’Reilly

	Prerequisites and Assumptions
	Python 3 and Programming
	How HTML Works
	JavaScript
	Required Software Installations
	Git’s Default Editor, and Other Basic Git Config
	Required Python Packages

	Companion Video
	Acknowledgments
	Part I. The Basics of TDD and Django
	Chapter 1. Getting Django Set Up Using a Functional Test
	Obey the Testing Goat! Do Nothing Until You Have a Test
	Getting Django Up and Running
	Starting a Git Repository

	Chapter 2. Extending Our Functional Test Using the unittest Module
	Using a Functional Test to Scope Out a Minimum Viable App
	The Python Standard Library’s unittest Module
	Implicit waits
	Commit

	Chapter 3. Testing a Simple Home Page with Unit Tests
	Our First Django App, and Our First Unit Test
	Unit Tests, and How They Differ from Functional Tests
	Unit Testing in Django
	Django’s MVC, URLs, and View Functions
	At Last! We Actually Write Some Application Code!
	urls.py
	Unit Testing a View
	The Unit-Test/Code Cycle

	Chapter 4. What Are We Doing with All These Tests?
	Programming Is like Pulling a Bucket of Water up from a Well
	Using Selenium to Test User Interactions
	The “Don’t Test Constants” Rule, and Templates to the Rescue
	Refactoring to Use a Template

	On Refactoring
	A Little More of Our Front Page
	Recap: The TDD Process

	Chapter 5. Saving User Input
	Wiring Up Our Form to Send a POST Request
	Processing a POST Request on the Server
	Passing Python Variables to Be Rendered in the Template
	Three Strikes and Refactor
	The Django ORM and Our First Model
	Our First Database Migration
	The Test Gets Surprisingly Far
	A New Field Means a New Migration

	Saving the POST to the Database
	Redirect After a POST
	Better Unit Testing Practice: Each Test Should Test One Thing

	Rendering Items in the Template
	Creating Our Production Database with migrate

	Chapter 6. Getting to the Minimum Viable Site
	Ensuring Test Isolation in Functional Tests
	Running Just the Unit Tests

	Small Design When Necessary
	YAGNI!
	REST

	Implementing the New Design Using TDD
	Iterating Towards the New Design
	Testing Views, Templates, and URLs Together with the Django Test Client
	A New Test Class
	A New URL
	A New View Function
	A Separate Template for Viewing Lists

	Another URL and View for Adding List Items
	A Test Class for New List Creation
	A URL and View for New List Creation
	Removing Now-Redundant Code and Tests
	Pointing Our Forms at the New URL

	Adjusting Our Models
	A Foreign Key Relationship
	Adjusting the Rest of the World to Our New Models

	Each List Should Have Its Own URL
	Capturing Parameters from URLs
	Adjusting new_list to the New World

	One More View to Handle Adding Items to an Existing List
	Beware of Greedy Regular Expressions!
	The Last New URL
	The Last New View
	But How to Use That URL in the Form?

	A Final Refactor Using URL includes

	Part II. Web Development Sine Qua Nons
	Chapter 7. Prettification: Layout and Styling, and What to Test About It
	What to Functionally Test About Layout and Style
	Prettification: Using a CSS Framework
	Django Template Inheritance
	Integrating Bootstrap
	Rows and Columns

	Static Files in Django
	Switching to StaticLiveServerTestCase

	Using Bootstrap Components to Improve the Look of the Site
	Jumbotron!
	Large Inputs
	Table Styling

	Using Our Own CSS
	What We Glossed Over: collectstatic and Other Static Directories
	A Few Things That Didn’t Make It

	Chapter 8. Testing Deployment Using a Staging Site
	TDD and the Danger Areas of Deployment
	As Always, Start with a Test
	Getting a Domain Name
	Manually Provisioning a Server to Host Our Site
	Choosing Where to Host Our Site
	Spinning Up a Server
	User Accounts, SSH, and Privileges
	Installing Nginx
	Configuring Domains for Staging and Live
	Using the FT to Confirm the Domain Works and Nginx Is Running

	Deploying Our Code Manually
	Adjusting the Database Location
	Creating a Virtualenv
	Simple Nginx Configuration
	Creating the Database with migrate

	Getting to a Production-Ready Deployment
	Switching to Gunicorn
	Getting Nginx to Serve Static Files
	Switching to Using Unix Sockets
	Switching DEBUG to False and Setting ALLOWED_HOSTS
	Using Upstart to Make Sure Gunicorn Starts on Boot
	Saving Our Changes: Adding Gunicorn to Our requirements.txt

	Automating
	“Saving Your Progress”

	Chapter 9. Automating Deployment with Fabric
	Breakdown of a Fabric Script for Our Deployment
	Trying It Out
	Deploying to Live
	Nginx and Gunicorn Config Using sed

	Git Tag the Release
	Further Reading

	Chapter 10. Input Validation and Test Organisation
	Validation FT: Preventing Blank Items
	Skipping a Test
	Splitting Functional Tests out into Many Files
	Running a Single Test File
	Fleshing Out the FT

	Using Model-Layer Validation
	Refactoring Unit Tests into Several Files
	Unit Testing Model Validation and the self.assertRaises Context Manager
	A Django Quirk: Model Save Doesn’t Run Validation

	Surfacing Model Validation Errors in the View
	Checking Invalid Input Isn’t Saved to the Database

	Django Pattern: Processing POST Requests in the Same View as Renders the Form
	Refactor: Transferring the new_item Functionality into view_list
	Enforcing Model Validation in view_list

	Refactor: Removing Hardcoded URLs
	The {% url %} Template Tag
	Using get_absolute_url for Redirects

	Chapter 11. A Simple Form
	Moving Validation Logic into a Form
	Exploring the Forms API with a Unit Test
	Switching to a Django ModelForm
	Testing and Customising Form Validation

	Using the Form in Our Views
	Using the Form in a View with a GET Request
	A Big Find and Replace

	Using the Form in a View That Takes POST Requests
	Adapting the Unit Tests for the new_list View
	Using the Form in the View
	Using the Form to Display Errors in the Template

	Using the Form in the Other View
	A Helper Method for Several Short Tests

	Using the Form’s Own Save Method

	Chapter 12. More Advanced Forms
	Another FT for Duplicate Items
	Preventing Duplicates at the Model Layer
	A Little Digression on Queryset Ordering and String Representations
	Rewriting the Old Model Test
	Some Integrity Errors Do Show Up on Save

	Experimenting with Duplicate Item Validation at the Views Layer
	A More Complex Form to Handle Uniqueness Validation
	Using the Existing List Item Form in the List View

	Chapter 13. Dipping Our Toes, Very Tentatively, into JavaScript
	Starting with an FT
	Setting Up a Basic JavaScript Test Runner
	Using jQuery and the Fixtures Div
	Building a JavaScript Unit Test for Our Desired Functionality
	Javascript Testing in the TDD Cycle
	Columbo Says: Onload Boilerplate and Namespacing
	A Few Things That Didn’t Make It

	Chapter 14. Deploying Our New Code
	Staging Deploy
	Live Deploy
	What to Do If You See a Database Error
	Wrap-Up: git tag the New Release

	Part III. More Advanced Topics
	Chapter 15. User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript
	Mozilla Persona (BrowserID)
	Exploratory Coding, aka “Spiking”
	Starting a Branch for the Spike
	Frontend and JavaScript Code
	The Browser-ID Protocol
	The Server Side: Custom Authentication

	De-spiking
	A Common Selenium Technique: Explicit Waits
	Reverting Our Spiked Code

	JavaScript Unit Tests Involving External Components: Our First Mocks!
	Housekeeping: A Site-Wide Static Files Folder
	Mocking: Who, Why, What?
	Namespacing
	A Simple Mock to Unit Tests Our initialize Function
	More Advanced Mocking
	Checking Call Arguments
	QUnit setup and teardown, Testing Ajax
	More Nested Callbacks! Testing Asynchronous Code

	Chapter 16. Server-Side Authentication and Mocking in Python
	A Look at Our Spiked Login View
	Mocking in Python
	Testing Our View by Mocking Out authenticate
	Checking the View Actually Logs the User In

	De-spiking Our Custom Authentication Backend: Mocking Out an Internet Request
	1 if = 1 More Test
	Patching at the Class Level
	Beware of Mocks in Boolean Comparisons
	Creating a User if Necessary
	The get_user Method

	A Minimal Custom User Model
	A Slight Disappointment
	Tests as Documentation
	Users Are Authenticated

	The Moment of Truth: Will the FT Pass?
	Finishing Off Our FT, Testing Logout

	Chapter 17. Test Fixtures, Logging, and Server-Side Debugging
	Skipping the Login Process by Pre-creating a Session
	Checking It Works

	The Proof Is in the Pudding: Using Staging to Catch Final Bugs
	Setting Up Logging
	Fixing the Persona Bug

	Managing the Test Database on Staging
	A Django Management Command to Create Sessions
	Getting the FT to Run the Management Command on the Server
	An Additional Hop via subprocess

	Baking In Our Logging Code
	Using Hierarchical Logging Config

	Wrap-Up

	Chapter 18. Finishing “My Lists”: Outside-In TDD
	The Alternative: “Inside Out”
	Why Prefer “Outside-In”?
	The FT for “My Lists”
	The Outside Layer: Presentation and Templates
	Moving Down One Layer to View Functions (the Controller)
	Another Pass, Outside-In
	A Quick Restructure of the Template Inheritance Hierarchy
	Designing Our API Using the Template
	Moving Down to the Next Layer: What the View Passes to the Template

	The Next “Requirement” from the Views Layer: New Lists Should Record Owner
	A Decision Point: Whether to Proceed to the Next Layer with a Failing Test

	Moving Down to the Model Layer
	Final Step: Feeding Through the .name API from the Template

	Chapter 19. Test Isolation, and “Listening to Your Tests”
	Revisiting Our Decision Point: The Views Layer Depends on Unwritten Models Code
	A First Attempt at Using Mocks for Isolation
	Using Mock side_effects to Check the Sequence of Events

	Listen to Your Tests: Ugly Tests Signal a Need to Refactor
	Rewriting Our Tests for the View to Be Fully Isolated
	Keep the Old Integrated Test Suite Around as a Sanity Check
	A New Test Suite with Full Isolation
	Thinking in Terms of Collaborators

	Moving Down to the Forms Layer
	Keep Listening to Your Tests: Removing ORM Code from Our Application

	Finally, Moving Down to the Models Layer
	Back to Views

	The Moment of Truth (and the Risks of Mocking)
	Thinking of Interactions Between Layers as “Contracts”
	Identifying Implicit Contracts
	Fixing the Oversight

	One More Test
	Tidy Up: What to Keep from Our Integrated Test Suite
	Removing Redundant Code at the Forms Layer
	Removing the Old Implementation of the View
	Removing Redundant Code at the Forms Layer

	Conclusions: When to Write Isolated Versus Integrated Tests
	Let Complexity Be Your Guide
	Should You Do Both?
	Onwards!

	Chapter 20. Continuous Integration (CI)
	Installing Jenkins
	Configuring Jenkins Security
	Adding Required Plugins

	Setting Up Our Project
	First Build!
	Setting Up a Virtual Display so the FTs Can Run Headless
	Taking Screenshots
	A Common Selenium Problem: Race Conditions
	Running Our QUnit JavaScript Tests in Jenkins with PhantomJS
	Installing node
	Adding the Build Steps to Jenkins

	More Things to Do with a CI Server

	Chapter 21. The Token Social Bit, the Page Pattern, and an Exercise for the Reader
	An FT with Multiple Users, and addCleanup
	Implementing the Selenium Interact/Wait Pattern
	The Page Pattern
	Extend the FT to a Second User, and the “My Lists” Page
	An Exercise for the Reader

	Chapter 22. Fast Tests, Slow Tests, and Hot Lava
	Thesis: Unit Tests Are Superfast and Good Besides That
	Faster Tests Mean Faster Development
	The Holy Flow State
	Slow Tests Don’t Get Run as Often, Which Causes Bad Code
	We’re Fine Now, but Integrated Tests Get Slower Over Time
	Don’t Take It from Me
	And Unit Tests Drive Good Design

	The Problems with “Pure” Unit Tests
	Isolated Tests Can Be Harder to Read and Write
	Isolated Tests Don’t Automatically Test Integration
	Unit Tests Seldom Catch Unexpected Bugs
	Mocky Tests Can Become Closely Tied to Implementation
	But All These Problems Can Be Overcome

	Synthesis: What Do We Want from Our Tests, Anyway?
	Correctness
	Clean, Maintainable Code
	Productive Workflow
	Evaluate Your Tests Against the Benefits You Want from Them

	Architectural Solutions
	Ports and Adapters/Hexagonal/Clean Architecture
	Functional Core, Imperative Shell

	Conclusion

	Obey the Testing Goat!
	Appendix A. PythonAnywhere
	Starting a virtualenv
	Running Firefox Selenium Sessions with Xvfb
	Setting Up Django as a PythonAnywhere Web App
	Cleaning Up /tmp
	Screenshots
	The Deployment Chapter

	Appendix B. Django Class-Based Views
	Class-Based Generic Views
	The Home Page as a FormView
	Using form_valid to Customise a CreateView
	A More Complex View to Handle Both Viewing and Adding to a List
	The Tests Guide Us, for a While
	Until We’re Left with Trial and Error
	Back on Track
	Is That Your Final Answer?

	Compare Old and New
	Best Practices for Unit Testing CBGVs?
	Take-Home: Having Multiple, Isolated View Tests with Single Assertions Helps

	Appendix C. Provisioning with Ansible
	Installing System Packages and Nginx
	Configuring Gunicorn, and Using Handlers to Restart Services
	What to Do Next
	Move Deployment out of Fabric and into Ansible
	Use Vagrant to Spin Up a Local VM

	Appendix D. Testing Database Migrations
	An Attempted Deploy to Staging
	Running a Test Migration Locally
	Entering Problematic Data
	Copying Test Data from the Live Site
	Confirming the Error

	Inserting a Data Migration
	Re-creating the Old Migration

	Testing the New Migrations Together
	Conclusions

	Appendix E. Behaviour-Driven Development (BDD)
	What is BDD?
	Basic Housekeeping
	Writing an FT as a “Feature” using Gherkin Syntax
	As-a /I want to/So that
	Given/When/Then
	Not Always A Perfect Fit!

	Coding the Step Functions
	Generating Placeholder Steps

	First Step Definition
	setUp and tearDown Equivalents in environment.py
	Another Run
	Capturing Parameters in Steps
	Comparing the Inline-Style FT
	BDD Encourages Structured Test Code
	The Page Pattern as an Alternative
	BDD Might Be Less Expressive than Inline Comments
	Will Nonprogrammers Write Tests?
	Some Tentative Conclusions

	Appendix F. Cheat Sheet
	Initial Project Setup
	The Basic TDD Workflow
	Moving Beyond dev-only Testing
	General Testing Best Practices
	Selenium/Functional Testing Best Practices
	Outside-In, Test Isolation Versus Integrated Tests, and Mocking

	Appendix G. What to Do Next
	Notifications—Both on the Site and by Email
	Switch to Postgres
	Run Your Tests Against Different Browsers
	404 and 500 Tests
	The Django Admin Site
	Write Some Security Tests
	Test for Graceful Degradation
	Caching and Performance Testing
	JavaScript MVC Frameworks
	Async and Websockets
	Switch to Using py.test
	Check out coverage.py
	Client-Side Encryption
	Your Suggestion Here

	Appendix H. Bibliography

	Index
	About the Author

