O'REILLY"

lest-Driven
Development
with Python

OBEY THE TESTING GOAT: USING
DJANGO, SELENIUM, AND JAVASCRIPT

! /s /
(5
/
{

O'REILLY"

Test-Driven Development with Python

By taking you through the development of a real web application from
beginning to end, this hands-on guide demonstrates the practical advantages
of test-driven development (TDD) with Python. You'll learn how to write and
run tests before building each part of your app, and then develop the minimum
amount of code required to pass those tests. The result? Clean code that works.

In the process, you'll learn the basics of Django, Selenium, git, jQuery, and
Mock, along with current web development techniques. If you're ready to
take your Python skills to the next level, this book clearly demonstrates
how TDD encourages simple designs and inspires confidence.

m Dive into the TDD workflow, including the unit test/code cycle
and refactoring

m Use unit tests for classes and functions, and functional tests for
user interactions within the browser

m Learn when and how to use mock objects, and the pros and
cons of isolated vs. integrated tests

m Test and automate your deployments with a staging server
m Apply tests to the third-party plugins you integrate into your site

m Use a Continuous Integration environment to run your tests
automatically

Harry J.W. Percival works at PythonAnywhere LLP and spreads the gospel of
TDD worldwide at talks, workshops, and conferences, with all the passion and
enthusiasm of a recent convert. He holds an MSc in Computer Science from
Liverpool, and an MA in Philosophy from Cambridge University.

O'REILLY
Take your learning further with the Test-Driven
Development video with Harry Percival.

Build a simple web app with all the complexities
associated with web browsers, the HTTP protocol,
web frameworks, and database integration.

Test-Driven
Development

Harry Percival
VIDEO

“Testing is essential for

developer sanity. Harry
does a fantastic job of
holding our attention
whilst exploring real
world testing practices.”

—Michael Foord
Python Core Developer
& Maintainer of unittest

“This book is far more than

an introduction to Test
Driven Development—it’s
a complete best-practices
crash course, from start to
finish, into modern web
application development
with Python.”

—Kenneth Reitz
Fellow at Python Software Foundation

“Harry’s book is what we

wish existed when we
were learning Django. At
a pace that’s achievable
and yet delightfully
challenging, it provides
excellent instruction for
Django and various test
practices.”
—Daniel and Audrey Roy Greenfeld

authors of Two Scoops of Django
(Two Scoops Press)

PYTHON / WEB DEVELOPMENT

US $44.99 CAN $47.99
ISBN: 978-1-449-36482-3

OO MO

7814491364823

Twitter: @oreillymedia
facebook.com/oreilly

—

lake your
learning further.

Get the video training course that
complements the first six chapters
of the book.

IM\

TeSt~D :

TV,
eve]oplggn
With h L

P

Build a simple web app with all the complexities associated with web browsers,
the HTTP protocol, web frameworks, and database integration.

Start the course for free at oreil.ly/1svTFgB

O'REILLY"

©2015 O'Reilly Media, Inc. The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. 15172

http://oreil.ly/1svTFqB

Praise for Test-Driven Development with Python

“In this book, Harry takes us on an adventure of discovery with Python and testing. It’s an
excellent book, fun to read and full of vital information. It has my highest recommendations
for anyone interested in testing with Python, learning Django or wanting to use Selenium.
Testing is essential for developer sanity and it’s a notoriously difficult field, full of trade-
offs. Harry does a fantastic job of holding our attention whilst exploring real world testing
practices.”

— Michael Foord
Python Core Developer and Maintainer of unittest

“This book is far more than an introduction to Test Driven Development—it’s a complete
best-practices crash course, from start to finish, into modern web application development
with Python. Every web developer needs this book.”

— Kenneth Reitz
Fellow at Python Software Foundation

“Harry’s book is what we wish existed when we were learning Django. At a pace that’s
achievable and yet delightfully challenging, it provides excellent instruction for Django and
varjous test practices. The material on Selenium alone makes the book worth purchasing,
but there’s so much more!”

— Daniel and Audrey Roy Greenfeld
authors of Two Scoops of Django (Two Scoops Press)

Test-Driven Development with
Python

Harry Percival

Beijing - Boston - Farnham - Sebastopol + Tokyo [KOAR{=I|HA &

Test-Driven Development with Python
by Harry Percival

Copyright © 2014 Harry Percival. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette Indexer: Wendy Catalano
Production Editor: Kara Ebrahim Cover Designer: Randy Comer
Copyeditor: Charles Roumeliotis Interior Designer: David Futato
Proofreader: Gillian McGarvey lllustrator: Rebecca Demarest
June 2014: First Edition

Revision History for the First Edition:
2014-06-09: First release

2014-07-23: Second release
2014-09-19: Third release
2015-03-06: Fourth release

2015-10-16: Fifth release
See http://oreilly.com/catalog/errata.csp?isbn=9781449364823 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O'Reilly
Media, Inc. Test-Driven Development with Python, the image of a cashmere goat, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36482-3
[LSI]

http://safaribooksonline.com/
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449364823

Table of Contents

] - Xvii
Prerequisites and AsSUMPLIONS.ovveniieiiieiieiiierieeeeneenernnnnns Xxiii
Companion Video.cuviniiniiii ittt ittt iie e i eeeaaaaas XXiX
Acknowledgments.coviiriiiiiiiiiii i i i i i it XXXi

Partl. The Basics of TDD and Django

1. Getting Django Set Up Using a Functional Test..............coovviiiiiiiiinnna.n. 3
Obey the Testing Goat! Do Nothing Until You Have a Test 3
Getting Django Up and Running 6
Starting a Git Repository 8

2. Extending Our Functional Test Using the unittest Module. 13
Using a Functional Test to Scope Out a Minimum Viable App 13
The Python Standard Library’s unittest Module 16
Implicit waits 18
Commit 18

3. Testing a Simple Home Page with UnitTests...........ccoviiiiiiiiiieninnnnnns 21
Our First Django App, and Our First Unit Test 22
Unit Tests, and How They Differ from Functional Tests 22
Unit Testing in Django 23
Djangos MVC, URLs, and View Functions 24
At Last! We Actually Write Some Application Code! 26
urls.py 27
Unit Testing a View 30

The Unit-Test/Code Cycle 31

vii

Programming Is like Pulling a Bucket of Water up from a Well

Using Selenium to Test User Interactions

The “Don’t Test Constants” Rule, and Templates to the Rescue
Refactoring to Use a Template

On Refactoring

A Little More of Our Front Page

Recap: The TDD Process

CSavingUserInput. ...eviniiii i e

Wiring Up Our Form to Send a POST Request
Processing a POST Request on the Server
Passing Python Variables to Be Rendered in the Template
Three Strikes and Refactor
The Django ORM and Our First Model

Our First Database Migration

The Test Gets Surprisingly Far

A New Field Means a New Migration
Saving the POST to the Database
Redirect After a POST

Better Unit Testing Practice: Each Test Should Test One Thing
Rendering Items in the Template
Creating Our Production Database with migrate

. Getting to the Minimum ViableSite...........c.ooviiiiiiiiiiiiiiiinn,

Ensuring Test Isolation in Functional Tests
Running Just the Unit Tests
Small Design When Necessary
YAGNT!
REST
Implementing the New Design Using TDD
Iterating Towards the New Design

Testing Views, Templates, and URLs Together with the Django Test Client

A New Test Class

A New URL

A New View Function

A Separate Template for Viewing Lists
Another URL and View for Adding List Items

A Test Class for New List Creation

A URL and View for New List Creation

Removing Now-Redundant Code and Tests

Pointing Our Forms at the New URL

36
37
40
40
44
45
47

51
51
54
55
59
61
62
63
64
65
68
68
69
71

77
77
80
81
82
82
83
86
87
88
88
89
90
92
93
94
95
96

viii

| Table of Contents

Adjusting Our Models 97

A Foreign Key Relationship 99
Adjusting the Rest of the World to Our New Models 100
Each List Should Have Its Own URL 102
Capturing Parameters from URLs 103
Adjusting new_list to the New World 104
One More View to Handle Adding Items to an Existing List 105
Beware of Greedy Regular Expressions! 106
The Last New URL 106
The Last New View 107
But How to Use That URL in the Form? 108
A Final Refactor Using URL includes 110

Partll. Web Development Sine Qua Nons

7. Prettification: Layout and Styling, and What to Test About It.................... 115
What to Functionally Test About Layout and Style 115
Prettification: Using a CSS Framework 118
Django Template Inheritance 120
Integrating Bootstrap 121

Rows and Columns 122
Static Files in Django 123
Switching to StaticLiveServerTestCase 124
Using Bootstrap Components to Improve the Look of the Site 125
Jumbotron! 125
Large Inputs 125
Table Styling 126
Using Our Own CSS 126
What We Glossed Over: collectstatic and Other Static Directories 127
A Few Things That Didn’t Make It 130

8. Testing Deployment Using a Staging Site.........ooovvvviiiiiiiiiiiinnnenn, 133
TDD and the Danger Areas of Deployment 134
As Always, Start with a Test 135
Getting a Domain Name 137
Manually Provisioning a Server to Host Our Site 138

Choosing Where to Host Our Site 138
Spinning Up a Server 139
User Accounts, SSH, and Privileges 139
Installing Nginx 140
Configuring Domains for Staging and Live 141

Table of Contents | ix

10.

. Automating Deployment with Fabric
Breakdown of a Fabric Script for Our Deployment
Trying It Out

Input Validation and Test Organisation
Validation FT: Preventing Blank Items

Using the FT to Confirm the Domain Works and Nginx Is Running

Deploying Our Code Manually

Adjusting the Database Location
Creating a Virtualenv

Simple Nginx Configuration
Creating the Database with migrate

Getting to a Production-Ready Deployment

Switching to Gunicorn

Getting Nginx to Serve Static Files

Switching to Using Unix Sockets

Switching DEBUG to False and Setting ALLOWED_HOSTS
Using Upstart to Make Sure Gunicorn Starts on Boot

Saving Our Changes: Adding Gunicorn to Our requirements.txt

Automating

“Saving Your Progress”

Deploying to Live
Nginx and Gunicorn Config Using sed

Git Tag the Release
Further Reading

Skipping a Test

Splitting Functional Tests out into Many Files
Running a Single Test File

Fleshing Out the FT

Using Model-Layer Validation

Refactoring Unit Tests into Several Files

Unit Testing Model Validation and the self.assertRaises Context Manager

A Django Quirk: Model Save Doesn’t Run Validation

Surfacing Model Validation Errors in the View

Checking Invalid Input Isn’t Saved to the Database

Django Pattern: Processing POST Requests in the Same View as Renders the

Form
Refactor: Transferring the new_item Functionality into view_list
Enforcing Model Validation in view_list

Refactor: Removing Hardcoded URLs

The {% url %} Template Tag

142
142
143
144
147
149
150
150
151
152
153
153
155
155
158

159
160
164
165
167
168
168

171
171
172
173
176
176
177
177
179
180
180
183

185
186
188
189
190

X

Table of Contents

1.

12.

13.

14.

Using get_absolute_url for Redirects

ASImple FOrm. .. oo i i e e
Moving Validation Logic into a Form
Exploring the Forms API with a Unit Test
Switching to a Django ModelForm
Testing and Customising Form Validation
Using the Form in Our Views
Using the Form in a View with a GET Request
A Big Find and Replace
Using the Form in a View That Takes POST Requests
Adapting the Unit Tests for the new_list View
Using the Form in the View
Using the Form to Display Errors in the Template
Using the Form in the Other View
A Helper Method for Several Short Tests
Using the Form’s Own Save Method

More Advanced Forms.covviiiiiiiiiiiiiiii
Another FT for Duplicate Items
Preventing Duplicates at the Model Layer
A Little Digression on Queryset Ordering and String Representations
Rewriting the Old Model Test
Some Integrity Errors Do Show Up on Save
Experimenting with Duplicate Item Validation at the Views Layer
A More Complex Form to Handle Uniqueness Validation
Using the Existing List Item Form in the List View

Dipping Our Toes, Very Tentatively, into JavaScript.............ooovvniiinnnen.
Starting with an FT

Setting Up a Basic JavaScript Test Runner

Using jQuery and the Fixtures Div

Building a JavaScript Unit Test for Our Desired Functionality

Javascript Testing in the TDD Cycle

Columbo Says: Onload Boilerplate and Namespacing

A Few Things That Didn’t Make It

Deploying Our New €ode. .. .ovvnviniriniiiieiiierinienieniesnnsannaes
Staging Deploy

Live Deploy

What to Do If You See a Database Error

Wrap-Up: git tag the New Release

190

195
195
196
197
198
200
200
203
205
205
206
207
207
208
210

213
213
214
216
218
219
220
221
223

227
227
228
231
234
236
236
237

239
239
239
240
240

Table of Contents

| xi

Partlll. More Advanced Topics

15. User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript. 243

Mozilla Persona (BrowserID) 244
Exploratory Coding, aka “Spiking” 244
Starting a Branch for the Spike 245
Frontend and JavaScript Code 245
The Browser-ID Protocol 246
The Server Side: Custom Authentication 247
De-spiking 253
A Common Selenium Technique: Explicit Waits 255
Reverting Our Spiked Code 257
JavaScript Unit Tests Involving External Components: Our First Mocks! 258
Housekeeping: A Site-Wide Static Files Folder 258
Mocking: Who, Why, What? 259
Namespacing 260
A Simple Mock to Unit Tests Our initialize Function 260
More Advanced Mocking 266
Checking Call Arguments 269
QUnit setup and teardown, Testing Ajax 270
More Nested Callbacks! Testing Asynchronous Code 274
16. Server-Side Authentication and Mockingin Python........................ ..., 279
A Look at Our Spiked Login View 279
Mocking in Python 280
Testing Our View by Mocking Out authenticate 280
Checking the View Actually Logs the User In 283
De-spiking Our Custom Authentication Backend: Mocking Out an Internet
Request 287
1if = 1 More Test 288
Patching at the Class Level 289
Beware of Mocks in Boolean Comparisons 292
Creating a User if Necessary 293
The get_user Method 293
A Minimal Custom User Model 295
A Slight Disappointment 297
Tests as Documentation 298
Users Are Authenticated 299
The Moment of Truth: Will the FT Pass? 300
Finishing Oft Our FT, Testing Logout 301

xii | Tableof Contents

17. Test Fixtures, Logging, and Server-Side Debugging.ccovvvivvinnnnnn. 305

Skipping the Login Process by Pre-creating a Session 305
Checking It Works 307
The Proof Is in the Pudding: Using Staging to Catch Final Bugs 308
Setting Up Logging 309
Fixing the Persona Bug 311
Managing the Test Database on Staging 313
A Django Management Command to Create Sessions 313
Getting the FT to Run the Management Command on the Server 315
An Additional Hop via subprocess 316
Baking In Our Logging Code 320
Using Hierarchical Logging Config 320
Wrap-Up 322
18. Finishing “My Lists”: Outside-InTDD.........covvviniiiniiiiiiiiiirinniennnes 325
The Alternative: “Inside Out” 325
Why Prefer “Outside-In"? 325
The FT for “My Lists” 326
The Outside Layer: Presentation and Templates 327
Moving Down One Layer to View Functions (the Controller) 328
Another Pass, Outside-In 329
A Quick Restructure of the Template Inheritance Hierarchy 329
Designing Our API Using the Template 330

Moving Down to the Next Layer: What the View Passes to the Template 331
The Next “Requirement” from the Views Layer: New Lists Should Record

Owner 332
A Decision Point: Whether to Proceed to the Next Layer with a Failing Test 333
Moving Down to the Model Layer 333
Final Step: Feeding Through the .name API from the Template 335
19. TestIsolation, and “Listening to Your Tests”.c.ccoeviiviiiiinienniennnss 339
Revisiting Our Decision Point: The Views Layer Depends on Unwritten
Models Code 339
A First Attempt at Using Mocks for Isolation 340
Using Mock side_effects to Check the Sequence of Events 341
Listen to Your Tests: Ugly Tests Signal a Need to Refactor 343
Rewriting Our Tests for the View to Be Fully Isolated 344
Keep the Old Integrated Test Suite Around as a Sanity Check 344
A New Test Suite with Full Isolation 345
Thinking in Terms of Collaborators 345
Moving Down to the Forms Layer 349

Keep Listening to Your Tests: Removing ORM Code from Our Application 350

Table of Contents | xiii

20.

21.

22,

Finally, Moving Down to the Models Layer
Back to Views
The Moment of Truth (and the Risks of Mocking)
Thinking of Interactions Between Layers as “Contracts”
Identifying Implicit Contracts
Fixing the Oversight
One More Test
Tidy Up: What to Keep from Our Integrated Test Suite
Removing Redundant Code at the Forms Layer
Removing the Old Implementation of the View
Removing Redundant Code at the Forms Layer
Conclusions: When to Write Isolated Versus Integrated Tests
Let Complexity Be Your Guide
Should You Do Both?
Onwards!

Continuous Integration (Cl).covveiniriiiiii it iiie e eeneaens
Installing Jenkins
Configuring Jenkins Security
Adding Required Plugins
Setting Up Our Project
First Build!
Setting Up a Virtual Display so the FTs Can Run Headless
Taking Screenshots
A Common Selenium Problem: Race Conditions
Running Our QUnit JavaScript Tests in Jenkins with Phantom]S
Installing node
Adding the Build Steps to Jenkins
More Things to Do with a CI Server

The Token Social Bit, the Page Pattern, and an Exercise for the Reader............
An FT with Multiple Users, and addCleanup

Implementing the Selenium Interact/Wait Pattern

The Page Pattern

Extend the FT to a Second User, and the “My Lists” Page

An Exercise for the Reader

Fast Tests, Slow Tests, and Hot Lava.ovvvniiriiiiii i iiiiiiiiiienenenn.
Thesis: Unit Tests Are Superfast and Good Besides That

Faster Tests Mean Faster Development

The Holy Flow State

Slow Tests Don’t Get Run as Often, Which Causes Bad Code

353
355
356
357
358
359
360
361
361
362
363
364
364
365
365

367
367
369
370
371
373
374
376
379
382
383
384
385

387
387
389
390
393
395

397
398
398
399
399

Xiv

| Table of Contents

We're Fine Now, but Integrated Tests Get Slower Over Time 399

Don’t Take It from Me 399

And Unit Tests Drive Good Design 400

The Problems with “Pure” Unit Tests 400
Isolated Tests Can Be Harder to Read and Write 400
Isolated Tests Don’t Automatically Test Integration 400

Unit Tests Seldom Catch Unexpected Bugs 400
Mocky Tests Can Become Closely Tied to Implementation 400

But All These Problems Can Be Overcome 401
Synthesis: What Do We Want from Our Tests, Anyway? 401
Correctness 401
Clean, Maintainable Code 401
Productive Workflow 402
Evaluate Your Tests Against the Benefits You Want from Them 402
Architectural Solutions 402
Ports and Adapters/Hexagonal/Clean Architecture 403
Functional Core, Imperative Shell 403
Conclusion 404
Obey the Testing Goat!.coviuiiiniiiiiiiiii ittt iiiriieennesannss 407
A. PythonAnywhere.oviniiiniiiiii ittt ittt rtiieenneannaes 409
B. Django Class-Based Views.c.ovviuiriniiiniiiiiiiiiiiiiiienneenneeenns 415
C. Provisioningwith Ansible...........coooviiiiiiiiiiiiii i 425
D. Testing Database Migrations.ccuvviiiieiiiiiniieniieninrenneennnes 429
E. Behaviour-Driven Development (BDD)..........ovviiiiiiiiiiiniinninnnnnnnns 435
F. CheatSheet. ... 449
G. WhattoDoNext........oooviiiiiiiiii 453
H. Bibliography........covuiiiiiiiiiii i i i i i s 457
INdeX. ... 459

Table of Contents | xv

Preface

This book is my attempt to share with the world the journey I've taken from “hacking”
to “software engineering’”. It's mainly about testing, but there’s a lot more to it, as you'll
soon see.

I want to thank you for reading it.

If you bought a copy, then I'm very grateful. If you're reading the free online version,
then I'm still grateful that you've decided it’s worth spending some of your time on. Who
knows, perhaps once you get to the end, you’ll decide it’s good enough to buy a real copy
for yourself or for a friend.

If you have any comments, questions, or suggestions, I'd love to hear from you. You can
reach me directly via obeythetestinggoat@gmail.com, or on Twitter @hjwp. You can also
check out the website and my blog, and there’s a mailing list.

I hope you’ll enjoy reading this book as much as I enjoyed writing it.

Why | Wrote a Book About Test-Driven Development

“Who are you, why are you writing this book, and why should I read it?” I hear you ask.

I'm still quite early on in my programming career. They say that in any discipline, you
go from apprentice, to journeyman, and eventually, sometimes, on to master. I'd say
that ’'m—at best—a journeyman programmer. But I was lucky enough, early on in my
career, to fall in with a bunch of TDD fanatics, and it made such a big impact on my
programming that 'm burning to share it with everyone. You might say I have the
enthusiasm of a recent convert, and the learning experience is still a recent memory for
me, so I hope I can still empathise with beginners.

When I first learned Python (from Mark Pilgrim’s excellent Dive Into Python), I came
across the concept of TDD, and thought “Yes. I can definitely see the sense in that”
Perhaps you had a similar reaction when you first heard about TDD? It sounds like a

Xvii

mailto:obeythetestinggoat@gmail.com
https://www.twitter.com/hjwp
http://www.obeythetestinggoat.com
https://groups.google.com/forum/#!forum/obey-the-testing-goat-book

really sensible approach, a really good habit to get into—like regularly flossing your
teeth or something.

Then came my first big project, and you can guess what happened—there was a client,
there were deadlines, there was lots to do, and any good intentions about TDD went
straight out of the window.

And, actually, it was fine. I was fine.
At first.

At firstI knew I didn’t really need TDD because it was a small website, and I could easily
test whether things worked by just manually checking it out. Click this link here, choose
that drop-down item there, and this should happen. Easy. This whole writing tests thing
sounded like it would have taken ages, and besides, I fancied myself, from the full height
of my three weeks of adult coding experience, as being a pretty good programmer. I
could handle it. Easy.

Then came the fearful goddess Complexity. She soon showed me the limits of my
experience.

The project grew. Parts of the system started to depend on other parts. I did my best to
follow good principles like DRY (Don’t Repeat Yourself), but that just led to some pretty
dangerous territory. Soon I was playing with multiple inheritance. Class hierarchies 8
levels deep. eval statements.

I became scared of making changes to my code. I was no longer sure what depended on
what, and what might happen if I changed this code over here, oh gosh, I think that bit
over there inherits from it—no, it doesn’t, it’s overriden. Oh, but it depends on that class
variable. Right, well, as long as I override the override it should be fine. I'll just check
—but checking was getting much harder. There were lots of sections to the site now,
and clicking through them all manually was starting to get impractical. Better to leave
well enough alone, forget refactoring, just make do.

Soon I had a hideous, ugly mess of code. New development became painful.

Not too long after this, I was lucky enough to get a job with a company called Resolver
Systems (now PythonAnywhere), where Extreme Programming (XP) was the norm.
They introduced me to rigorous TDD.

Although my previous experience had certainly opened my mind to the possible benefits
of automated testing, I still dragged my feet at every stage. “I mean, testing in general
might be a good idea, but really? All these tests? Some of them seem like a total waste
of time... What? Functional tests as well as unit tests? Come on, that’s overdoing it! And
this TDD test/minimal-code-change/test cycle? This is just silly! We don't need all these
baby steps! Come on, we can see what the right answer is, why don’t we just skip to the
end?”

xviii | Preface

https://www.pythonanywhere.com

Believe me, I second-guessed every rule, I suggested every shortcut, I demanded justi-
fications for every seemingly pointless aspect of TDD, and I came out seeing the wisdom
ofitall. I've lost count of the number of times I've thought “Thanks, tests”, as a functional
test uncovers a regression we would never have predicted, or a unit test saves me from
making a really silly logic error. Psychologically, it's made development a much less
stressful process. It produces code that’s a pleasure to work with.

So, let me tell you all about it!

Aims of This Book

My main aim is to impart a methodology—a way of doing web development, which I
think makes for better web apps and happier developers. There’s not much point in a
book that just covers material you could find by googling, so this book isn't a guide to
Python syntax, or a tutorial on web development per se. Instead, I hope to teach you
how to use TDD to get more reliably to our shared, holy goal: clean code that works.

With that said: I will constantly refer to a real practical example, by building a web app
from scratch using tools like Django, Selenium, jQuery, and Mock. I'm not assuming
any prior knowledge of any of these, so you should come out of the other end of this
book with a decent introduction to those tools, as well as the discipline of TDD.

In Extreme Programming we always pair-program, so I've imagined writing this book
asif I was pairing with my previous self, having to explain how the tools work and answer
questions about why we code in this particular way. So, if I ever take a bit of a patronising
tone, it’s because 'm not all that smart, and I have to be very patient with myself. And
ifT ever sound defensive, it's because I'm the kind of annoying person that systematically
disagrees with whatever anyone else says, so sometimes it takes a lot of justifying to
convince myself of anything.

Outline

I've split this book into three parts.

Part I (Chapters 1-6): The basics
Dives straight into building a simple web app using TDD. We start by writing a
functional test (with Selenium), then we go through the basics of Django—models,
views, templates—with rigorous unit testing at every stage. I also introduce the
Testing Goat.

Part II (Chapters 7-14): Web development essentials
Covers some of the trickier but unavoidable aspects of web development, and shows
how testing can help us with them: static files, deployment to production, form data
validation, database migrations, and the dreaded JavaScript.

Preface | xix

Part III (Chapters 15-20): More advanced topics
Mocking, integrating a third-party authentication system, Ajax, test fixtures,
Outside-In TDD, and Continuous Integration (CI).

On to a little housekeeping...

Conventions Used in This Book

The following typographical conventions are used in this book:

Ttalic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Occasionally I will use the symbol:

[...]
to signify that some of the content has been skipped, to shorten long bits of output, or
to skip down to a relevant bit.

This element signifies a tip or suggestion.

This element signifies a general note or aside.

This element indicates a warning or caution.

N

xx | Preface

Using Code Examples

Code examples are available at https://github.com/hjwp/book-example/; you'll find
branches for each chapter there (e.g., https://github.com/hjwp/book-example/tree/chap
ter_03). You'll also find some suggestions on ways of working with this repository at
the end of each chapter.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Test-Driven Development with Python by
Harry Percival (O'Reilly). Copyright 2014 Harry Percival, 978-1-449-36482-3”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
1 D delivers expert content in both book and video form from

the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu-
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

Preface | xxi

https://github.com/hjwp/book-example/
https://github.com/hjwp/book-example/tree/chapter_03
https://github.com/hjwp/book-example/tree/chapter_03
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

Contacting O'Reilly

If youd like to get in touch with my beloved publisher with any questions about this
book, contact details follow:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You can also send email to bookquestions@oreilly.com.

You can find errata, examples, and additional information at http://bit.ly/test-driven-
python.

For more information about books, courses, conferences, and news, see O’Reilly’s web-
site at http://www.oreilly.com.

Facebook: http://facebook.com/oreilly
Twitter: http://twitter.com/oreillymedia

YouTube: http://www.youtube.com/oreillymedia

xxii | Preface

mailto:bookquestions@oreilly.com
http://bit.ly/test-driven-python
http://bit.ly/test-driven-python
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Prerequisites and Assumptions

Here’s an outline of what I'm assuming about you and what you already know, as well
as what software you’ll need ready and installed on your computer.

Python 3 and Programming

I've written the book with beginners in mind, but if youre new to programming, I'm
assuming that you've already learned the basics of Python. So if you haven't already, do
run through a Python beginner’s tutorial or get an introductory book like Dive Into
Python or Learn Python the Hard Way, or, just for fun, Invent Your Own Computer
Games with Python, all of which are excellent introductions.

If you're an experienced programmer but new to Python, you should get along just fine.
Python is joyously simple to understand.

I'm using Python 3 for this book. When I wrote itin 2013-14, Python 3 had been around
for several years, and the world was just about on the tipping point at which it was the
preferred choice. You should be able to follow this book on Mac, Windows, or Linux.
Detailed installation instructions for each OS follow.

This book was tested against Python 3.3 and Python 3.4. If youre on
3.2 for any reason, you may find minor differences, so you're best off
upgrading if you can.

I wouldn't recommend trying to use Python 2, as the differences are more substantial.
You'll still be able to carry across all the lessons you learn in this book if your next project
happens to be in Python 2. But spending time figuring out whether the reason your
program output looks different from mine is because of Python 2, or because you made
an actual mistake, won't be time spent productively.

Xxiii

http://www.diveintopython.net/
http://www.diveintopython.net/
http://learnpythonthehardway.org/
http://inventwithpython.com/
http://inventwithpython.com/

If you are thinking of using PythonAnywhere (the PaaS startup I work for), rather than
a locally installed Python, you should go and take a quick look at Appendix A before
you get started.

In any case, I expect you to have access to Python, to know how to launch it from a
command line (usually with the command python3), and to know how to edit a Python
file and run it. Again, have alook at the three books I recommended previously if you're
in any doubt.

If you already have Python 2 installed, and youre worried that in-
stalling Python 3 will break it in some way, don’t! Python 3 and 2 can
coexist peacefully on the same system, and they each store their
packages in totally different locations. You just need to make sure that
you have one command to launch Python 3 (python3), and another
to launch Python 2 (usually, just python). Similarly, when we install
pip for Python 3, we just make sure that its command (usually pip3)
is identifiably different from the Python 2 pip.

How HTML Works

I’'m also assuming you have a basic grasp of how the web works—what HTML is, what
a POST request is, etc. If youre not sure about those, you’ll need to find a basic HTML
tutorial—there are a few at http://www.webplatform.org/. If you can figure out how to
create an HTML page on your PC and look at it in your browser, and understand what
a form is and how it might work, then you're probably OK.

JavaScript

There’s a little bit of JavaScript in the second half of the book. If you don’t know Java-
Script, don’t worry about it until then, and if you find yourself a little confused, I'll
recommend a couple of guides at that point.

Required Software Installations
Aside from Python, you’ll need:

The Firefox web browser
A quick Google search will get you an installer for whichever platform you’re on.
Selenium can actually drive any of the major browsers, but Firefox is the easiest to
use as an example because it’s reliably cross-platform and, as a bonus, is less sold
out to corporate interests.

The Git version control system
This is available for any platform, at http://git-scm.com/.

xxiv | Prerequisites and Assumptions

http://www.pythonanywhere.com
http://www.webplatform.org/
http://git-scm.com/

The pip Python package management tool
This comes bundled with Python 3.4 (it didn’t always used to, this is a big hooray).
To make sure we're using the Python3 version of pip, I'll always use pip3 as the
executable in my command-line examples. Depending on your platform, it may be
pip-3.4 or pip-3.3. Have a look at the detailed notes for each operating system
for more info.

Windows Notes

Windows users can sometimes feel a little neglected, since OS X and Linux make it easy
to forget there’s a world outside the Unix paradigm. Backslashes as directory separators?
Drive letters? What? Still, it is absolutely possible to follow along with this book on
Windows. Here are a few tips:

1. When you install Git for Windows, make sure you choose “Run Git and included
Unix tools from the Windows command prompt”. You'll then get access to a program
called “Git Bash”. Use this as your main command prompt and you’ll get all the
useful GNU command-line tools like 1s, touch, and grep, plus forward-slash di-
rectory separators.

2. When you install Python 3, make sure you tick the option that says “add python.exe
to Path” as in Figure P-1, to make sure you can run Python from the command line.

i Python 3.4.0 Setup

Customize Python 3.4.0

Select the way you want features to be installed.
Click on the icons in the tree below to change the
way features wil be installed.

Register Extensions
TelfTk
Documentation
Utility Scripts

pip

Test suite
ython.exe to Path =

| >

Prepend C:\F =38 Entire feature will be installed on lacal harc
variable, This
command pr % Entire feature will be unavailable

python

for This feature requires OKB on your hard drive.
windows
[Digk Usage] [Advanced] [< Back [Mext > | [Cancel

Figure P-1. Add python to the system path from the installer

Prerequisites and Assumptions | xxv

3.

On Windows, Python 3’s executable is called python. exe, which is exactly the same
as Python 2. To avoid any confusion, create a symlink in the Git Bash binaries folder,
like this:

1n -s /c/Python34/python.exe /bin/python3.exe

You may need to right-click Git-Bash and choose “Run as an administrator” for
that command to work. Note also that the symlink will only work in Git Bash, not
in the regular DOS command prompt.

Python 3.4 comes with pip, the package management tool. You can check it’s in-
stalled by doing a which pip3 from a command line, and it should show you /c/
Python34/Scripts/pip3.

If, for whatever reason, you're stuck with Python 3.3 and you don’t have pip3, check
http://www.pip-installer.org/ for installation instructions. At the time of writing,
this involved downloading a file and then executing it with python3 get-pip.py.
Mabke sure you use python3 when you run the setup script.

The test for all this is that you should be able to go to a Git-

Bash command prompt and just run python3 or pip3 from any
folder.

MacOS Notes

MacOS is a bit more sane than Windows, although getting pip3 installed was still fairly
challenging up until recently. With the arrival of 3.4, things are now quite straightfor-
ward:

Python 3.4 should install without a fuss from its downloadable installer. It will
automatically install pip, too.

Git’s installer should also “just work”.

Similarly to Windows, the test for all this is that you should be able to open a terminal
andjustrungit, python3, or pip3 from anywhere. If you run into any trouble, the search
terms “system path” and “command not found” should provide good troubleshooting
resources.

XXVi

Prerequisites and Assumptions

http://www.pip-installer.org/
http://www.python.org

You might also want to check out Homebrew. It used to be the
only reliable way of installing lots of Unixy tools (including
Python 3) on a Mac.! Although the Python installer is now fine,
you may find it useful in future. It does require you to down-
load all 1.1 GB of Xcode, but that also gives you a C compiler,
which is a useful side effect.

Git's Default Editor, and Other Basic Git Config

I'll provide step-by-step instructions for Git, but it may be a good idea to get a bit of
configuration done now. For example, when you do your first commit, by default vi will
pop up, at which point you may have no idea what to do with it. Well, much as vi has
two modes, you then have two choices. One is to learn some minimal vi commands
(press the i key to go into insert mode, type your text, press <Esc> to go back to normal
mode, then write the file and quit with :wq<Enter>). You'll then have joined the great
fraternity of people who know this ancient, revered text editor.

Or you can point-blank refuse to be involved in such a ridiculous throwback to the
1970s, and configure Git to use an editor of your choice. Quit vi using <Esc> followed
by :q!, then change your Git default editor. See the Git documentation on basic Git
configuration.

Required Python Packages

Once you have pip installed, it’s trivial to install new Python packages. We'll install some
as we go, but there are a couple we’ll need right from the beginning, so you should install
them right away:

 Django, sudo pip3 install django==1.8.4 (omit the sudo on Windows). This is
our web framework. You should make sure you have version 1.8% installed and that
you can access the django-admin. py executable from a command line. The Django
documentation has some installation instructions if you need help.

o Selenium, sudo pip3 install --upgrade selenium (omitthe sudoon Windows),
a browser automation tool that we’ll use to drive what are called functional tests.
Make sure you have the absolute latest version installed. Selenium is engaged in a

1. I wouldn’t recommend installing Firefox via Homebrew though: brew puts the Firefox binary in a strange
location, and it confuses Selenium. You can work around it, but it’s simpler to just install Firefox in the
normal way.

2. Tupdated the book to Django 1.8 in Spring 2015, and as it’s an LTS, this will probably be the last upgrade for
a while. Make sure you install this version, even if the Django project has released a newer one since. You can
always jump to the bleeding edge when you go back to your own projects!

Prerequisites and Assumptions | xxvii

http://brew.sh//
http://git-scm.com/book/en/Customizing-Git-Git-Configuration
http://git-scm.com/book/en/Customizing-Git-Git-Configuration
https://docs.djangoproject.com/en/1.8/intro/install/
https://docs.djangoproject.com/en/1.8/intro/install/

permanent arms race with the major browsers, trying to keep up with the latest
features. If you ever find Selenium misbehaving for some reason, the answer is often
that it’s a new version of Firefox and you need to upgrade to the latest Selenium...

Unless you're absolutely sure you know what you’re doing, don’t use
a virtualenv. We'll start using one later in the book, in Chapter 8.

A Note on IDEs

If you've come from the world of Java or .NET, you may be keen to use an IDE for your
Python coding. They have all sorts of useful tools, including VCS integration, and there
are some excellent ones out there for Python. I used one myself when I was starting out,
and I found it very useful for my first couple of projects.

Can I suggest (and it’s only a suggestion) that you don’t use an IDE, at least for the
duration of this tutorial? IDEs are much less necessary in the Python world, and I've
written this whole book with the assumption that you're just using a basic text editor
and a command line. Sometimes, that’s all you have—when you’re working on a server
for example—so it’s always worth learning how to use the basic tools first and under-
standing how they work. It'll be something you always have, even if you decide to go
back to your IDE and all its helpful tools, after you've finished this book.

Did these instructions not work for you? Or have you got better ones?
Get in touch: obeythetestinggoat@gmail.com!

xxviii | Prerequisites and Assumptions

mailto:obeythetestinggoat@gmail.com

Companion Video

I've recorded a 10-part video series to accompany this book. It covers the content of
Chapters 1-6. If you find you learn well from video-based material, then I encourage
you to check it out. Over and above what’s in the book, it should give you a feel for what
the “flow” of TDD is like, flicking between tests and code, explaining the thought process
as we go.

Plus 'm wearing a delightful yellow T-shirt:

Unittest (Free)

XXiX

http://oreil.ly/1svTFqB

Acknowledgments

Lots of people to thank, without whom this book would never have happened, and/or
would have been even worse than it is.

Thanks first to “Greg” at SOTHER_PUBLISHER, who was the first person to encourage
me to believe it really could be done. Even though your employers turned out to have
overly regressive views on copyright, I'm forever grateful that you believed in me.

Thanks to Michael Foord, another ex-employee of Resolver Systems, for providing the
original inspiration by writing a book himself, and thanks for his ongoing support for
the project. Thanks also to my boss Giles Thomas, for foolishly allowing another one
of his employees to write a book (although I believe he’s now changed the standard
employment contract to say “no books”). Thanks also for your ongoing wisdom and for
setting me off on the testing path.

Thanks to my other colleagues, Glenn Jones and Hansel Dunlop, for being invaluable
sounding boards, and your patience with my one-track record conversation over the
last year.

Thanks to my wife Clementine, and to both my families, without whose support and
patience I would never have made it. I apologise for all the time spent with nose in
computer on what should have been memorable family occasions. I had no idea when
I set out what the book would do to my life (“write it in my spare time you say? That
sounds reasonable...”). I couldn’t have done it without you.

Thanks to my tech reviewers, Jonathan Hartley, Nicholas Tollervey, and Emily Bache,
for your encouragements and invaluable feedback. Especially Emily, who actually con-
scientiously read every single chapter. Partial credit to Nick and Jon, but that should
still be read as eternal gratitude. Having y’all around made the whole thing less of a
lonely endeavour. Without all of you the book would have been little more than the
nonsensical ramblings of an idiot.

Thanks to everyone else who's given up some of their time to give some feedback on the
book, out of nothing more than the goodness of their heart: Gary Bernhardt, Mark

XXXi

Lavin, Matt O’Donnell, Michael Foord, Hynek Schlawack, Russell Keith-Magee, An-
drew Godwin, Kenneth Reitz, and Nathan Stocks. Thanks for being much smarter than
I am, and for preventing me from saying several stupid things. Naturally, there are still
plenty of stupid things left in the book, for which yZall can absolutely not be held re-
sponsible.

Thanks to my editor Meghan Blanchette, for being a very friendly and likeable slave
driver, for keeping the book on track, both in terms of timescales and by restraining my
sillier ideas. Thanks to all the others at O'Reilly for your help, including Sarah Schneider,
Kara Ebrahim, and Dan Fauxsmith for letting me keep British English. Thanks to
Charles Roumeliotis for your help with style and grammar. We may never see eye-to-
eye on the merits of Chicago School quotation/punctuation rules, but I sure am glad
you were around. And thanks to the design department for giving us a goat for the cover!

And thanks most especially to all my Early Release readers, for all your help picking out
typos, for your feedback and suggestions, for all the ways in which you helped to smooth
out thelearning curve in the book, and most of all for your kind words of encouragement
and support that kept me going. Thank you Jason Wirth, Dave Pawson, Jeff Orr, Kevin
De Baere, crainbf, dsisson, Galeran, Michael Allan, James O’Donnell, Marek Turnovec,
SoonerBourne, julz, Cody Farmer, William Vincent, Trey Hunner, David Souther, Tom
Perkin, Sorcha Bowler, Jon Poler, Charles Quast, Siddhartha Naithani, Steve Young,
Roger Camargo, Wesley Hansen, Johansen Christian Vermeer, Ian Laurain, Sean Rob-
ertson, Hari Jayaram, Bayard Randel, Konrad Korzel, Matthew Waller, Julian Harley,
Barry McClendon, Simon Jakobi, Angelo Cordon, Jyrki Kajala, Manish Jain, Mahadevan
Sreenivasan, Konrad Korzel, Deric Crago, Cosmo Smith, Markus Kemmerling, Andrea
Costantini, Daniel Patrick, Ryan Allen, Jason Selby, Greg Vaughan, Jonathan Sundqvist,
Richard Bailey, Diane Soini, Dale Stewart, Mark Keaton, Johan Wirlander, Simon Scarfe,
Eric Grannan, Marc-Anthony Taylor, Maria McKinley, John McKenna, Rafat Szyman-
ski, Roel van der Goot, Ignacio Reguero, T] Tolton, Jonathan Means, Theodor Nolte,
Jungsoo Moon, Craig Cook, Gabriel Ewilazarus, Vincenzo Pandolfo, David “farbish2”,
Nico Coetzee, Daniel Gonzalez, Jared Contrascere, and many, many more. If I've missed
your name, you have an absolute right to be aggrieved; I am incredibly grateful to you
too, so write to me and I will try and make it up to you in any way I can.

And finally thanks to you, the latest reader, for deciding to check out the book! I hope
you enjoy it.

xxxii | Acknowledgments

PART |
The Basics of TDD and Django

In this first part, I'm going to introduce the basics of Test-Driven Development (TDD).
We'll build a real web application from scratch, writing tests first at every stage.

We'll cover functional testing with Selenium, as well as unit testing, and see the differ-
ence between the two. I'll introduce the TDD workflow, what I call the unit-test/code
cycle. We'll also do some refactoring, and see how that fits with TDD. Since it’s absolutely
essential to serious software engineering, I'll also be using a version control system (Git).
We'll discuss how and when to do commits and integrate them with the TDD and web
development workflow.

We'll be using Django, the Python world’s most popular web framework (probably). I've
tried to introduce the Django concepts slowly and one at a time, and provide lots of
links to further reading. If you're a total beginner to Django, I thoroughly recommend
taking the time to read them. If you find yourself feeling a bit lost, take a couple of hours
to go through the official Django tutorial, and then come back to the book.

You'll also get to meet the Testing Goat...

Be Careful with Copy and Paste

If youre working from a digital version of the book, it's natural to
want to copy and paste code listings from the book as youre work-
ing through it. It's much better if you don’t: typing things in by hand
gets them into your muscle memory, and just feels much more real.
You also inevitably make the occasional typo, and debugging them is
an important thing to learn.

Quite apart from that, you'll find that the quirks of the PDF format
mean that weird stuff often happens when you try and copy/paste
from it...

CHAPTER 1
Getting Django Set Up Using a
Functional Test

TDD isn’t something that comes naturally. It’s a discipline, like a martial art, and just
like in a Kung-Fu movie, you need a bad-tempered and unreasonable master to force
you to learn the discipline. Ours is the Testing Goat.

Obey the Testing Goat! Do Nothing Until You Have a Test

The Testing Goat is the unofficial mascot of TDD in the Python testing community. It
probably means different things to different people, but, to me, the Testing Goat is a
voice inside my head that keeps me on the True Path of Testing—like one of those little
angels or demons that pop up above your shoulder in the cartoons, but with a very niche
set of concerns. I hope, with this book, to install the Testing Goat inside your head too.

We've decided to build a website, even if were not quite sure what it’s going to do yet.
Normally the first step in web development is getting your web framework installed and
configured. Download this, install that, configure the other, run the script ... but TDD
requires a different mindset. When youre doing TDD, you always have the Testing Goat
inside you — single-minded as goats are—bleating “Test first, test first!”

In TDD the first step is always the same: write a test.

First we write the test, then we run it and check that it fails as expected. Only then do

we go ahead and build some of our app. Repeat that to yourself in a goat-like voice. I
know I do.

Another thing about goats is that they take one step at a time. That’s why they seldom
fall off mountains, see, no matter how steep they are. As you can see in Figure 1-1.

Figure 1-1. Goats are more agile than you think (source: Caitlin Stewart, on Flickr)

We'll proceed with nice small steps; were going to use Django, which is a popular Python
web framework, to build our app.

The first thing we want to do is check that we’ve got Django installed, and that it’s ready
for us to work with. The way we’ll check is by confirming that we can spin up Django’s
development server and actually see it serving up a web page, in our web browser, on
our local PC. We'll use the Selenium browser automation tool for this.

Create a new Python file called functional_tests.py, wherever you want to keep the code
for your project, and enter the following code. If you feel like making a few little goat
noises as you do it, it may help:

4 | Chapter 1: Getting Django Set Up Using a Functional Test

http://www.flickr.com/photos/caitlinstewart/2846642630/

functional_tests.py
from selenium import webdriver

browser = webdriver.Firefox()
browser.get('http://localhost:8000")

assert 'Django' in browser.title

Adieu to Roman Numerals!

So many introductions to TDD use Roman numerals as an example that it’s a running
joke—I even started writing one myself. If youre curious, you can find it on my GitHub

page.
Roman numerals, as an example, are both good and bad. It’s a nice “toy” problem,
reasonably limited in scope, and you can explain TDD quite well with it.

The problem is that it can be hard to relate to the real world. That’s why I've decided to
use building a real web app, starting from nothing, as my example. Although it’s a simple
web app, my hope is that it will be easier for you to carry across to your next real project.

That’s our first functional test (FT); I'll talk more about what I mean by functional tests,
and how they contrast with unit tests. For now, it’s enough to assure ourselves that we
understand what it’s doing:

o Starting a Selenium webdriver to pop up a real Firefox browser window

o Using it to open up a web page which were expecting to be served from the local
PC

o Checking (making a test assertion) that the page has the word “Django” in its title

Let’s try running it:

$ python3 functional_tests.py
Traceback (most recent call last):
File "functional_tests.py", line 6, in <module>
assert 'Django' 1in browser.title
AssertionError

You should see a browser window pop up and try and open localhost:8000, and then
the Python error message should appear. And then, you will probably be irritated at the

fact that it left a Firefox window lying around your desktop for you to tidy up. We'll fix
that later!

Obey the Testing Goat! Do Nothing Until You HaveaTest | 5

https://github.com/hjwp/tdd-roman-numeral-calculator/
https://github.com/hjwp/tdd-roman-numeral-calculator/

If, instead, you see an error trying to import Selenium, you might
need to go back and have another look at the Prerequisites and As-
sumptions chapter.

For now though, we have a failing test, so that means we’re allowed to start building our
app.

Getting Django Up and Running

Since you've definitely read Prerequisites and Assumptions by now, you've already got
Django installed. The first step in getting Django up and running is to create a project,
which will be the main container for our site. Django provides a little command-line
tool for this:

$ django-admin.py startproject superlists

That will create a folder called superlists, and a set of files and subfolders inside it:

}— functional_tests.py
L— superlists

}— manage.py
L— superlists

— __init__.py

F— settings.py

F— urls.py

L— wsgi.py
Yes, there’s a folder called superlists inside a folder called superlists. It’s a bit confusing,
but it’s just one of those things; there are good reasons when you look back at the history
of Django. For now, the important thing to know is that the superlists/superlists folder
is for stuff that applies to the whole project—like settings.py for example, which is used
to store global configuration information for the site.

You'll also have noticed manage.py. That's Django’s Swiss Army knife, and one of the
things it can do is run a development server. Let’s try that now. Do a cd superlists to
go into the top-level superlists folder (we’ll work from this folder a lot) and then run:

6 | Chapter1: Getting Django Set Up Using a Functional Test

$ python3 manage.py runserver
Performing system checks...

System check identified no issues (0 silenced).

You have unapplied migrations; your app may not work properly until they are
applied.
Run 'python manage.py migrate' to apply them.

Django version 1.8, using settings 'superlists.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

It’s safe to ignore that message about “unapplied migrations” for now.
We'll look at migrations in Chapter 5.

Leave that running, and open another command shell. In that, we can try running our
test again (from the folder we started in):

$ python3 functional_tests.py

$
Not much action on the command line, but you should notice two things: firstly, there
was no ugly AssertionError and secondly, the Firefox window that Selenium popped
up had a different-looking page on it.

Well, it may not look like much, but that was our first ever passing test! Hooray!

If it all feels a bit too much like magic, like it wasn't quite real, why not go and take a
look at the dev server manually, by opening a web browser yourself and visiting http://
localhost:8000? You should see something like Figure 1-2.

You can quit the development server now if you like, back in the original shell, using
Ctrl-C.

Getting Django Up and Running | 7

http://127.0.0.1:8000/
http://localhost:8000
http://localhost:8000

Welcome to Django - Mozilla Firefox &
File Edit View History Bookmarks Tools Help

| (7 welcome to Django | =R |
localhost v €| B~ Google Q _\F/L @ o~
It worked!

Congratulations on your first Django-powered page.

Of course, you haven't actually done any work yet. Next, start your first app by running
python manage.py startapp [appname].

You're seeing this message because you have oeesuc - True in your Django settings file and
you haven't configured any URLs. Get to work!

G- % S ®

Figure 1-2. It worked!

Starting a Git Repository

There’s one last thing to do before we finish the chapter: start to commit our work to a
version control system (VCS). If you're an experienced programmer you don’t need to
hear me preaching about version control, but if youre new to it please believe me when
I say that VCS is a must-have. As soon as your project gets to be more than a few weeks
old and a few lines of code, having a tool available to look back over old versions of code,
revert changes, explore new ideas safely, even just as a backup ... boy. TDD goes hand
in hand with version control, so I want to make sure I impart how it fits into the
workflow.

So, our first commit! If anything it’s a bit late, shame on us. We're using Git as our VCS,
‘cos it’s the best.

Let’s start by moving functional_tests.py into the superlists folder, and doing the git
init to start the repository:

8 | Chapter 1: Getting Django Set Up Using a Functional Test

$ s
superlists

functional_tests.py

$ mv functional_tests.py superlists/
$ cd superlists

$ git init .

Initialised empty Git repository in /workspace/superlists/.git/

From this point onwards, the top-level superlists folder will be our
working directory. Whenever I show a command to type in, it will
assume we're in this directory. Similarly, if I mention a path to a file,
it will be relative to this top-level directory. So superlists/settings.py

means the settings.py inside the second-level superlists. Clear as mud?
If in doubt, look for manage.py; you want to be in the same directo-
ry as manage.py.

Now let’s take a look and see what files we want to commit:

$ 1s
db.sqlite3

manage.py superlists functional_tests.py

db.sqlite3 is a database file. We don’t want to have that in version control, so we add
it to a special file called .gitignore which, um, tells Git what to ignore:

$ echo "db.sqlite3" >> .gitignore

>,

Next we can add the rest of the contents of the current folder, “”:

$ git add .

$ git status

On branch master

Initial commit

Changes to be committed:

(use "git

new
new
new
new
new
new
new
new
new
new
new

rm --cached <file>..." to unstage)

file: .gitignore

file: functional_tests.py

file: manage.py

file: superlists/__init__.py

file: superlists/__pycache__/__init__.cpython-34.pyc
file: superlists/__pycache__/settings.cpython-34.pyc
file: superlists/__pycache__/urls.cpython-34.pyc
file: superlists/__pycache__/wsgi.cpython-34.pyc
file: superlists/settings.py

file: superlists/urls.py

file: superlists/wsgi.py

Starting a Git Repository

9

Darn! We've got a bunch of .pyc files in there; it’s pointless to commit those. Let’s remove
them from Git and add them to .gitignore too:

$ git rm -r --cached superlists/__pycache__

rm 'superlists/__pycache__/__1init__.cpython-34.pyc'
rm 'superlists/__pycache__/settings.cpython-34.pyc'
rm 'superlists/__pycache__/urls.cpython-34.pyc'

rm 'superlists/__pycache__/wsgi.cpython-34.pyc'

$ echo "__pycache__" >> .gitignore

$ echo "*.pyc" >> .gitignore

Now let’s see where we are... (You'll see 'm using git status alot—so much so that I
often alias it to git st ... I'm not telling you how to do that though; I leave you to
discover the secrets of Git aliases on your own!):

$ git status
On branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>...

to unstage)

new file: .gitignore

new file: functional_tests.py
new file: manage.py

new file: superlists/__init__.py
new file: superlists/settings.py
new file: superlists/urls.py

new file: superlists/wsgi.py

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
modified: .gitignore
Looking good, we're ready to do our first commit!

$ git add .gitignore
$ git commit

When you type git commit, it will pop up an editor window for you to write your
commit message in. Mine looked like Figure 1-3.!

1. Did vi pop up and you had no idea what to do? Or did you see a message about account identity and git
config --global user.username? Go and take another look at Prerequisites and Assumptions; there are
some brief instructions.

10 | Chapter 1: Getting Django Set Up Using a Functional Test

COMMIT_EDITMSG + (fworkspace/superlists/.git) - VIM X
File Edlt View Search TermlnaL Help

Please enter the commit message for your (_hdnges. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master

Initial commit

(use "git rm to unstage)
new file: .gitignore
new file: functional_tests.py
new file: manage.py
new file: superlists/__init__.py
new file: superlists/settings.py
new file: superlists/urls.py
new file: superlists/wsgi.py

°
°
#
C
B
B
°
#
1t
B
B
°
°
#

.git/COMMIT_EDITMSG [+][Rl gitcommit 103,0x67 46,1/18

Figure 1-3. First Git commit

If you want to really go to town on Git, this is the time to also learn
about how to push your work to a cloud-based VCS hosting service,
like GitHub or BitBucket. They’ll be useful if you think you want to
follow along with this book on different PCs. I leave it to you to find
out how they work; they have excellent documentation. Alternative-
ly, you can wait until Chapter 8 when we’ll be using one for deploy-
ment.

That’s it for the VCS lecture. Congratulations! You've written a functional test using
Selenium, and you've gotten Django installed and running, in a certifiable, test-first,
goat-approved TDD way. Give yourself a well-deserved pat on the back before moving
on to Chapter 2.

Starting a Git Repository | 11

CHAPTER 2

Extending Our Functional Test Using the
unittest Module

Let’s adapt our test, which currently checks for the default Django “it worked” page, and
check instead for some of the things we want to see on the real front page of our site.

Time to reveal what kind of web app we’re building: a to-do lists site! In doing so we’re
very much following fashion: a few years ago all web tutorials were about building a
blog. Then it was forums and polls; nowadays it’s all to-do lists.

The reason is that a to-do list is a really nice example. At its most basic it is very simple
indeed—just a list of text strings—so it’s easy to get a “minimum viable” list app up and
running. But it can be extended in all sorts of ways—different persistence models,
adding deadlines, reminders, sharing with other users, and improving the client-side
UL There’s no reason to be limited to just “to-do” lists either; they could be any kind of
lists. But the point is that it should allow me to demonstrate all of the main aspects of
web programming, and how you apply TDD to them.

Using a Functional Test to Scope Out a Minimum Viable
App

Tests that use Selenium let us drive a real web browser, so they really let us see how the
application functions from the user’s point of view. That's why they’re called functional
tests.

This means that an FT can be a sort of specification for your application. It tends to
track what you might call a User Story, and follows how the user might work with a
particular feature and how the app should respond to them.

13

Terminology: Functional Test == Acceptance Test == End-to-End Test

What I call functional tests, some people prefer to call acceptance tests, or end-to-end
tests. The main point is that these kinds of tests look at how the whole application
functions, from the outside. Another term is black box test, because the test doesn’t know
anything about the internals of the system under test.

FTs should have a human-readable story that we can follow. We make it explicit using
comments that accompany the test code. When creating a new FT, we can write the
comments first, to capture the key points of the User Story. Being human-readable, you
could even share them with nonprogrammers, as a way of discussing the requirements
and features of your app.

TDD and agile software development methodologies often go together, and one of the
things we often talk about is the minimum viable app; what is the simplest thing we can
build that is still useful? Let’s start by building that, so that we can test the water as quickly
as possible.

A minimum viable to-do list really only needs to let the user enter some to-do items,
and remember them for their next visit.

Open up functional_tests.py and write a story a bit like this one:

functional_tests.py.
from selenium import webdriver

browser = webdriver.Firefox()
Edith has heard about a cool new online to-do app. She goes
to check out its homepage

browser.get('http://localhost:8000")

She notices the page title and header mention to-do lists
assert 'To-Do' in browser.title

She is invited to enter a to-do item straight away

She types "Buy peacock feathers" into a text box (Edith's hobby
is tying fly-fishing lures)

When she hits enter, the page updates, and now the page lists
"1: Buy peacock feathers" as an item in a to-do list

There is still a text box inviting her to add another item. She
enters "Use peacock feathers to make a fly" (Edith is very methodical)

The page updates again, and now shows both items on her list

14 | Chapter2: Extending Our Functional Test Using the unittest Module

Edith wonders whether the site will remember her list. Then she sees
that the site has generated a unique URL for her -- there is some

explanatory text to that effect.

She visits that URL - her to-do list is still there.

Satisfied, she goes back to sleep

browser.quit()

We Have a Word for Comments...

When I first started at Resolver, I used to virtuously pepper my code with nice descriptive
comments. My colleagues said to me: “Harry, we have a word for comments. We call
them lies” I was shocked! But I learned in school that comments are good practice?

They were exaggerating for effect. There is definitely a place for comments that add
context and intention. But their point was that it’s pointless to write a comment that just
repeats what you're doing with the code:

increment wibble by 1
wibble += 1

Not only is it pointless, there’s a danger that you forget to update the comments when
you update the code, and they end up being misleading. The ideal is to strive to make
your code so readable, to use such good variable names and function names, and to
structure it so well that you no longer need any comments to explain what the code is
doing. Just a few here and there to explain why.

There are other places where comments are very useful. We'll see that Django uses them
a lot in the files it generates for us to use as a way of suggesting helpful bits of its APL
And, of course, we use comments to explain the User Story in our functional tests—by
forcing us to make a coherent story out of the test, it makes sure we’re always testing
from the point of view of the user.

There is more fun to be had in this area, things like Behaviour Driven Development (see
Appendix E) and testing DSLs, but they’re topics for other books.

You'll notice that, apart from writing the test out as comments, I've updated the as
sert to look for the word “To-Do” instead of “Django”. That means we expect the test
to fail now. Let’s try running it

First, start up the server:
$ python3 manage.py runserver
And then, in another shell, run the tests:

$ python3 functional_tests.py
Traceback (most recent call last):

Using a Functional Test to Scope Out a Minimum Viable App | 15

File "functional_tests.py", line 10, in <module>
assert 'To-Do' in browser.title
AssertionError

That’s what we call an expected fail, which is actually good news - not quite as good as
a test that passes, but at least it’s failing for the right reason; we can have some confidence
we've written the test correctly.

The Python Standard Library’s unittest Module

Therearea couple of little annoyances we should probably deal with. Firstly, the message
“AssertionError” isn’t very helpful—it would be nice if the test told us what it actually
found as the browser title. Also, it’s left a Firefox window hanging around the desktop,
it would be nice if this would clear up for us automatically.

One option would be to use the second parameter to the assert keyword, something
like:

assert 'To-Do' in browser.title, "Browser title was " + browser.title

And we could also use a try/finally to clean up the old Firefox window. But these
sorts of problems are quite common in testing, and there are some ready-made solutions
for us in the standard library’s unittest module. Lets use that! In functional_tests.py:

functional_tests.py.
from selenium import webdriver

import unittest
class NewVisitorTest(unittest.TestCase): #@

def setUp(self): #@
self.browser = webdriver.Firefox()

def tearDown(self): #@
self.browser.quit()

def test_can_start_a_list_and_retrieve_it_later(self): #@
Edith has heard about a cool new online to-do app. She goes
to check out its homepage
self.browser.get('http://localhost:8000")

She notices the page title and header mention to-do lists
self.assertIn('To-Do', self.browser.title) #@®
self.fail('Finish the test!') #@®

She 1s invited to enter a to-do item straight away
[...rest of comments as before]
if __name__ == '__main__': #@
unittest.main(warnings="ignore') #@®

16 | Chapter2: Extending Our Functional Test Using the unittest Module

You'll probably notice a few things here:

o
o

(203

Tests are organised into classes, which inherit from unittest.TestCase.

The main body of the test is in a method called test_can_start_a_list_and_re
trieve_it_later. Any method whose name starts with test is a test method,
and will be run by the test runner. You can have more than one test_ method
per class. Nice descriptive names for our test methods are a good idea too.

setUp and tearDown are special methods which get run before and after each
test. 'm using them to start and stop our browser—note that theyre a bit like a
try/except, in that tearDown will run even if there’s an error during the test
itself.! No more Firefox windows left lying around!

We use self.assertIn instead of just assert to make our test assertions.
unittest provides lots of helper functions like this to make test assertions, like
assertEqual, assertTrue, assertFalse, and so on. You can find more in the
unittest documentation.

self.fail just fails no matter what, producing the error message given. I'm
using it as a reminder to finish the test.

Finally, we have the if __name__ == '__main__' clause (if you've not seen it
before, that's how a Python script checks if it’s been executed from the command
line, rather than just imported by another script). We call unittest.main(),
which launches the unittest test runner, which will automatically find test
classes and methods in the file and run them.

warnings="'1ignore' suppresses a superfluous ResourceWarning which was
being emitted at the time of writing. It may have disappeared by the time you
read this; feel free to try removing it!

If you've read the Django testing documentation, you might have
seen something called LiveServerTestCase, and are wondering
whether we should use it now. Full points to you for reading the
friendly manual! LiveServerTestCase is a bit too complicated for
now, but I promise I'll use it in a later chapter...

Let’s try it!

$
F

python3 functional_tests.py

FAIL: test_can_start_a_list_and_retrieve_it_later (__main__.NewVisitorTest)

1. The only exception is if you have an exception inside setUp, then tearDown doesn’t run.

The Python Standard Library’s unittest Module | 17

http://docs.python.org/3/library/unittest.html

Traceback (most recent call last):
File "functional_tests.py", line 18, in
test_can_start_a_list_and_retrieve_1it_later
self.assertIn('To-Do', self.browser.title)
AssertionError: 'To-Do' not found in 'Welcome to Django'

Ran 1 test in 1.747s

FAILED (failures=1)

That’s a bit nicer isn't it? It tidied up our Firefox window, it gives us a nicely formatted
report of how many tests were run and how many failed, and the assertIn has given
us a helpful error message with useful debugging info. Bonzer!

Implicit waits
There’s one more thing to do at this stage: add an implicitly_wait in the setUp:

functional_tests.py.
[...]
def setUp(self):
self.browser = webdriver.Firefox()
self.browser.implicitly_wait(3)

def tearDown(self):

[...]
This is a standard trope in Selenium tests. Selenium is reasonably good at waiting for
pages to complete loading before it tries to do anything, but it’s not perfect. The implic
1tly_watt tells it to wait a few seconds if it needs to. When asked to find something on
the page, Selenium will now wait up to three seconds for it to appear.

Don't rely on implicitly_watit; it won’t work for every use case. It
will do its job while our app is still simple, but as we’ll see in Part III
(e.g., in Chapter 15 and Chapter 20), you'll want to build more so-
\ phisticated, explicit wait algorithms into your tests once your app
gets beyond a certain level of complexity.

Commit

This is a good point to do a commit; it’s a nicely self-contained change. We've expanded
our functional test to include comments that describe the task we’re setting ourselves,
our minimum viable to-do list. We've also rewritten it to use the Python unittest
module and its various testing helper functions.

Do a git status—that should assure you that the only file that has changed is func-
tional_tests.py. Then do a git diff, which shows you the difference between the last

18 | Chapter2: Extending Our Functional Test Using the unittest Module

commit and what’s currently on disk. That should tell you that functional_tests.py has

changed quite substantially:
$ git diff

diff --git a/functional_tests.py b/functional_tests.py

index d333591..b0f22dc 100644
--- a/functional_tests.py
+++ b/functional_tests.py
@@ -1,6 +1,45 @@

from selenium import webdriver
+import unittest

-browser = webdriver.Firefox()
-browser.get('http://localhost:8000"')
+class NewVisitorTest(unittest.TestCase):

-assert 'Django' in browser.title

def setUp(self):
self.browser = webdriver.Firefox()
self.browser.implicitly_wait(3)

def tearDown(self):
self.browser.quit()

— 4+ o+ + + + +

.
Now let’s do a:

$ git commit -a

The -a means “automatically add any changes to tracked files” (i.e., any files that we've
committed before). It won’t add any brand new files (you have to explicitly git add
them yourself), but often, as in this case, there aren't any new files, so it’s a useful shortcut.

When the editor pops up, add a descriptive commit message, like “First FT specced out

in comments, and now uses unittest.”

Now we're in an excellent position to start writing some real code for our lists app. Read

on!

Useful TDD Concepts

User Story

Used to structure a functional test.

Expected failure
When a test fails in the way that we expected it to.

A description of how the application will work from the point of view of the user.

Commit

19

CHAPTER 3
Testing a Simple Home Page with Unit Tests

We finished the last chapter with a functional test failing, telling us that it wanted the
home page for our site to have “To-Do” in its title. It's time to start working on our
application.

Warning: Things Are About to Get Real

The first two chapters were intentionally nice and light. From now on, we get into some
more meaty coding. Here’s a prediction: at some point, things are going to go wrong.
You're going to see different results from what I say you should see. This is a Good Thing,
because it will be a genuine character-building Learning Experience™.

One possibility is that I've given some ambiguous explanations, and you’ve done some-
thing different from what I intended. Step back and have a think about what we’re trying
to achieve at this point in the book. Which file are we editing, what do we want the user
to be able to do, what are we testing and why? It may be that you've edited the wrong
file or function, or are running the wrong tests. I reckon you’ll learn more about TDD
from these stop and think moments than you do from all the bits where the following
instructions and copy-pasting goes smoothly.

Or it may be a real bug. Be tenacious, read the error message carefully (see my aside on
reading tracebacks a little later on in the chapter), and you'll get to the bottom of it. It’s
probably just a missing comma, or trailing-slash, or maybe a missing “s” in one of the
Selenium find methods. But, as Zed Shaw put it so well, this kind of debugging is also
an absolutely vital part of learning, so do stick it out!

You can always drop me an email (or try the Google Group) if you get really stuck.
Happy debugging!

21

https://groups.google.com/forum/#!forum/obey-the-testing-goat-book

Our First Django App, and Our First Unit Test

Django encourages you to structure your code into apps: the theory is that one project
can have many apps, you can use third-party apps developed by other people, and you
might even reuse one of your own apps in a different project...although I admit I've
never actually managed it myself! Still, apps are a good way to keep your code organised.

Let’s start an app for our to-do lists:
$ python3 manage.py startapp lists

That will create a folder at superlists/lists, next to superlists/superlists, and within it a
number of placeholder files for things like models, views, and, of immediate interest to
us, tests:

superlists/

}— db.sqlite3

— functional_tests.py
— lists

}— admin.py

— _init__.py

— migrations

| “— _init__.py
— models.py

— tests.py

L— views.py
manage.py
superlists

— _init__.py

— __pycache__

}— settings.py

— urls.py

L— wsgi.py

T

Unit Tests, and How They Differ from Functional Tests

As with so many of the labels we put on things, the line between unit tests and functional
tests can become a little blurry at times. The basic distinction, though, is that functional
tests test the application from the outside, from the point of view of the user. Unit tests
test the application from the inside, from the point of view of the programmer.

The TDD approach I'm following wants our application to be covered by both types of
test. Our workflow will look a bit like this:

1. Westart by writing a functional test, describing the new functionality from the user’s
point of view.

2. Once we have a functional test that fails, we start to think about how to write code
that can get it to pass (or at least to get past its current failure). We now use one or

22 | Chapter3:Testing a Simple Home Page with Unit Tests

more unit tests to define how we want our code to behave—the idea is that each
line of production code we write should be tested by (at least) one of our unit tests.

3. Once we have a failing unit test, we write the smallest amount of application code
we can, just enough to get the unit test to pass. We may iterate between steps 2 and
3 a few times, until we think the functional test will get a little further.

4. Now we can rerun our functional tests and see if they pass, or get a little further.
That may prompt us to write some new unit tests, and some new code, and so on.

You can see that, all the way through, the functional tests are driving what development
we do from a high level, while the unit tests drive what we do at a low level.

Does that seem slightly redundant? Sometimes it can feel that way, but functional tests
and unit tests do really have very different objectives, and they will usually end up
looking quite different.

Functional tests should help you build an application with the right
functionality, and guarantee you never accidentally break it. Unit tests
should help you to write code that’s clean and bug free.

Enough theory for now, let’s see how it looks in practice.

Unit Testing in Django
Let’s see how to write a unit test for our home page view. Open up the new file at lists/
tests.py, and you’ll see something like this:

lists/tests.py.
from django.test import TestCase

Create your tests here.

Django has helpfully suggested we use a special version of TestCase, which it provides.
It's an augmented version of the standard unittest.TestCase, with some additional
Django-specific features, which we’ll discover over the next few chapters.

You've already seen that the TDD cycle involves starting with a test that fails, then writing
code to get it to pass. Well, before we can even get that far, we want to know that the
unit test we're writing will definitely be run by our automated test runner, whatever it
is. Inthe case of functional_tests.py, we're running it directly, but this file made by Django
is a bit more like magic. So, just to make sure, let'’s make a deliberately silly failing test:

Unit Testing in Django | 23

lists/tests.py.
from django.test import TestCase

class SmokeTest(TestCase):

def test_bad_maths(self):
self.assertEqual(l + 1, 3)
Now let’s invoke this mysterious Django test runner. As usual, its a manage.py
command:

$ python3 manage.py test
Creating test database for alias 'default'...
F

FAIL: test_bad_maths (lists.tests.SmokeTest)

Traceback (most recent call last):
File "/workspace/superlists/lists/tests.py", line 6, in test_bad_maths
self.assertEqual(1 + 1, 3)
AssertionError: 2 != 3

Ran 1 test in 0.001s

FAILED (failures=1)
Destroying test database for alias 'default'...

Excellent. The machinery seems to be working. This is a good point for a commit:

$ git status # should show you lists/ is untracked

$ git add lists

$ git diff --staged # will show you the diff that you're about to commit
$ git commit -m "Add app for lists, with deliberately failing unit test"

As you've no doubt guessed, the -m flag lets you pass in a commit message at the com-
mand line, so you don’t need to use an editor. It’s up to you to pick the way you like to
use the Git command line, I'll just show you the main ones I've seen used. The main
rule is: make sure you always review what you’re about to commit before you do it.

Django’s MV(, URLs, and View Functions

Django is broadly structured along a classic Model-View-Controller (MVC) pattern.
Well, broadly. It definitely does have models, but its views are more like a controller,
and it’s the templates that are actually the view part, but the general idea is there. If you're
interested, you can look up the finer points of the discussion in the Django FAQs.

Irrespective of any of that, like any web server, Django’s main job is to decide what to

do when a user asks for a particular URL on our site. Django’s workflow goes something
like this:

24 | Chapter3:Testing a Simple Home Page with Unit Tests

https://docs.djangoproject.com/en/1.8/faq/general/

1. An HTTP request comes in for a particular URL.

2. Django uses some rules to decide which view function should deal with the request
(this is referred to as resolving the URL).

3. The view function processes the request and returns an HTTP response.
So we want to test two things:

 Can we resolve the URL for the root of the site (“/”) to a particular view function
we've made?

» Can we make this view function return some HTML which will get the functional
test to pass?

Let’s start with the first. Open up lists/tests.py, and change our silly test to something
like this:

lists/tests.py.
from django.core.urlresolvers import resolve

from django.test import TestCase
from lists.views import home_page #@)

class HomePageTest(TestCase):

def test_root_url_resolves_to_home_page_view(self):
found = resolve('/') #@®
self.assertEqual(found.func, home_page) #@

What’s going on here?

® O resolve is the function Django uses internally to resolve URLs, and find what
view function they should map to. Were checking that resolve, when called
with “/”, the root of the site, finds a function called home_page.

© What function is that? It’s the view function we’re going to write next, which will
actually return the HTML we want. You can see from the import that were
planning to store it in lists/views.py.

So, what do you think will happen when we run the tests?

$ python3 manage.py test
ImportError: cannot import name 'home_page'

It’s a very predictable and uninteresting error: we tried to import something we haven’t
even written yet. But it’s still good news—for the purposes of TDD, an exception which
was predicted counts as an expected failure. Since we have both a failing functional test
and a failing unit test, we have the Testing Goat’s full blessing to code away.

Django’s MVC, URLs, and View Functions | 25

At Last! We Actually Write Some Application Code!

It is exciting isn’'t it? Be warned, TDD means that long periods of anticipation are only
defused very gradually, and by tiny increments. Especially since we're learning and only
just starting out, we only allow ourselves to change (or add) one line of code at a time
—and each time, we make just the minimal change required to address the current test
failure.

I'm being deliberately extreme here, but what’s our current test failure? We can’t import
home_page from lists.views? OK, let’s fix that—and only that. In lists/views.py:

lists/views.py.
from django.shortcuts import render

Create your views here.
home_page = None

"You must be joking!" I can hear you say.

I can hear you because it’s what I used to say (with feeling) when my colleagues first
demonstrated TDD to me. Well, bear with me, we’ll talk about whether or not this is all
taking it too far in a little while. For now, let yourself follow along, even if it’s with some
exasperation, and see where it takes us.

Let’s run the tests again:
$ python3 manage.py test

Creating test database for alias 'default'...
E

ERROR: test_root_url_resolves_to_home_page_view (lists.tests.HomePageTest)
Traceback (most recent call last):
File "/workspace/superlists/lists/tests.py", line 8, in
test_root_url_resolves_to_home_page_view
found = resolve('/")
File "/usr/local/lib/python3.4/dist-packages/django/core/urlresolvers.py",
1ine 522, in resolve
return get_resolver(urlconf).resolve(path)
File "/usr/local/lib/python3.4/dist-packages/django/core/urlresolvers.py",
line 388, in resolve
raise Resolver404({'tried': tried, 'path': new_path})
django.core.urlresolvers.Resolver404: {'tried': [[<RegexURLResolver
<RegexURLPattern list> (admin:admin) “admin/>]], 'path': ''}

Ran 1 test in 0.002s

FAILED (errors=1)
Destroying test database for alias 'default'...

26 | Chapter3:Testinga Simple Home Page with Unit Tests

Reading Tracebacks

Let’s spend a moment talking about how to read tracebacks, since it’s something we have
to do alot in TDD. You soon learn to scan through them and pick up relevant clues:

ERROR: test_root_url_resolves_to_home_page_view (lists.tests.HomePageTest)@

Traceback (most recent call last):
File "/workspace/superlists/lists/tests.py", line 8, in
test_root_url_resolves_to_home_page_view
found = resolve('/")@®
File "/usr/local/lib/python3.4/dist-packages/django/core/urlresolvers.py",
line 522, in resolve
return get_resolver(urlconf).resolve(path)
File "/usr/local/lib/python3.4/dist-packages/django/core/urlresolvers.py",
1ine 388, in resolve
raise Resolver404({'tried': tried, 'path': new_path})
django.core.urlresolvers.Resolver404: {'tried': [[<RegexURLResolver@
<RegexURLPattern list> (admin:admin) ~admin/>]], 'path': ''}@

© O The first place you look is usually the error itself. Sometimes that’s all you need
to see, and it will let you identify the problem immediately. But sometimes, like
in this case, it's not quite self-evident.

@ The next thing to double-check is: which test is failing? Is it definitely the one
we expected, i.e., the one we just wrote? In this case, the answer is yes.

® Then we look for the place in our test code that kicked off the failure. We work
our way down from the top of the traceback, looking for the filename of the
tests file, to check which test function, and what line of code, the failure is coming

from. In this case it’s the line where we call the resolve function for the “/”
URL.

There is ordinarily a fourth step, where we look further down for any of our own ap-
plication code which was involved with the problem. In this case it’s all Django code, but
we'll see plenty of examples of this fourth step later in the book.

Pulling it all together, we interpret the traceback as telling us that, when trying to resolve
“/”, Django raised a 404 error—in other words, Django can’t find a URL mapping for
“/”. Let’s help it out.

urls.py

Django uses a file called urls.py to define how URLs map to view functions. There’s a
main urls.py for the whole site in the superlists/superlists folder. Let’s go take a look:

urls.py | 27

superlists/urls.py.
"""superlists URL Configuration

The ‘urlpatterns’ list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/1.8/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: wurl(r'”S', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: wurl(r'”S', Home.as_view(), name='home')
Including another URLconf
1. Add an import: from blog import urls as blog urls
2. Add a URL to urlpatterns: url(r'”blog/', include(blog urls))

mwn

from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
url(r'~admin/', include(admin.site.urls)),

]
As usual, lots of helpful comments and default suggestions from Django.

A url entry starts with a regular expression that defines which URLs it applies to, and
goes on to say where it should send those requests—either to a view function you've
imported, or maybe to another urls.py file somewhere else using include.

You can see there’s one entry in there by default there for the admin site. Were not using
that yet, so let's comment it out for now:
superlists/urls.py.

from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
url(r'”admin/', include(admin.site.urls)),

]
The first example entry has the regular expression ~$, which means an empty string—
could this be the same as the root of our site, which we’ve been testing with “/”? Let’s
find out—what happens if we include it?

If you've never come across regular expressions, you can get away
with just taking my word for it, for now—but you should make a
mental note to go learn about them.

28 | Chapter3:Testing a Simple Home Page with Unit Tests

superlists/urls.py.
from django.conf.urls import url

from lists import views

urlpatterns = [
url(r'~$', views.home_page, name='home'),
url(r'”admin/', include(admin.site.urls)),

1
Run the unit tests again, with python3 manage.py test:
[...]

AttributeError: 'NoneType' object has no attribute 'rindex'

That’s progress! We're no longer getting a 404.

The message is slightly cryptic, but the unit tests have actually made the link between
the URL / and the home_page = None in lists/views.py, and are now complaining that
home_page is a NoneType. And that gives us a justification for changing it from being
None to being an actual function. Every single code change is driven by the tests!

Back in lists/views.py:

lists/views.py.
from django.shortcuts import render

Create your views here.
def home_page():
pass

And now?

$ python3 manage.py test
Creating test database for alias 'default'...

Ran 1 test in 0.003s

OK
Destroying test database for alias 'default'...

Hooray! Our first ever unit test pass! That's so momentous that I think it's worthy of a
commit:

$ git diff # should show changes to urls.py, tests.py, and views.py
$ git commit -am "First unit test and url mapping, dummy view"

That was the last variation on git commit I'll show, the a and m flags together, which
adds all changes to tracked files and uses the commit message from the command line.

urls.py | 29

git commit -am is the quickest formulation, but also gives you the
least feedback about what’s being committed, so make sure you've
/ done a git status and a git diff beforehand, and are clear on
what changes are about to go in.

Unit Testing a View

On to writing a test for our view, so that it can be something more than a do-nothing
function, and instead be a function that returns a real response with HTML to the
browser. Open up lists/tests.py, and add a new test method. T'll explain each bit:

lists/tests.py.
from django.core.urlresolvers import resolve

from django.test import TestCase
from django.http import HttpRequest

from lists.views import home_page

class HomePageTest(TestCase):

def test_root_url_resolves_to_home_page_view(self):
found = resolve('/"')
self.assertEqual(found.func, home_page)

def test_home_page _returns_correct_html(self):
request = HttpRequest() #@
response = home_page(request) #@
self.assertTrue(response.content.startswith(b'<html>")) #@
self.assertIn(b'<title>To-Do lists</title>', response.content) #@
self.assertTrue(response.content.endswith(b'</html>")) #@

What’s going on in this new test?

© We create an HttpRequest object, which is what Django will see when a user’s
browser asks for a page.

©® We pass it to our home_page view, which gives us a response. You won't be
surprised to hear that this object is an instance of a class called HttpResponse.
Then, we assert that the .content of the response—which is the HTML that we
send to the user—has certain properties.

© @ We want it to start with an <html> tag which gets closed at the end. Notice that
response.content is raw bytes, not a Python string, so we have to use the b""
syntax to compare them. More info is available in Django’s Porting to Python 3
docs.

30 | Chapter3:Testinga Simple Home Page with Unit Tests

https://docs.djangoproject.com/en/1.8/topics/python3/
https://docs.djangoproject.com/en/1.8/topics/python3/

O And we want a <title> tag somewhere in the middle, with the words “To-Do
lists” in it—because that’s what we specified in our functional test.

Once again, the unit test is driven by the functional test, but it’s also much closer to the
actual code—we’re thinking like programmers now.

Let’s run the unit tests now and see how we get on:

TypeError: home_page() takes 0 positional arguments but 1 was given

The Unit-Test/Code Cycle

We can start to settle into the TDD unit-test/code cycle now:

1. In the terminal, run the unit tests and see how they fail.

2. In the editor, make a minimal code change to address the current test failure.

And repeat!

The more nervous we are about getting our code right, the smaller and more minimal
we make each code change—the idea is to be absolutely sure that each bit of code is
justified by a test. It may seem laborious, but once you get into the swing of things, it
really moves quite fast—so much so that, at work, we usually keep our code changes
microscopic even when we're confident we could skip ahead.

Let’s see how fast we can get this cycle going:

o Minimal code change:

lists/views.py.
def home_page(request):
pass
o Tests:
self.assertTrue(response.content.startswith(b'<html>"))
AttributeError: 'NoneType' object has no attribute 'content'
o Code—we use django.http.HttpResponse, as predicted:
lists/views.py.

from django.http import HttpResponse

Create your views here.
def home_page(request):
return HttpResponse()

Unit Testinga View | 31

o Tests again:

self.assertTrue(response.content.startswith(b'<html>"))
AssertionError: False is not true

o Code again:

lists/views.py.
def home_page(request):
return HttpResponse('<html>")

o Tests:

AssertionError: b'<title>To-Do lists</title>' not found in b'<html>'
o Code:

lists/views.py.
def home_page(request):
return HttpResponse('<html><title>To-Do lists</title>"')

o Tests—almost there?

self.assertTrue(response.content.endswith(b'</html>"))
AssertionError: False is not true

« Come on, one last effort:

lists/views.py.
def home_page(request):
return HttpResponse('<html><title>To-Do lists</title></html>")

o Surely?

$ python3 manage.py test
Creating test database for alias 'default'...

Ran 2 tests in 0.001s

0K

Destroying test database for alias 'default'...
Yes! Now, let’s run our functional tests. Don’t forget to spin up the dev server again, if
it’s not still running. It feels like the final heat of the race here, surely this is it...could it

be?

32 | Chapter3:Testinga Simple Home Page with Unit Tests

$ python3 functional_tests.py
F

FAIL: test_can_start_a_list_and_retrieve_it_later (__main__.NewVisitorTest)

Traceback (most recent call last):
File "functional_tests.py", line 20, in
test_can_start_a_list_and_retrieve_it_later
self.fail('Finish the test!')
AssertionError: Finish the test!

Ran 1 test in 1.609s

FAILED (failures=1)

Failed? What? Oh, it’s just our little reminder? Yes? Yes! We have a web page!

Ahem. Well, I thought it was a thrilling end to the chapter. You may still be a little baffled,
perhaps keen to hear a justification for all these tests, and don’t worry, all that will come,
but I hope you felt just a tinge of excitement near the end there.

Just a little commit to calm down, and reflect on what we’ve covered:

$ git diff # should show our new test in tests.py, and the view in views.py
$ git commit -am "Basic view now returns minimal HTML"

That was quite a chapter! Why not try typing git log, possibly using the - -oneline
flag, for a reminder of what we got up to:

$ git log --oneline

a6e6cc9 Basic view now returns minimal HTML

450c0f3 First unit test and url mapping, dummy view

ea2b037 Add app for lists, with deliberately failing unit test

[...]

Not bad—we covered:

« Starting a Django app

o The Django unit test runner

o The difference between FTs and unit tests

 Django URL resolving and urls.py

 Django view functions, request and response objects
 And returning basic HTML

Unit Testinga View | 33

Useful Commands and Concepts

Running the Django dev server
python3 manage.py runserver

Running the functional tests
python3 functional_tests.py

Running the unit tests
python3 manage.py test

The unit-test/code cycle
1. Run the unit tests in the terminal.

2. Make a minimal code change in the editor.

3. Repeat!

34

| Chapter 3: Testing a Simple Home Page with Unit Tests

CHAPTER 4

What Are We Doing with All These Tests?

Now that we’ve seen the basics of TDD in action, it’s time to pause and talk about why
we're doing it.

I’'m imagining several of you, dear readers, have been holding back some seething frus-
tration—perhaps some of you have done a bit of unit testing before, and perhaps some
of you are just in a hurry. You've been biting back questions like:

Aren't all these tests a bit excessive?

Surely some of them are redundant? There’s duplication between the functional
tests and the unit tests.

I mean, what are you doing importing django.core.urlresolvers in your unit
tests? Isn't that testing Django, i.e., testing third-party code? I thought that was a
no-no?

Those unit tests seemed way too trivial—testing one line of declaration, and a one-
line function that returns a constant! Isn’t that just a waste of time? Shouldn’t we
save our tests for more complex things?

What about all those tiny changes during the unit-test/code cycle? Surely we could
have just skipped to the end? I mean, home_page = None!? Really?

You're not telling me you actually code like this in real life?

Ah, young grasshopper. I too was once full of questions like these. But only because
they’re perfectly good questions. In fact, I still ask myself questions like these, all the
time. Does all this stuff really have value? Is this a bit of a cargo cult?

35

Programming Is like Pulling a Bucket of Water up from a
Well

Ultimately, programming is hard. Often, we are smart, so we succeed. TDD is there to
help us out when we’re not so smart. Kent Beck (who basically invented TDD) uses the
metaphor of lifting a bucket of water out of a well with a rope: when the well isn’t too
deep, and the bucket isn't very full, it’s easy. And even lifting a full bucket is pretty easy
at first. But after a while, you're going to get tired. TDD is like having a ratchet that lets
you save your progress, take a break, and make sure you never slip backwards. That way
you don’t have to be smart all the time.

Tasy ALk THE

ings

Figure 4-1. Test ALL the things (original illustration source: Allie Brosh, Hyperbole and
a Half)

OK, perhaps in general, you're prepared to concede that TDD is a good idea, but maybe
you still think I'm overdoing it? Testing the tiniest thing, and taking ridiculously many
small steps?

TDD is a discipline, and that means it’s not something that comes naturally; because
many of the payoffs aren’t immediate but only come in the longer term, you have to
force yourself to do it in the moment. That's what the image of the Testing Goat is
supposed to illustrate—you need to be a bit bloody-minded about it.

On the Merits of Trivial Tests for Trivial Functions

In the short term it may feel a bit silly to write tests for simple functions and constants.
It’s perfectly possible to imagine still doing “mostly” TDD, but following more relaxed
rules where you don't unit test absolutely everything. But in this book my aim is to
demonstrate full, rigorous TDD. Like a kata in a martial art, the idea is to learn the
motions in a controlled context, when there is no adversity, so that the techiques are
part of your muscle memory. It seems trivial now, because we’ve started with a very
simple example. The problem comes when your application gets complex—that’s when
you really need your tests. And the danger is that complexity tends to sneak up on you,
gradually. You may not notice it happening, but quite soon you're a boiled frog.

36 | Chapter4: What Are We Doing with All These Tests?

http://bit.ly/1iXxdYp
http://bit.ly/1iXxdYp

There are two other things to say in favour of tiny, simple tests for simple functions:

Firstly, if they're really trivial tests, then they won’t take you that long to write them. So
stop moaning and just write them already.

Secondly, it’s always good to have a placeholder. Having a test there for a simple function
means it’s that much less of a psychological barrier to overcome when the simple func-
tion gets a tiny bit more complex—perhaps it grows an if. Then a few weeks later it
grows a for loop. Before you know it, it’s a recursive metaclass-based polymorphic tree
parser factory. But because it’s had tests from the very beginning, adding a new test each
time has felt quite natural, and it’s well tested. The alternative involves trying to decide
when a function becomes “complicated enough” which is highly subjective, but worse,
because there’s no placeholder, it seems like that much more effort, and you’re tempted
each time to put it off a little longer, and pretty soon—frog soup!

Instead of trying to figure out some hand-wavy subjective rules for when you should
write tests, and when you can get away with not bothering, I suggest following the
discipline for now—like any discipline, you have to take the time to learn the rules before
you can break them.

Now, back to our onions.

Using Selenium to Test User Interactions

Where were we at the end of the last chapter? Let’s rerun the test and find out:

$ python3 functional_tests.py
F

FAIL: test_can_start_a_list_and_retrieve_it_later (__main__.NewVisitorTest)

Traceback (most recent call last):
File "functional_tests.py", line 20, in
test_can_start_a_list_and_retrieve_it_later
self.fail('Finish the test!')
AssertionError: Finish the test!

Ran 1 test in 1.609s

FAILED (failures=1)

Did you try it, and get an error saying Problem loading page or Unable to connect? So
did I. It’s because we forgot to spin up the dev server first using manage.py runserv
er. Do that, and you’ll get the failure message we’re after.

Using Selenium to Test User Interactions | 37

One of the great things about TDD is that you never have to worry
about forgetting what to do next—just rerun your tests and they will
tell you what you need to work on.

“Finish the test, it says, so let’s do just that! Open up functional_tests.py and we’ll extend

our FT:

functional_tests.py.

from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import unittest

class NewVisitorTest(unittest.TestCase):

def

def

def

setUp(self):
self.browser = webdriver.Firefox()
self.browser.implicitly_wait(3)

tearDown(self):
self.browser.quit()

test_can_start_a_list_and_retrieve_it_later(self):

Edith has heard about a cool new online to-do app. She goes
to check out its homepage
self.browser.get('http://localhost:8000")

She notices the page title and header mention to-do lists
self.assertIn('To-Do', self.browser.title)

header_text = self.browser.find_element_by_tag_name('h1').text
self.assertIn('To-Do', header_text)

She is invited to enter a to-do item straight away
inputbox = self.browser.find_element_by_id('id_new_item')
self.assertEqual(

inputbox.get_attribute('placeholder'),

"Enter a to-do item'

)

She types "Buy peacock feathers" into a text box (Edith's hobby
1s tying fly-fishing lures)
inputbox.send_keys('Buy peacock feathers')

When she hits enter, the page updates, and now the page lists
"1: Buy peacock feathers" as an item in a to-do list table
inputbox.send_keys(Keys.ENTER)

table = self.browser.find_element_by_1id('id_list_table')
rows = table.find_elements_by_tag_name('tr')
self.assertTrue(

38

Chapter 4: What Are We Doing with All These Tests?

any(row.text == '1: Buy peacock feathers' for row in rows)

)

There is still a text box inviting her to add another item. She
enters "Use peacock feathers to make a fly" (Edith is very

methodical)

self.faill('Finish the test!')

The page updates again, and now shows both items on her list

[...]
We're using several of the methods that Selenium provides to examine web pages:
find_element_by_tag_name,find_element_by_id,and find_elements_by_ tag_name
(notice the extra s, which means it will return several elements rather than just one).
We also use send_keys, which is Selenium’s way of typing into input elements. You'll
also see the Keys class (don't forget to import it), which lets us send special keys like
Enter, but also modifiers like Ctrl.

Watch out for the difference between the Selenium find_ele
ment_by... and find_elements_by... functions. One returns an
element, and raises an exception if it can’t find it, whereas the other
returns a list, which may be empty.

Also, just look at that any function. It’s a little-known Python built-in. I don’t even need
to explain it, do I? Python is such a joy.

Although, if you're one of my readers who doesn’t know Python, what’s happening inside
the any is a generator expression, which is like a list comprehension but awesomer. You
need to read up on this. If you Google it, you’ll find Guido himself explaining it nice-
ly. Come back and tell me that’s not pure joy!

Let’s see how it gets on:

$ python3 functional_tests.py

[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"tag name","selector":"h1"}

Stacktrace:

[...]

Decoding that, the test is saying it can’t find an <h1> element on the page. Let’s see what
we can do to add that to the HTML of our home page.

Big changes to a functional test are usually a good thing to commit on their own. I failed
to do so in my first draft, and I regretted it later when I changed my mind and had the
change mixed up with a bunch of others. The more atomic your commits, the better:

Using Selenium to Test User Interactions | 39

http://bit.ly/1iXxD18
http://bit.ly/1iXxD18

$ git diff # should show changes to functional_tests.py
$ git commit -am "Functional test now checks we can input a to-do item"

The “Don’t Test Constants” Rule, and Templates to the
Rescue

Let’s take alook at our unit tests, lists/tests.py. Currently we’re looking for specific HTML
strings, but that’s not a particularly efficient way of testing HTML. In general, one of
the rules of unit testing is Don’t test constants, and testing HTML as text is a lot like
testing a constant.

In other words, if you have some code that says:
wibble = 3
There’s not much point in a test that says:

from myprogram import wibble
assert wibble ==

Unit tests are really about testing logic, flow control, and configuration. Making asser-

tions about exactly what sequence of characters we have in our HTML strings isn’t doing
that.

What's more, mangling raw strings in Python really isn’t a great way of dealing with
HTML. There’s a much better solution, which is to use templates. Quite apart from
anything else, if we can keep HTML to one side in a file whose name ends in .hitml, we'll
get better syntax highlighting! There are lots of Python templating frameworks out
there, and Django has its own which works very well. Let’s use that.

Refactoring to Use a Template

What we want to do now is make our view function return exactly the same HTML, but
just using a different process. That’s a refactor—when we try to improve the code without
changing its functionality.

That last bit is really important. If you try and add new functionality at the same time
as refactoring, youre much more likely to run into trouble. Refactoring is actually a
whole discipline in itself, and it even has a reference book: Martin Fowler’s Refactoring.

The first rule is that you can’t refactor without tests. Thankfully, we're doing TDD, so
were way ahead of the game. Let’s check our tests pass; they will be what makes sure
that our refactoring is behaviour preserving:

$ python3 manage.py test

[...]
oK

40 | Chapter4: What Are We Doing with All These Tests?

http://refactoring.com/

Great! We'll start by taking our HTML string and putting it into its own file. Create a
directory called lists/templates to keep templates in, and then open a file at lists/
templates/home.html, to which we’ll transfer our HTML:!

lists/templates/home.html.
<html>

<title>To-Do lists</title>
</html>

Mmmb, syntax-highlighted...much nicer! Now to change our view function:

lists/views.py.
from django.shortcuts import render

def home_page(request):
return render(request, 'home.html")
Instead of building our own HttpResponse, we now use the Django render function. It
takes the request as its first parameter (for reasons we’ll go into later) and the name of
the template to render. Django will automatically search folders called templates inside
any of your apps’ directories. Then it builds an HttpResponse for you, based on the
content of the template.

Templates are a very powerful feature of Django’s, and their main
strength consists of substituting Python variables into HTML text.
We're not using this feature yet, but we will in future chapters.
That’s why we use render and (later) render_to_ string rather
than, say, manually reading the file from disk with the built-in
open.

Let’s see if it works:

$ python3 manage.py test
[...]

ERROR: test_home_page_returns_correct_html (lists.tests.HomePageTest)@
Traceback (most recent call last):
File "/workspace/superlists/lists/tests.py", line 17, in
test_home_page_returns_correct_html
response = home_page(request)@
File "/workspace/superlists/lists/views.py", line 5, in home_page
return render(request, 'home.html')@
File "/usr/local/lib/python3.3/dist-packages/django/shortcuts.py", line 48,
in render
return HttpResponse(loader.render_to_string(*args, **kwargs),

1. Some people like to use another subfolder named after the app (i.e., lists/templates/lists) and then refer to the
template as lists/home.html. This is called “template namespacing”. I figured it was overcomplicated for this
small project, but it may be worth it on larger projects. There’s more in the Django tutorial.

The “Don’t Test Constants” Rule, and Templates to the Rescue | 41

http://bit.ly/1iXxWZL

File "/usr/local/lib/python3.3/dist-packages/django/template/loader.py", line
170, in render_to_string
t = get_template(template_name, dirs)
File "/usr/local/lib/python3.3/dist-packages/django/template/loader.py", line
144, in get_template
template, origin = find_template(template_name, dirs)
File "/usr/local/lib/python3.3/dist-packages/django/template/loader.py", line
136, in find_template
raise TemplateDoesNotExist(name)
django.template.base.TemplateDoesNotExist: home.html@

Ran 2 tests in 0.004s

Another chance to analyse a traceback:

O We start with the error: it can’t find the template.

© Then we double-check what test is failing: sure enough, it’s our test of the view
HTML.

® Then we find the line in our tests that caused the failure: it's when we call the
home_page function.

© Finally, we look for the part of our own application code that caused the failure:
it's when we try and call render.

So why can’t Django find the template? It’s right where it’s supposed to be, in the lists/
templates folder.

The thing is that we haven't yet officially registered our lists app with Django. Unfortu-
nately, just running the startapp command and having what is obviously an app in
your project folder isn’t quite enough. You have to tell Django that you really mean it,
and add it to settings.py as well. Belt and braces. Open it up and look for a variable called
INSTALLED_APPS, to which we’ll add 1ists:

superlists/settings.py.
Application definition

INSTALLED_APPS = (
'django.contrib.admin',
'django.contrib.auth’,
'django.contrib.contenttypes’,
'django.contrib.sessions’',
'django.contrib.messages’',
'django.contrib.staticfiles’,
'lists',

)

You can see there’s lots of apps already in there by default. We just need to add ours,

lists, to the bottom of the list. Don’t forget the trailing comma—it may not be required,

42 | Chapter 4: What Are We Doing with All These Tests?

but one day you’ll be really annoyed when you forget it and Python concatenates two
strings on different lines...

Now we can try running the tests again:

$ python3 manage.py test
[...]

self.assertTrue(response.content.endswith(b'</html>"))
AssertionError: False is not true

Darn, not quite.

Depending on whether your text editor insists on adding newlines to
the end of files, you may not even see this error. If so, you can safely
ignore the next bit, and skip straight to where you can see the list-
ing says OK.

But it did get further! It seems it's managed to find our template, but the last of the three
assertions is failing. Apparently there’s something wrong at the end of the output. I had
to do a little print(repr(response.content)) to debug this, but it turns out that the
switch to templates has introduced an additional newline (\n) at the end. We can get
them to pass like this:

lists/tests.py.

self.assertTrue(response.content.strip().endswith(b'</html>"))

It’s a tiny bit of a cheat, but whitespace at the end of an HTML file really shouldn’t matter
to us. Let’s try running the tests again:

$ python3 manage.py test

[...]
0K

Our refactor of the code is now complete, and the tests mean we’re happy that behaviour
is preserved. Now we can change the tests so that they’re no longer testing constants;
instead, they should just check that we're rendering the right template. Another Django
helper function called render_to_string is our friend here:

lists/tests.py.
from django.template.loader import render_to_string

[...]

def test_home_page returns_correct_html(self):
request = HttpRequest()
response = home_page(request)
expected_html = render_to_string('home.html")
self.assertEqual(response.content.decode(), expected_html)

The “Don’t Test Constants” Rule, and Templates to the Rescue | 43

We use .decode() to convert the response. content bytes into a Python unicode string,
which allows us to compare strings with strings, instead of bytes with bytes as we did
earlier.

The main point, though, is that instead of testing constants we're testing our imple-
mentation. Great!

Django has a test client with tools for testing templates, which we’ll
use in later chapters. For now we’ll use the low-level tools to make
sure we're comfortable with how everything works. No magic!

On Refactoring

That was an absolutely trivial example of refactoring. But, as Kent Beck puts it in Test-
Driven Development: By Example, “Am I recommending that you actually work this
way? No. 'm recommending that you be able to work this way.

In fact, as I was writing this my first instinct was to dive in and change the test first—
make it use the render_to_string function straight away, delete the three superfluous
assertions, leaving just a check of the contents against the expected render, and then go
ahead and make the code change. But notice how that actually would have left space for
me to break things: I could have defined the template as containing any arbitrary string,
instead of the string with the right <html> and <title> tags.

When refactoring, work on either the code or the tests, but not both
at once.

There’s always a tendency to skip ahead a couple of steps, to make a couple of tweaks
to the behaviour while you're refactoring, but pretty soon you've got changes to half a
dozen different files, you've totally lost track of where you are, and nothing works any
more. If you don’t want to end up like Refactoring Cat (Figure 4-2), stick to small steps;
keep refactoring and functionality changes entirely separate.

44 | Chapter 4: What Are We Doing with All These Tests?

http://bit.ly/1iXyRt4

Codelrefactoring

Figure 4-2. Refactoring Cat—be sure to look up the full animated GIF (source:
4GIFs.com)

We'll come across “Refactoring Cat” again during this book, as an
example of what happens when we get carried away and want to
change too many things at once. Think of it as the little cartoon demon
counterpart to the Testing Goat, popping up over your other shoul-
der and giving you bad advice...

It's a good idea to do a commit after any refactoring:

$ git status # see tests.py, views.py, settings.py, + new templates folder
$ git add . # will also add the untracked templates folder

$ git diff --staged # review the changes we're about to commit

$ git commit -m "Refactor home page view to use a template"

A Little More of Our Front Page

In the meantime, our functional test is still failing. Let'’s now make an actual code change
to get it passing. Because our HTML is now in a template, we can feel free to make
changes to it, without needing to write any extra unit tests. We wanted an <h1>:

lists/templates/home.html.
<html>

<head>
<title>To-Do lists</title>
</head>
<body>
<h1>Your To-Do list</hi1>
</body>
</html>

Let’s see if our functional test likes it a little better:

Alittle More of Our Front Page | 45

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"id_new_1item"}

OK...
lists/templates/home.html.
[...]
<h1>Your To-Do list</hi1>
<input id="1d_new_item" />
</body>
[...]
And now?
AssertionError: '' != 'Enter a to-do item'

We add our placeholder text...
lists/templates/home.html.
<input 1d="id_new_item" placeholder="Enter a to-do item" />
Which gives:

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"id_list_table"}

So we can go ahead and put the table onto the page. At this stage it'll just be empty...

lists/templates/home.html.
<input 1d="id_new_item" placeholder="Enter a to-do item" />
<table id="1id_list_table">
</table>
</body>

Now what does the FT say?

File "functional_tests.py", line 42, in
test_can_start_a_list_and_retrieve_it_later
any(row.text == '1: Buy peacock feathers' for row in rows)

AssertionError: False is not true
Slightly cryptic. We can use the line number to track it down, and it turns out it’s that
any function I was so smug about earlier—or, more precisely, the assertTrue, which
doesn’'t have a very explicit failure message. We can pass a custom error message as an
argument to most assertX methods in unittest:

functional_tests.py.
self.assertTrue(

any(row.text == '1: Buy peacock feathers' for row in rows),
"New to-do item did not appear in table"

)
If you run the FT again, you should see our message:

AssertionError: False is not true : New to-do item did not appear in table

But now, to get this to pass, we will need to actually process the user’s form submission.
And that’s a topic for the next chapter.

46 | Chapter 4: What Are We Doing with All These Tests?

For now let’s do a commit:

$ git diff
$ git commit -am "Front page HTML now generated from a template"

Thanks to a bit of refactoring, we’ve got our view set up to render a template, we've
stopped testing constants, and we’re now well placed to start processing user input.

Recap: The TDD Process

We've now seen all the main aspects of the TDD process, in practice:

o Functional tests

o Unit tests

o The unit-test/code cycle
« Refactoring

It's time for a little recap, and perhaps even some flowcharts. Forgive me, years misspent
as a management consultant have ruined me. On the plus side, it will feature recursion.

What is the overall TDD process? See Figure 4-3.

No
ST TT T TS T T T T T T T s)
A 4
Run the .
Write a test test. Does it Does it

pass? need refactoring?

Write minimal code

Figure 4-3. Overall TDD process

We write a test. We run the test and see it fail. We write some minimal code to get it a
little further. We rerun the test and repeat until it passes. Then, optionally, we might
refactor our code, using our tests to make sure we don’t break anything.

But how does this apply when we have functional tests and unit tests? Well, you can
think of the functional test as being a high-level view of the cycle, where “writing the

Recap: The TDD Process | 47

code” to get the functional tests to pass actually involves using another, smaller TDD
cycle which uses unit tests. See Figure 4-4.

No
O T T T T T T EEEEmm—-— N
+ 1
Write a Run the Does the Yes
Functional test FT. Does it application need
pass? Refactoring?
“Write minimal code”
I’ """""""" N
1
Write a : Run the Does the
U ;te ¢ unit test. Does it application need
gige pass? Refactoring?
—

Write minimal code

1
1
1
1

Unit test / code cycle

Figure 4-4. The TDD process with functional and unit tests

We write a functional test and see it fail. Then, the process of “writing code” to get it to
pass is a mini-TDD cycle of its own: we write one or more unit tests, and go into the
unit-test/code cycle until the unit tests pass. Then, we go back to our FT to check that
it gets a little further, and we can write a bit more of our application—using more unit
tests, and so on.

What about refactoring, in the context of functional tests? Well, that means we use the
functional test to check that we’ve preserved the behaviour of our application, but we
can change or add and remove unit tests, and use a unit test cycle to actually change the
implementation.

The functional tests are the ultimate judge of whether your application works or not.
The unit tests are a tool to help you along the way.

48 | Chapter 4: What Are We Doing with All These Tests?

This way of looking at things is sometimes called “Double-Loop TDD”. One of my
eminent tech reviewers, Emily Bache, wrote a blog post on the topic, which I recommend

for a different perspective.

We'll explore all of the different parts of this workflow in more detail over the coming

chapters.

How to “Check” Your Code, or Skip Ahead (If You Must)

All of the code examples I've used in the book are available in my repo on GitHub. So,
if you ever want to compare your code against mine, you can take a look at it there.

Each chapter has its own branch following the convention chapter_Xx:

o Chapter 3: https://github.com/hjwp/book-example/tree/chapter_03
o Chapter 4: https://github.com/hjwp/book-example/tree/chapter_04
o Chapter 5: https://github.com/hjwp/book-example/tree/chapter_05
 Etc.
Be aware that each branch contains all of the commits for that chapter, so its state rep-
resents the code at the end of the chapter.
Using Git to check your progress
If you feel like developing your Git-Fu a little further, you can add my repo as a remote:

git remote add harry https://github.com/hjwp/book-example.git
git fetch harry

And then, to check your difference from the end of Chapter 4:
git diff harry/chapter_04

Git can handle multiple remotes, so you can still do this even if you're already pushing
your code up to GitHub or Bitbucket.

Be aware that the precise order of, say, methods in a class may differ between your version
and mine. It may make diffs hard to read.

Recap: The TDD Process |

49

http://bit.ly/1iXzoLR
https://github.com/hjwp/book-example/
https://github.com/hjwp/book-example/tree/chapter_03
https://github.com/hjwp/book-example/tree/chapter_04
https://github.com/hjwp/book-example/tree/chapter_05

Downloading a ZIP file for a chapter

If, for whatever reason, you want to “start from scratch” for a chapter, or skip ahead,?
and/or you're just not comfortable with Git, you can download a version of my code as
a ZIP file, from URLs following this pattern:

https://github.com/hjwp/book-example/archive/chapter_05.zip
https://github.com/hjwp/book-example/archive/chapter_06.zip
Don’t let it become a crutch!

Try not to sneak a peak at the answers unless you're really, really stuck. Like I said at the
beginning of the last chapter, there’s a lot of value in debugging errors all by yourself,
and in real life, there’s no “harrys repo” to check against and find all the answers.

2. I don’'t reccommend skipping ahead. I haven’t designed the chapters to stand on their own; each relies on the
previous ones, so it may be more confusing than anything else...

50 | Chapter4: What Are We Doing with All These Tests?

https://github.com/hjwp/book-example/archive/chapter_05.zip
https://github.com/hjwp/book-example/archive/chapter_06.zip

CHAPTER 5
Saving User Input

We want to take the to-do item input from the user and send it to the server, so that we
can save it somehow and display it back to her later.

As I started writing this chapter, I immediately skipped to what I thought was the right
design: multiple models for lists and list items, a bunch of different URLs for adding
new lists and items, three new view functions, and about half a dozen new unit tests for
all of the above. But I stopped myself. Although I was pretty sure I was smart enough
to handle all those problems at once, the point of TDD is to allow you to do one thing
at a time, when you need to. So I decided to be deliberately short-sighted, and at any
given moment only do what was necessary to get the functional tests a little further.

It’s a demonstration of how TDD can support an iterative style of development—it may
not be the quickest route, but you do get there in the end. There’s a neat side benefit,
which is that it allows me to introduce new concepts like models, dealing with POST
requests, Django template tags, and so on one at a time rather than having to dump
them on you all at once.

None of this says that you shouldn’t try and think ahead, and be clever. In the next
chapter we’ll use a bit more design and up-front thinking, and show how that fits in
with TDD. But for now let’s plough on mindlessly and just do what the tests tell us to.

Wiring Up Our Form to Send a POST Request

At the end of the last chapter, the tests were telling us we weren’t able to save the user’s
input. For now, we'll use a standard HTML POST request. A little boring, but also nice
and easy to deliver—we can use all sorts of sexy HTML5 and JavaScript later in the book.

To get our browser to send a POST request, we need to do two things:

51

1. Give the <input> element a name= attribute

2. Wrap it in a <form> tag with method="POST".

Let’s adjust our template at lists/templates/home.html:

lists/templates/home.html.
<hi>Your To-Do list</hi1>
<form method="POST">
<input name="item_text" 1d="id_new_item" placeholder="Enter a to-do item" />
</form>

<table id="id_list_table">
Now, running our FTs gives us a slightly cryptic, unexpected error:

$ python3 functional_tests.py
[...]
Traceback (most recent call last):
File "functional_tests.py", line 39, in
test_can_start_a_list_and_retrieve_it_later
table = self.browser.find_element_by_1id('id_list_table')

[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"id_list_table"}
When a functional test fails with an unexpected failure, there are several things we can
do to debug them:

« Add print statements, to show, e.g., what the current page text is.
o Improve the error message to show more info about the current state.
o Manually visit the site yourself.

o Use time.sleep to pause the test during execution.

We'll look at all of these over the course of this book, but the time.sleep option is one
I find myself using very often. Let’s try it now. We add the sleep just before the error
occurs:

functional_tests.py.
When she hits enter, the page updates, and now the page lists

"1: Buy peacock feathers" as an item in a to-do list table
inputbox.send_keys(Keys.ENTER)

import time

time.sleep(10)

table = self.browser.find_element_by_1id('id_list_table')
Depending on how fast Selenium runs on your PC, you may have caught a glimpse of
this already, but when we run the functional tests again, we've got time to see what’s
going on: you should see a page that looks like Figure 5-1, with lots of Django debug
information.

52 | Chapter5: Saving User Input

403 Forbidden - Mozilla Firefox
Eile Edit View History Bookmarks Tools Help
| 771403 Forbidden | #]

&e localhost v @

Forbidden (103)
CSRF verification failed. Request aborted.

Help

Reason given for failure:
CSRF cookie not set

In general, this can occur when there is a genuine Cross Site Request Forgery, or when Django's CSRF mechanism has not been used
correctly. For POST forms, you need to ensure:

& Your browser is accepting cookies.

® The view function uses Requestcontext for the template, instead of context,

* Inthe template, there is & & csrf_token %} template tag inside each POST form that targets an internal URL.

* If you are not using csrfviesMiddleware, then you must use csrf_protect on any views that use the csrf_token template
tag, as well as those that accept the POST data.

X

You're seeing the help section of this page because you have pEsus = True in your Django settings file. Change that to False, and only the
initial error message will be displayed.

You can custormize this page using the CSRF_FAILURE_VIEW setting.

x WebDriver

Figure 5-1. Django DEBUG page showing CSRF error

Security: Surprisingly Fun!

system in unexpected ways...

think about how systems can be used in unintended ways.

about three inches thick, and I promise you it’s an absolute page-turner.

If you've never heard of a Cross-Site Request Forgery exploit, why not look it up now?
Like all security exploits, it's entertaining to read about, being an ingenious use of a

When I went back to university to get my Computer Science degree, I signed up for the
Security module out of a sense of duty: Oh well, it’ll probably be very dry and boring, but
Isuppose I'd better take it. It turned out to be one of the most fascinating modules of the
whole course—absolutely full of the joy of hacking, of the particular mindset it takes to

I want to recommend the textbook for my course, Ross Anderson’s Security Engineer-
ing. It’s quite light on pure crypto, but it’s absolutely full of interesting discussions of
unexpected topics like lock-picking, forging bank notes, inkjet printer cartridge eco-
nomics, and spoofing South African Air Force jets with replay attacks. It’s a huge tome,

Wiring Up Our Form to Send a POST Request |

53

Django’s CSRF protection involves placing a little auto-generated token into each gen-
erated form, to be able to identify POST requests as having come from the original site.
So far our template has been pure HTML, and in this step we make the first use of
Django’s template magic. To add the CSRF token we use a template tag, which has the
curly-bracket/percent syntax, {% .. %}—famous for being the world’s most annoying
two-key touch-typing combination:

lists/templates/home.html.
<form method="POST">

<input name="item_text" id="id_new_item" placeholder="Enter a to-do item" />
{% csrf_token %}
</form>

Django will substitute that during rendering with an <input type="hidden"> con-
taining the CSRF token. Rerunning the functional test will now give us an expected
failure:

AssertionError: False is not true : New to-do item did not appear in table

Since our time.sleep is still there, the test will pause on the final screen, showing us
that the new item text disappears after the form is submitted, and the page refreshes to
show an empty form again. That’s because we haven’t wired up our server to deal with
the POST request yet—it just ignores it and displays the normal home page.

We can remove the time.sleep now though:

functional_tests.py.
"1: Buy peacock feathers" as an item in a to-do list table

inputbox.send_keys(Keys.ENTER)

table = self.browser.find_element_by_1id('id_list_table')

Processing a POST Request on the Server

Because we haven't specified an action= attribute in the form, it is submitting back to
the same URL it was rendered from by default (i.e., /), which is dealt with by our
home_page function. Let’s adapt the view to be able to deal with a POST request.

That means a new unit test for the home_page view. Open up lists/tests.py, and add a
new method to HomePageTest—I copied the previous method, then adapted it to add
our POST request and check that the returned HTML will have the new item text in it:

lists/tests.py (ch051005).
def test_home_page returns_correct_html(self):

[...]

def test_home_page can_save_a_POST_request(self):
request = HttpRequest()
request.method = 'POST'
request.POST['item_text'] = 'A new list item

54 | Chapter5:Saving User Input

response = home_page(request)
self.assertIn('A new list item', response.content.decode())

Are you wondering about the line spacing in the test? 'm grouping
together three lines at the beginning which set up the test, one line in
the middle which actually calls the function under test, and the as-
sertions at the end. This isn't obligatory, but it does help see the
structure of the test. Setup, Exercise, Assert is the typical structure for
a unit test.

You can see that we're using a couple of special attributes of the HttpRequest: .method
and .POST (they’re fairly self-explanatory, although now might be a good time for a peek
at the Django request and response documentation). Then we check that the text from
our POST request ends up in the rendered HTML. That gives us our expected fail:

$ python3 manage.py test
[...]

AssertionError: 'A new list item' not found in '<html> [...]
We can get the test to pass by adding an if and providing a different code path for POST
requests. In typical TDD style, we start with a deliberately silly return value:

lists/views.py.
from django.http import HttpResponse

from django.shortcuts import render

def home_page(request):
if request.method == 'POST':
return HttpResponse(request.POST['item_text'])
return render(request, 'home.html'")
That gets our unit tests passing, but it’s not really what we want. What we really want
to do is add the POST submission to the table in the home page template.

Passing Python Variables to Be Rendered in the Template

We've already had a hint of it, and now it’s time to start to get to know the real power
of the Django template syntax, which is to pass variables from our Python view code
into HTML templates.

Let’s start by seeing how the template syntax lets us include a Python object in our
template. The notation is {{ ... }}, which displays the object as a string:

lists/templates/home.html.
<body>

<h1>Your To-Do list</h1>
<form method="POST">
<input name="item_text" id="1d_new_item" placeholder="Enter a to-do item" />

Passing Python Variables to Be Rendered in the Template | 55

https://docs.djangoproject.com/en/1.8/ref/request-response/

{% csrf_token %}
</form>

<table id="id_list_table"s
<tr><td>{{ new_item_text }}</td></tr>
</table>
</body>

How can we test that our view is passing in the correct value for new_item_text? How
do we pass a variable to a template? We can find out by actually doing it in the unit test
—we've already used the render_to_string function in a previous unit test to manually
render a template and compare it with the HTML the view returns. Now let’s add the
variable we want to pass in:

lists/tests.py.
self.assertIn('A new list item', response.content.decode())

expected_html = render_to_string(
"home.html',
{'new_1item_text': 'A new list item'}
)

self.assertEqual(response.content.decode(), expected_html)
As you can see, the render_to_string function takes, as its second parameter, a map-
ping of variable names to values. Were giving the template a variable named
new_1item_text, whose value is the expected item text from our POST request.

When we run the unit test, render_to_string will substitute {{ new_1item_text }}
for A new list item inside the <td>. That’s something the actual view isn't doing yet, so
we should see a test failure:

self.assertEqual(response.content.decode(), expected_html)
AssertionError: 'A new list item' != '<html>\n <head>\n [...]

Good, our deliberately silly return value is now no longer fooling our tests, so we are
allowed to rewrite our view, and tell it to pass the POST parameter to the template:
lists/views.py (ch051009).
def home_page(request):
return render(request, 'home.html', {
'new_item_text': request.POST['item_text'],

H
Running the unit tests again:

ERROR: test_home_page_returns_correct_html (lists.tests.HomePageTest)

[...]
'new_1item_text': request.POST['item_text'],
KeyError: 'item_text'

An unexpected failure.

If you remember the rules for reading tracebacks, you'll spot that it’s actually a failure
in a different test. We got the actual test we were working on to pass, but the unit tests

56 | Chapter5:Saving User Input

have picked up an unexpected consequence, a regression: we broke the code path where
there is no POST request.

This is the whole point of having tests. Yes, we could have predicted this would happen,
but imagine if we'd been having a bad day or weren’t paying attention: our tests have
just saved us from accidentally breaking our application, and, because we’re using TDD,
we found out immediately. We didn’t have to wait for a QA team, or switch to a web
browser and click through our site manually, and we can get on with fixing it straight
away. Here’s how:

lists/views.py.
def home_page(request):

return render(request, 'home.html', {
'new_1item_text': request.POST.get('item_text', ''),

b
Look up dict.get if you're not sure what’s going on there.

The unit tests should now pass. Let’s see what the functional tests say:
AssertionError: False is not true : New to-do item did not appear in table

Hmm, not a wonderfully helpful error. Let’s use another of our FT debugging techni-
ques: improving the error message. This is probably the most constructive technique,
because those improved error messages stay around to help debug any future errors:

functional_tests.py.
self.assertTrue(

any(row.text == '1: Buy peacock feathers' for row in rows),
"New to-do item did not appear in table -- its text was:\n%s" % (
table. text,
)
)

That gives us a more helpful error message:

AssertionError: False is not true : New to-do item did not appear in table --
its text was:
Buy peacock feathers

You know what could be even better than that? Making that assertion a bit less clever.
As you may remember, I was very pleased with myself for using the any function, but
one of my Early Release readers (thanks Jason!) suggested a much simpler implemen-
tation. We can replace all six lines of the assertTrue with a single assertIn:
unctional_tests.py.
self.assertIn('1l: Buy peacock feathers', [row.text for row in rows])
Much better. You should always be very worried whenever you think youre being clever,
because what you’re probably being is overcomplicated. And we get the error message
for free:

self.assertIn('1l: Buy peacock feathers', [row.text for row in rows])
AssertionError: '1l: Buy peacock feathers' not found in ['Buy peacock feathers']

Passing Python Variables to Be Rendered in the Template | 57

http://docs.python.org/3/library/stdtypes.html#dict.get

Consider me suitably chastened.

If, instead, your FT seems to be saying the table is empty (“not found
in []”), check your <input> tag— does it have the correct
name="1item_text" attribute? Without it, the user’s input won’t be
associated with the right key in request.POST.

The point is that the FT wants us to enumerate list items with a “1:” at the beginning of
the first list item. The fastest way to get that to pass is with a quick “cheating” change to
the template:

lists/templates/home.html.
<tr><td>1: {{ new_item_text }}</td></tr>

Red/Green/Refactor and Triangulation

The unit-test/code cycle is sometimes taught as Red, Green, Refactor:

o Start by writing a unit test which fails (Red).
o Write the simplest possible code to get it to pass (Green), even if that means cheating.

o Refactor to get to better code that makes more sense.

So what do we do during the Refactor stage? What justifies moving from an implemen-
tation where we “cheat” to one we’re happy with?

One methodology is eliminate duplication: if your test uses a magic constant (like the
“1:” in front of our list item), and your application code also uses it, that counts as
duplication, so it justifies refactoring. Removing the magic constant from the application
code usually means you have to stop cheating.

I find that leaves things a little too vague, so I usually like to use a second technique,
which is called triangulation: if your tests let you get away with writing “cheating” code
that you're not happy with, like returning a magic constant, write another test that forces
you to write some better code. That’s what we’re doing when we extend the FT to check
that we get a “2:” when inputting a second list item.

Now we get to the self.fatl('Finish the test!').If we extend our FT to check for
adding a second item to the table (copy and paste is our friend), we begin to see that
our first cut solution really isn’t going to, um, cut it:

58

| Chapter 5: Saving User Input

functional_tests.py
There is still a text box inviting her to add another item. She

enters "Use peacock feathers to make a fly" (Edith is very
methodical)

inputbox = self.browser.find_element_by_id('id_new_item')
inputbox.send_keys('Use peacock feathers to make a fly')
inputbox.send_keys(Keys.ENTER)

The page updates again, and now shows both items on her list
table = self.browser.find_element_by_1id('id_list_table')
rows = table.find_elements_by tag_name('tr')
self.assertIn('1: Buy peacock feathers', [row.text for row in rows])
self.assertIn(

'2: Use peacock feathers to make a fly' ,

[row.text for row in rows]

)

Edith wonders whether the site will remember her list. Then she sees
that the site has generated a unique URL for her -- there is some

explanatory text to that effect.

self.fail('Finish the test!")

She visits that URL - her to-do list is still there.
Sure enough, the functional tests return an error:

AssertionError: '1l: Buy peacock feathers' not found in ['1l: Use peacock
feathers to make a fly']

Three Strikes and Refactor

Before we go further—we've got a bad code smell' in this FT. We have three almost
identical code blocks checking for new items in the list table. There’s a principle called
don’t repeat yourself (DRY), which we like to apply by following the mantra three strikes
and refactor. You can copy and paste code once, and it may be premature to try and
remove the duplication it causes, but once you get three occurrences, it’s time to remove
duplication.

We start by committing what we have so far. Even though we know our site has a major
flaw—it can only handle one list item—its still further ahead than it was. We may have
to rewrite it all, and we may not, but the rule is that before you do any refactoring, always
do a commit:

1. If you've not come across the concept, a “code smell” is something about a piece of code that makes you want
to rewrite it. Jeff Atwood has a compilation on his blog Coding Horror. The more experience you gain as a
programmer, the more fine-tuned your nose becomes to code smells...

Three Strikes and Refactor | 59

http://www.codinghorror.com/blog/2006/05/code-smells.html

$ git diff

should show changes to functional_tests.py, home.html,
tests.py and views.py

$ git commit -a

Back to our functional test refactor: we could use an inline function, but that upsets the
flow of the test slightly. Let’s use a helper method—remember, only methods that begin
with test_ will get run as tests, so you can use other methods for your own purposes:

functional_tests.py.
def tearDown(self):

self.browser.quit()

def check_for_row_in_list_table(self, row_text):
table = self.browser.find_element_by_1id('id_list_table'")
rows = table.find_elements_by_tag_name('tr')
self.assertIn(row_text, [row.text for row in rows])

def test_can_start_a_list_and_retrieve_1it_later(self):
[...]
Ilike to put helper methods near the top of the class, between the tearDown and the first
test. Let’s use it in the FT:

functional_tests.py.
When she hits enter, the page updates, and now the page lists

"1: Buy peacock feathers" as an item in a to-do list table
inputbox.send_keys(Keys.ENTER)
self.check_for_row_in_list_table('1l: Buy peacock feathers')

There is still a text box inviting her to add another item. She
enters "Use peacock feathers to make a fly" (Edith is very

methodical)

inputbox = self.browser.find_element_by_id('id_new_item')
inputbox.send_keys('Use peacock feathers to make a fly')
inputbox.send_keys(Keys.ENTER)

The page updates again, and now shows both items on her list
self.check_for_row_in_list_table('1l: Buy peacock feathers')
self.check_for_row_in_list_table('2: Use peacock feathers to make a fly')

Edith wonders whether the site will remember her list. Then she sees
[...]
We run the FT again to check that it still behaves in the same way...

AssertionError: '1: Buy peacock feathers' not found in ['1l: Use peacock
feathers to make a fly']

Good. Now we can commit the FT refactor as its own small, atomic change:

$ git diff # check the changes to functional_tests.py
$ git commit -a

60 | Chapter>5:Saving User Input

And back to work. If we’re ever going to handle more than one list item, we’re going to
need some kind of persistence, and databases are a stalwart solution in this area.

The Django ORM and Our First Model

An Object-Relational Mapper (ORM) is a layer of abstraction for data stored in a data-
base with tables, rows, and columns. It lets us work with databases using familiar object-
oriented metaphors which work well with code. Classes map to database tables, at-
tributes map to columns, and an individual instance of the class represents a row of data
in the database.

Django comes with an excellent ORM, and writing a unit test that uses it is actually an
excellent way of learning it, since it exercises code by specifying how we want it to work.

Let’s create a new class in lists/tests.py:

lists/tests.py.
from lists.models import Item

[...]
class ItemModelTest(TestCase):

def test_saving_and_retrieving_items(self):
first_item = Item()
first_item.text = 'The first (ever) list item'
first_item.save()

second_item = Item()
second_item.text = 'Item the second'
second_item.save()

saved_1items = Item.objects.all()
self.assertEqual(saved_items.count(), 2)

first_saved_item = saved_items[0]

second_saved_1item = saved_1items[1]
self.assertEqual(first_saved_item.text, 'The first (ever) list item')
self.assertEqual(second_saved_item.text, 'Item the second')

You can see that creating a new record in the database is a relatively simple matter of
creating an object, assigning some attributes, and calling a .save() function. Django
also gives us an API for querying the database via a class attribute, .objects, and we
use the simplest possible query, .all(), which retrieves all the records for that table.
The results are returned as a list-like object called aQuerySet, from which we can extract
individual objects, and also call further functions, like .count(). We then check the
objects as saved to the database, to check whether the right information was saved.

Django’s ORM has many other helpful and intuitive features; this might be a good time
to skim through the Django tutorial, which has an excellent intro to them.

The Django ORM and Our First Model | 61

https://docs.djangoproject.com/en/1.8/intro/tutorial01/

I've written this unit test in a very verbose style, as a way of intro-
ducing the Django ORM. You can actually write a much shorter test
for a model class, which we’ll see later on, in Chapter 11.

Terminology 2: Unit Tests Versus Integrated Tests, and the Database

Purists will tell you that a “real” unit test should never touch the database, and that the
test I've just written should be more properly called an integrated test, because it doesn't
only test our code, but also relies on an external system, ie a database.

It's OK to ignore this distinction for now—we have two types of test, the high-level
functional tests which test the application from the user’s point of view, and these lower-
level tests which test it from the programmer’s point of view.

We'll come back to this and talk about unit tests and integrated tests in Chapter 19,
towards the end of the book.

Let’s try running the unit test. Here comes another unit-test/code cycle:
ImportError: cannot import name 'Item'

Very well, let’s give it something to import from lists/models.py. We're feeling confident
so we'll skip the Item = None step, and go straight to creating a class:

lists/models.py.
from django.db import models

class Item(object):
pass

That gets our test as far as:

first_item.save()
AttributeError: 'Item' object has no attribute 'save'

To give our Item class a save method, and to make it into a real Django model, we make
it inherit from the Model class:

lists/models.py.
from django.db import models

class Item(models.Model):
pass

Our First Database Migration
The next thing that happens is a database error:

62 | Chapter5:Saving User Input

django.db.utils.OperationalError: no such table: lists_item

In Django, the ORM’s job is to model the database, but there’s a second system that’s in
charge of actually building the database called migrations. Its job is to give you the ability
to add and remove tables and columns, based on changes you make to your mod-
els.py files.

One way to think of it is as a version control system for your database. As we’ll see later,
it comes in particularly useful when we need to upgrade a database that’s deployed on
a live server.

For now all we need to know is how to build our first database migration, which we do
using the makemigrations command:

$ python3 manage.py makemigrations
Migrations for 'lists':
0001_initial.py:
- Create model Item
$ ls lists/migrations
0001_1initial.py __1init__.py __pycache__

If you're curious, you can go and take a look in the migrations file, and you'll see it’s a
representation of our additions to models.py.

In the meantime, we should find our tests get a little further.

The Test Gets Surprisingly Far
The test actually gets surprisingly far:

$ python3 manage.py test lists
[...]
self.assertEqual(first_saved_item.text, 'The first (ever) list item')
AttributeError: 'Item' object has no attribute 'text'
That’s a full eight lines later than the last failure—we’ve been all the way through saving
the two Items, we've checked they’re saved in the database, but Django just doesn’t seem
to have remembered the . text attribute.

Incidentally, if youre new to Python, you might have been surprised we were allowed
to assign the . text attribute at all. In something like Java, that would probably give you
a compilation error. Python is more relaxed about things like that.

Classes that inherit from models.Model map to tables in the database. By default they
get an auto-generated 1d attribute, which will be a primary key column in the database,
but you have to define any other columns you want explicitly. Here’s how we set up a
text field:

lists/models.py.
class Item(models.Model):

text = models.TextField()

The Django ORM and Our First Model | 63

Django has many other field types, like IntegerField, CharField, DateField, and so
on. I've chosen TextField rather than CharField because the latter requires a length
restriction, which seems arbitrary at this point. You can read more on field types in the
Django tutorial and in the documentation.

A New Field Means a New Migration
Running the tests gives us another database error:
django.db.utils.OperationalError: no such column: lists_item.text

It’s because we’ve added another new field to our database, which means we need to
create another migration. Nice of our tests to let us know!

Let’s try it:

$ python3 manage.py makemigrations
You are trying to add a non-nullable field 'text' to item without a default; we
can't do that (the database needs something to populate existing rows).
Please select a fix:
1) Provide a one-off default now (will be set on all existing rows)
2) Quit, and let me add a default in models.py
Select an option:2

Ah. It won'’t let us add the column without a default value. Let’s pick option 2 and set a
default in models.py. I think you’ll find the syntax reasonably self-explanatory:

lists/models.py.
class Item(models.Model):

text = models.TextField(default="")
And now the migration should complete:

$ python3 manage.py makemigrations
Migrations for 'lists':
0002_item_text.py:
- Add field text to item

So, two new lines in models.py, two database migrations, and as a result, the .text
attribute on our model objects is now recognised as a special attribute, so it does get
saved to the database, and the tests pass...

$ python3 manage.py test lists
[...]

Ran 4 tests in 0.010s
OK

So let’s do a commit for our first ever model!

$ git status # see tests.py, models.py, and 2 untracked migrations
$ git diff # review changes to tests.py and models.py

$ git add lists

$ git commit -m "Model for list Items and associated migration"

64 | Chapter>5:Saving User Input

http://bit.ly/1slDAGH
https://docs.djangoproject.com/en/1.8/ref/models/fields/

Saving the POST to the Database

Let’s adjust the test for our home page POST request, and say we want the view to save
a new item to the database instead of just passing it through to its response. We can do
that by adding three new lines to the existing test called test_home_page_can_save_
a_POST_request:

lists/tests.py.
def test_home_page_can_save_a_POST_request(self):

request = HttpRequest()
request.method = 'POST'
request.POST['item_text'] = 'A new list item'

response = home_page(request)

self.assertEqual(Item.objects.count(), 1) #@
new_item = Item.objects.first() #@
self.assertEqual(new_item.text, 'A new list item') #@

self.assertIn('A new list item', response.content.decode())
expected_html = render_to_string(

"home.html',

{'new_1item_text': 'A new list item'}

)

self.assertEqual(response.content.decode(), expected_html)
©® We check that one new Item has been saved to the database. objects.count()
is a shorthand for objects.all().count().

® objects.first() is the same as doing objects.all()[0].
©® We check that the item’s text is correct.

This test is getting a little long-winded. It seems to be testing lots of different things.
That’s another code smell—a long unit test either needs to be broken into two, or it may
be an indication that the thing you're testing is too complicated. Let’s add that to a little
to-do list of our own, perhaps on a piece of scrap paper:

|
{
|

o Code smel): POST test /s foo fons?

Y
J
b Y
L4
[‘\

,,/‘\\W //\V/N/‘\“\\W\“// /,,\\\////f \\‘\‘ /"\\// //«‘\4/ N

Saving the POST to the Database | 65

Writing it down on a scratchpad like this reassures us that we won't forget, so we are
comfortable getting back to what we were working on. We rerun the tests and see an
expected failure:

self.assertEqual(Item.objects.count(), 1)
AssertionError: 0 != 1

Let’s adjust our view:

lists/views.py.
from django.shortcuts import render

from lists.models import Item

def home_page(request):
item = Item()
item.text = request.POST.get('item_ text', '')
item.save()

return render(request, 'home.html', {
'new_item_text': request.POST.get('item_text', ''),

H
I've coded a very naive solution and you can probably spot a very obvious problem,
which is that we're going to be saving empty items with every request to the home page.
Let’s add that to our list of things to fix later. You know, along with the painfully obvious
fact that we currently have no way at all of having different lists for different people.
That we’ll keep ignoring for now.

Remember, I'm not saying you should always ignore glaring problems like this in “real
life>. Whenever we spot problems in advance, there’s a judgement call to make over
whether to stop what you're doing and start again, or leave them until later. Sometimes
finishing off what you’re doing is still worth it, and sometimes the problem may be so
major as to warrant a stop and rethink.

Let’s see how the unit tests get on...they pass! Good. We can do a bit of refactoring:

lists/views.py.
return render(request, 'home.html', {

'new_1item_text': item.text
b
Let’s have a little look at our scratchpad. I've added a couple of the other things that are
on our mind:

66 | Chapter5:Saving User Input

o Don'¥ save b/ank items for every regues/
o Code smel): POST #est /s oo fons?
Display muttiple items in the table

o/ o/ o/

Svppord more +han one fist’

)

Al /,/’\\\V/ //«\\Kw///\\\/// \\\V /'\\\V/ /Nf\\\\/,.,/d“\\,

Let’s start with the first one. We could tack on an assertion to an existing test, but it’s
best to keep unit tests to testing one thing at a time, so let’s add a new one:

lists/tests.py.
class HomePageTest(TestCase):

[...]

def test_home_page_only_saves_1items_when_necessary(self):
request = HttpRequest()
home_page(request)
self.assertEqual(Item.objects.count(), 0)

That givesusa 1 != 0 failure. Let’s fix it. Watch out; although it’s quite a small change
to the logic of the view, there are quite a few little tweaks to the implementation in code:
lists/views.py.
def home_page(request):
if request.method == 'POST':

new_item_text = request.POST['item_text'] #@)

Item.objects.create(text=new_item_text) #@
else:

new_item_text = '' #@

return render(request, 'home.html', {
"new_item_text': new_item_text, #@

b

@ © We use a variable called new_item_text, which will either hold the POST
O contents, or the empty string.

(2]

.objects.create is a neat shorthand for creating a new Item, without needing
to call .save().

And that gets the test passing:

Ran 5 tests in 0.010s

0K

Saving the POST to the Database | 67

Redirect After a POST

But, yuck, that whole new_item_text = '' danceis making me pretty unhappy. Thank-
fully the next item on the list gives us a chance to fix it. Always redirect after a POST,
they say, so let’s do that. Once again we change our unit test for saving a POST request
to say that, instead of rendering a response with the item in it, it should redirect back
to the home page:

lists/tests.py.

def test_home_page_can_save_a_POST_request(self):
request = HttpRequest()

request.method = 'POST'
request.POST['item_text'] = 'A new list item'

response = home_page(request)

self.assertEqual(Item.objects.count(), 1)
new_item = Item.objects.first()
self.assertEqual(new_item.text, 'A new list item')

self.assertEqual(response.status_code, 302)
self.assertEqual(response['location'], '/")

We no longer expect a response with a . content rendered by a template, so we lose the
assertions thatlook at that. Instead, the response will represent an HT TP redirect, which
should have status code 302, and points the browser towards a new location.

That gives us the error 200 != 302. We can now tidy up our view substantially:

lists/views.py (ch051028).
from django.shortcuts import redirect, render
from lists.models import Item

def home_page(request):
if request.method == 'POST':
Item.objects.create(text=request.POST['item_text'])
return redirect('/")

return render(request, 'home.html')

And the tests should now pass:

Ran 5 tests in 0.010s

0K

Better Unit Testing Practice: Each Test Should Test One Thing

Our view now does a redirect after a POST, which is good practice, and we've shortened
the unit test somewhat, but we can still do better. Good unit testing practice says that
each test should only test one thing. The reason is that it makes it easier to track down
bugs. Having multiple assertions in a test means that, if the test fails on an early assertion,

68 | Chapter>5: Saving User Input

https://en.wikipedia.org/wiki/Post/Redirect/Get

you don’t know what the status of the later assertions is. As we'll see in the next chapter,
if we ever break this view accidentally, we want to know whether it’s the saving of objects
that’s broken, or the type of response.

You may not always write perfect unit tests with single assertions on your first go, but
now feels like a good time to separate out our concerns:

lists/tests.py.
def test_home_page can_save_a_POST_request(self):

request = HttpRequest()
request.method = 'POST'
request.POST['item_text'] = 'A new list item'

response = home_page(request)
self.assertEqual(Item.objects.count(), 1)

new_item = Item.objects.first()
self.assertEqual(new_item.text, 'A new list item')

def test_home_page redirects_after_POST(self):
request = HttpRequest()
request.method = 'POST'
request.POST['item_text'] = 'A new list item'

response = home_page(request)

self.assertEqual(response.status_code, 302)
self.assertEqual(response['location'], '/")

And we should now see six tests pass instead of five:

Ran 6 tests in 0.010s

0K

Rendering Items in the Template

Much better! Back to our to-do list:

Rendering Items in the Template | 69

o Covte—smett-AOSTestrs~rtoorons?
o Display muttiple items in the table

o/ o/ o/ \/

o Suppord more than one fist’

)

Al /,/’\\\V/ //«\\Kw///\\\/// \\\V /'\\\V/ /Nf\\\\/,.,/d“\\,

Crossing things off the list is almost as satisfying as seeing tests pass!

The third item is the last of the “easy” ones. Let’s have a new unit test that checks that
the template can also display multiple list items:

lists/tests.py.
class HomePageTest(TestCase):

[...]

def test_home_page displays_all_list_items(self):
Item.objects.create(text="'itemey 1')
Item.objects.create(text="1itemey 2')

request = HttpRequest()
response = home_page(request)

self.assertIn('itemey 1', response.content.decode())
self.assertIn('itemey 2', response.content.decode())

That fails as expected:
AssertionError: 'itemey 1' not found in '<html>\n <head>\n [...]

The Django template syntax has a tag for iterating through lists, {% for .. in .. %};
we can use it like this:

lists/templates/home.html.
<table 1d="id_list_table"s>

{% for item in items %}
<tr><td>1: {{ item.text }}</td></tr>
{% endfor %}
</table>

This is one of the major strengths of the templating system. Now the template will render
with multiple <tr> rows, one for each item in the variable items. Pretty neat! I'll intro-
duce a few more bits of Django template magic as we go, but at some point you'll want
to go and read up on the rest of them in the Django docs.

Just changing the template doesn't get our tests to pass; we need to actually pass the
items to it from our home page view:

70 | Chapter5: Saving User Input

https://docs.djangoproject.com/en/1.8/topics/templates/

lists/views.py.
def home_page(request):

if request.method == 'POST':
Item.objects.create(text=request.POST['item_text'])
return redirect('/")

items = Item.objects.all()
return render(request, 'home.html', {'items': items})

That does get the unit tests to pass...moment of truth, will the functional test pass?

$ python3 functional_tests.py

[...]

AssertionError: 'To-Do' not found in 'OperationalError at /'
Oops, apparently not. Let’s use another functional test debugging technique, and it’s one
of the most straightforward: manually visiting the site! Open up http://localhost:8000
in your web browser, and you’ll see a Django debug page saying “no such table:
lists_item”, as in Figure 5-2.

§ localhost +@| B~ as

OperationalError at /

no such table: lists_item

Request Method: GET
Request URL: http://localhost:8000/
Django Version: 1.6
Exception Type: OperationalError
Exception Value: no such table: lists item
Exception Location: /usr/local/lib/python3.3/dist-packages/django/db/backends/sqlite3/base.py in execute,
Python Executable: /usr/bin/python3
Python Version: 3.3.2
- ['/tmp/tmpdss633/superlists’,
Python Path: ‘.'u!gllggaﬁllba‘;;g:;nfiin15t—packagesmn:krl.E.l—py},}.egg‘.
*fusr/lib/python3.3",
' fusr/1ib/python3. 3/plat-x86_64-linux-gnu',
' fusr/1ib/python3. 3/1ib-dynload",
*/home/harry/.local/lib/python3.3/site-packages’,

"/usr/local/lib/pythond.3/dist-packages”,
' /usr/1ib/python3/dist-packages ']

Server time: Wed, 13 Nov 2013 13:13:13 +0000

Error during template rendering

In template /tmp/tmpdss633/superlists/1ists/templates/home.html, €ITON atline 13

no such table: lists_item

3 <title>To-Do lists</title>

Figure 5-2. Another helpful debug message

Creating Our Production Database with migrate

Another helpful error message from Django, which is basically complaining that we
haven't set up the database properly. How come everything worked fine in the unit tests,

Creating Our Production Database with migrate | 71

I hear you ask? Because Django creates a special test database for unit tests; it's one of
the magical things that Django’s TestCase does.

To set up our °

‘real” database, we need to create it. SQLite databases are just a file on

disk, and you'll see in settings.py that Django, by default, will just put it in a file called
db.sqlite3 in the base project directory:

[...]

Database

superlists/settings.py.

https://docs.djangoproject.com/en/1.8/ref/settings/#databases

DATABASES =

{

'default': {
"ENGINE': 'django.db.backends.sqlite3',
'"NAME': os.path.join(BASE_DIR, 'db.sqlite3'),

}

We've told Django everything it needs to create the database, first via models.py and
then when we created the migrations file. To actually apply it to creating a real database,
we use another Django Swiss Army knife manage.py command, migrate:

$ python3 manage.py migrate

Operations

to perform:

Synchronize unmigrated apps: messages, staticfiles
Apply all migrations: contenttypes, lists, admin, auth, sessions
Synchronizing apps without migrations:

Creating

tables...

Running deferred SQL...
Installing custom SQL...
Running migrations:
Rendering model states... DONE

Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying

contenttypes.0001_initial... OK
auth.0001_initial... OK

admin.0001_1initial... OK
contenttypes.0002_remove_content_type_name... OK
auth.0002_alter_permission_name_max_length... OK
auth.0003_alter_user_email_max_length... 0K
auth.0004_alter_user_username_opts... 0K
auth.0005_alter_user_last_login_null... OK
auth.0006_require_contenttypes_0002... OK
1ists.0001_initial... OK

1ists.0002_1item_text... OK
sessions.0001_1initial... OK

Now we can refresh the page on localhost, see that our error is gone, and try running
the functional tests again:*

2. If you get a different error at this point, try restarting your dev server—it may have gotten confused by the
changes to the database happening under its feet.

72 | Chapter5: Saving User Input

AssertionError: '2: Use peacock feathers to make a fly' not found in ['1l: Buy
peacock feathers', '1: Use peacock feathers to make a fly']
So close! We just need to get our list numbering right. Another awesome Django tem-
plate tag, forloop.counter, will help here:

lists/templates/home.html.
{% for item in items %}

<tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
{% endfor %}

If you try it again, you should now see the FT get to the end:

self.fail('Finish the test!')
AssertionError: Finish the test!

But, as it’s running, you may notice something is amiss, like in Figure 5-3.

To-Do lists - Mozilla Firefox

& localhost v @] |[Bv Google Q & @ B\ » A
Firefox> |£iTo-Do lists |+

Your To-Do list

Enter a to-do item

1: Buy peacock feathers
2: Use peacock feathers to make a fly
3: Buy peacock feathers
4: Use peacock feathers to make a fly

Qv x S

Figure 5-3. There are list items left over from the last run of the test

Oh dear. It looks like previous runs of the test are leaving stuft lying around in our
database. In fact, if you run the tests again, you'll see it gets worse:

Buy peacock feathers
Use peacock feathers to make a fly
Buy peacock feathers
Use peacock feathers to make a fly
Buy peacock feathers
Use peacock feathers to make a fly

AU WN R

Creating Our Production Database with migrate | 73

Grrr. We're so close! We're going to need some kind of automated way of tidying up
after ourselves. For now, if you feel like it, you can do it manually, by deleting the database
and re-creating it fresh with migrate:

$ rm db.sqlite3
$ python3 manage.py migrate --noinput

And then reassure yourself that the FT still passes.

Apart from that little bug in our functional testing, we've got some code that’s more or
less working. Let’s do a commit.

Start by doing a git statusandagit diff, and you should see changes to home.html,
tests.py, and views.py. Lets add them:

$ git add lists
$ git commit -m "Redirect after POST, and show all items in template"

You might find it useful to add markers for the end of each chapter,
like git tag end-of-chapter-05.

Where are we?

« We've got a form set up to add new items to the list using POST.
o We've set up a simple model in the database to save list items.

o We've used at least three different FT debugging techniques.

But we've got a couple of items on our own to-do list, namely getting the FT to clean
up after itself, and perhaps more critically, adding support for more than one list.

I mean, we could ship the site as it is, but people might find it strange that the entire
human population has to share a single to-do list. I suppose it might get people to stop
and think about how connected we all are to one another, how we all share a common
destiny here on Spaceship Earth, and how we must all work together to solve the global
problems that we face.

But in practical terms, the site wouldn’t be very useful.

Ah well.

74 | Chapter5: Saving User Input

Useful TDD Concepts

Regression
When new code breaks some aspect of the application which used to work.

Unexpected failure
When a test fails in a way we weren’t expecting. This either means that we've made
amistake in our tests, or that the tests have helped us find a regression, and we need
to fix something in our code.

Red/Green/Refactor
Another way of describing the TDD process. Write a test and see it fail (Red), write
some code to get it to pass (Green), then Refactor to improve the implementation.

Triangulation
Adding a test case with a new specific example for some existing code, to justify
generalising the implementation (which may be a “cheat” until that point).

Three strikes and refactor
A rule of thumb for when to remove duplication from code. When two pieces of
code look very similar, it often pays to wait until you see a third use case, so that
you’re more sure about what part of the code really is the common, re-usable part
to refactor out.

The scratchpad to-do list
A place to write down things that occur to us as we're coding, so that we can finish
up what were doing and come back to them later.

Creating Our Production Database with migrate |

75

CHAPTER 6
Getting to the Minimum Viable Site

In this chapter we’re going to address the problems we discovered at the end of the last
chapter. In the immediate, the problem of cleaning up after functional test runs. Later,
the more general problem, which is that our design only allows for one global list. I'll
demonstrate a critical TDD technique: how to adapt existing code using an incremental,
step-by-step process which takes you from working code to working code. Testing Goat,
not Refactoring Cat.

Ensuring Test Isolation in Functional Tests

We ended the last chapter with a classic testing problem: how to ensure isolation between
tests. Each run of our functional tests was leaving list items lying around in the database,
and that would interfere with the test results when you next ran the tests.

When we run unit tests, the Django test runner automatically creates a brand new test
database (separate from the real one), which it can safely reset before each individual
testis run, and then throw away at the end. But our functional tests currently run against
the “real” database, db.sqlite3.

One way to tackle this would be to “roll our own” solution, and add some code to
functional_tests.py which would do the cleaning up. The setUp and tearDown methods
are perfect for this sort of thing.

Since Django 1.4 though, there’s a new class called LiveServerTestCase which can do
this work for you. It will automatically create a test database (just like in a unit test run),
and start up a development server for the functional tests to run against. Although asa
tool it has some limitations which we’ll need to work around later, it’s dead useful at this
stage, so let’s check it out.

LiveServerTestCase expects to be run by the Django test runner using manage.py. As
of Django 1.6, the test runner will find any files whose name begins with test. To keep

77

things neat and tidy, let’s make a folder for our functional tests, so that it looks a bit like
an app. All Django needs is for it to be a valid Python package directory (i.e., one with
a__init__.pyinit):

$ mkdir functional_tests
$ touch functional_tests/__init__.py

Then we move our functional tests, from being a standalone file called function-
al_tests.py, to being the fests.py of the functional_tests app. We use git mv so that
Git notices that we've moved the file:

$ git mv functional_tests.py functional_tests/tests.py
$ git status # shows the rename to functional_tests/tests.py and __init__.py

At this point your directory tree should look like this:

j— db.sqlite3

}— functional_tests

— _init__.py

L— tests.py

— lists

}— admin.py

— _init__.py

}— migrations

| | ee01_initial.py

| F— 0002_item_text.py
|
|

— _init__.py
L— pycache__
}— models.py
— __pycache__
}— templates
| — home.html
}— tests.py
L— views.py
manage.py
superlists
— _init__.py
— __pycache__
}— settings.py
— urls.py
L— wsgi.py

r~

functional_tests.pyis gone, and has turned into functional_tests/tests.py. Now, whenever
we want to run our functional tests, instead of running python3 function
al_tests.py, we will use python3 manage.py test functional_tests.

78 | Chapter 6: Getting to the Minimum Viable Site

You could mix your functional tests into the tests for the lists app.
I tend to prefer to keep them separate, because functional tests usu-
ally have cross-cutting concerns that run across different apps. FTs
are meant to see things from the point of view of your users, and your
users don't care about how you’ve split work between different apps!

Now let’s edit functional_tests/tests.py and change our NewVisitorTest class to make it
use LiveServerTestCase:

functional_tests/tests.py (ch061001).
from django.test import LiveServerTestCase

from selenium import webdriver
from selenium.webdriver.common.keys import Keys

class NewVisitorTest(LiveServerTestCase):

def setUp(self):
[...]
Next,' instead of hardcoding the visit to localhost port 8000, LiveServerTestCase gives
us an attribute called live_server_url:

Sfunctional_tests/tests.py (ch061002).
def test_can_start_a_list_and_retrieve_it_later(self):

Edith has heard about a cool new online to-do app. She goes

to check out its homepage

self.browser.get(self.live_server_url)
We can also remove the if __name__ == '__main__' from the end if we want, since
we’ll be using the Django test runner to launch the FT.

Now we are able to run our functional tests using the Django test runner, by telling it
to run just the tests for our new functional_tests app:
$ python3 manage.py test functional_tests

Creating test database for alias 'default'...
F

FAIL: test_can_start_a_list_and_retrieve_it_later
(functional_tests.tests.NewVisitorTest)
Traceback (most recent call last):
File "/workspace/superlists/functional_tests/tests.py", line 61, in
test_can_start_a_list_and_retrieve_1it_later
self.fail('Finish the test!')
AssertionError: Finish the test!

1. Are you unable to move on because youre wondering what those ch06l0xx things are, next to some of the
code listings? They refer to specific commits in the booK’s example repo. It’s all to do with my book’s correctness
tests. You know, the tests for the tests in the book about testing. They have tests of their own, incidentally.

Ensuring Test Isolation in Functional Tests | 79

https://github.com/hjwp/book-example/commits/chapter_06

Ran 1 test in 6.378s

FAILED (failures=1)
Destroying test database for alias 'default'...

The FT gets through to the self.fail, just like it did before the refactor. You'll also
notice that if you run the tests a second time, there aren’t any old list items lying around
from the previous test—it has cleaned up after itself. Success! We should commit it as
an atomic change:

$ git status # functional_tests.py renamed + modified, new __init__.py

$ git add functional_tests

$ git diff --staged -M

$ git commit # msg eg "make functional_tests an app, use LiveServerTestCase"
The -M flag on the git diff is a useful one. It means “detect moves’, so it will notice
that functional_tests.py and functional_tests/tests.py are the same file, and show you a
more sensible diff (try it without the flag!).

Running Just the Unit Tests
Now if we run manage.py test, Django will run both the functional and the unit tests:

$ python3 manage.py test
Creating test database for alias 'default'...

FAIL: test_can_start_a_list_and_retrieve_it_later

[...]

AssertionError: Finish the test!

Ran 8 tests in 3.132s

FAILED (failures=1)
Destroying test database for alias 'default'...

In order to run just the unit tests, we can specify that we want to only run the tests for
the lists app:

$ python3 manage.py test lists
Creating test database for alias 'default'...

Ran 7 tests in 0.009s

OK
Destroying test database for alias 'default'...

80 | Chapter6: Getting to the Minimum Viable Site

Useful Commands Updated

To run the functional tests
python3 manage.py test functional_tests

To run the unit tests
python3 manage.py test lists

What to do if I say “run the tests’, and youre not sure which ones I mean? Have another
look at the flowchart at the end of Chapter 4, and try and figure out where we are. As a
rule of thumb, we usually only run the functional tests once all the unit tests are passing,
so if in doubt, try both!

Now let'’s move on to thinking about how we want support for multiple lists to work.
Currently the FT (which is the closest we have to a design document) says this:

functional_tests/tests.py.
Edith wonders whether the site will remember her list. Then she sees

that the site has generate a unique URL for her -- there is some
explanatory text to that effect.
self.fail('Finish the test!')

She visits that URL - her to-do list is still there.

Satisfied, she goes back to sleep
But really we want to expand on this, by saying that different users don’t see each other’s
lists, and each get their own URL as a way of going back to their saved lists. Let’s think
about this a bit more.

Small Design When Necessary

TDD is closely associated with the agile movement in software development, which
includes a reaction against Big Design Up Front the traditional software engineering
practice whereby, after a lengthy requirements gathering exercise, there is an equally
lengthy design stage where the software is planned out on paper. The agile philosophy
is that you learn more from solving problems in practice than in theory, especially when
you confront your application with real users as soon as possible. Instead of a long up-
front design phase, we try and put a minimum viable application out there early, and let
the design evolve gradually based on feedback from real-world usage.

But that doesn’t mean that thinking about design is outright banned! In the last chapter
we saw how just blundering ahead without thinking can eventually get us to the right
answer, but often a little thinking about design can help us get there faster. So, let’s think
about our minimum viable lists app, and what kind of design we’ll need to deliver it.

Small Design When Necessary | 81

o We want each user to be able to store their own list—at least one, for now.

o A list is made up of several items, whose primary attribute is a bit of descriptive
text.

o We need to save lists from one visit to the next. For now, we can give each user a
unique URL for their list. Later on we may want some way of automatically recog-
nising users and showing them their lists.

To deliver the “for now” items, it sounds like we’re going to store lists and their items
in a database. Each list will have a unique URL, and each list item will be a bit of de-
scriptive text, associated with a particular list.

YAGNI!

Once you start thinking about design, it can be hard to stop. All sorts of other thoughts
are occurring to us—we might want to give each list a name or title, we might want to
recognise users using usernames and passwords, we might want to add a longer notes
field as well as short descriptions to our list, we might want to store some kind of or-
dering, and so on. But we obey another tenet of the agile gospel: “YAGNI” (pronounced
yag-knee), which stands for “You aint gonna need it!” As software developers, we have
fun creating things, and sometimes it’s hard to resist the urge to build things just because
an idea occurred to us and we might need it. The trouble is that more often than not,
no matter how cool the idea was, you won’t end up using it. Instead you have a load of
unused code, adding to the complexity of your application. YAGNI is the mantra we
use to resist our overenthusiastic creative urges.

REST

We have an idea of the data structure we want—the Model part of Model-View-
Controller (MVC). What about the View and Controller parts? How should the user
interact with Lists and their Items using a web browser?

Representational State Transfer (REST) is an approach to web design that’s usually used
to guide the design of web-based APIs. When designing a user-facing site, it’s not pos-
sible to stick strictly to the REST rules, but they still provide some useful inspiration.

REST suggests that we have a URL structure that matches our data structure, in this case
lists and list items. Each list can have its own URL:

/lists/<list identifier>/

That will fulfill the requirement we’ve specified in our FT. To view a list, we use a GET
request (a normal browser visit to the page).

To create a brand new list, we’ll have a special URL that accepts POST requests:

/lists/new

82 | Chapter6: Getting to the Minimum Viable Site

To add a new item to an existing list, we’ll have a separate URL, to which we can send
POST requests:

/lists/<list identifier>/add_item

(Again, we're not trying to perfectly follow the rules of REST, which would use a PUT
request here—we’re just using REST for inspiration.)

In summary, our scratchpad for this chapter looks something like this:

o GetFFsrocteanvoaltiervthemsetres
N o Adyvst mode/ so thatitems are assocated
2 with different /ists

o Add vrigve URLs For each /is¥
o Adol a URL For areating a new /isé via POST

o Adol - URLs For adding a new item +oan
existing st via POST

—

-\

’,/\«\\/ //\/ //“x\\»«\w/“ﬂ\\\\/ o N /w’\\///,/ \\// P

Implementing the New Design Using TDD

How do we use TDD to implement the new design? Let’s take another look at the flow-
chart for the TDD process in Figure 6-1.

At the top level, we're going to use a combination of adding new functionality (by ex-
tending the FT and writing new application code), and refactoring our application—
i.e., rewriting some of the existing implementation so that it delivers the same func-
tionality to the user but using aspects of our new design. At the unit test level, we’ll be
adding new tests or modifying existing ones to test for the changes we want, and we’ll
be able to use the untouched unit tests to make sure we don’t break anything in the
process.

Implementing the New Design Using TDD | 83

A4
Write a Run the Does the
Functional test FT. Does it application need
pass? Refactoring?
“Write minimal code”
ST TTTTTTTEEEEE ST \
:
Writ . Run the Does the
U r.; te at unit test. Does it application need
gUles pass? Refactoring?

Write minimal code

1
1
1
1

Unit test / code cycle

Figure 6-1. The TDD process with functional and unit tests

Let’s translate our scratchpad into our functional test. As soon as Edith submits a first
list item, we’ll want to create a new list, adding one item to it, and take her to the URL
for her list. Look for the point at which we say inputbox.send_keys('Buy peacock

feathers'), and amend the next block of code like this:

inputbox.send_keys('Buy peacock feathers')

When she hits enter, she is taken to a new URL,

and now the page lists "1: Buy peacock feathers"

to-do list table

inputbox.send_keys(Keys.ENTER)

edith_list_url = self.browser.current_url
self.assertRegex(edith_list_url, '/lists/.+') #@

functional_tests/tests.py.

as an item in a

self.check_for_row_in_list_table('1: Buy peacock feathers')

There is still a text box inviting her to add another item. She

[...]

84 | Chapter6: Getting to the Minimum Viable Site

© assertRegex is a helper function from unittest that checks whether a string
matches a regular expression. We use it to check that our new REST-ish design
has been implemented. Find out more in the unittest documentation.

Let’s also change the end of the test and imagine a new user coming along. We want to
check that they don’t see any of Edith’s items when they visit the home page, and that
they get their own unique URL for their list.

Delete everything from the comments just before the self.fail (they say “Edith won-
ders whether the site will remember her list ...”) and replace them with a new ending
to our FT:

functional_tests/tests.py.
[...]
The page updates again, and now shows both items on her list
self.check_for_row_in_list_table('2: Use peacock feathers to make a fly')
self.check_for_row_in_list_table('1: Buy peacock feathers')

Now a new user, Francis, comes along to the site.

We use a new browser session to make sure that no information
of Edith's is coming through from cookies etc #§)
self.browser.quit()

self.browser = webdriver.Firefox()

Francis visits the home page. There is no sign of Edith's
list

self.browser.get(self.live_server_url)

page_text = self.browser.find_element_by_tag_name('body').text
self.assertNotIn('Buy peacock feathers', page_text)
self.assertNotIn('make a fly', page_text)

Francis starts a new list by entering a new item. He

is less interesting than Edith...

inputbox = self.browser.find_element_by_id('id_new_item')
inputbox.send_keys('Buy milk')
inputbox.send_keys(Keys.ENTER)

Francis gets his own unique URL

francis_list_url = self.browser.current_url
self.assertRegex(francis_list_url, '/lists/.+')
self.assertNotEqual(francis_list_url, edith_list_url)

Again, there is no trace of Edith's list

page_text = self.browser.find_element_by_tag_name('body').text
self.assertNotIn('Buy peacock feathers', page_text)
self.assertIn('Buy milk', page_text)

Satisfied, they both go back to sleep

Implementing the New Design Using TDD | 85

http://docs.python.org/3/library/unittest.html

© I'm using the convention of double-hashes (##) to indicate “meta-comments”—
comments about how the test is working and why—so that we can distinguish
them from regular comments in FTs which explain the User Story. They’re a
message to our future selves, which might otherwise be wondering why the heck
we're quitting the browser and starting a new one...

Other than that, the changes are fairly self-explanatory. Let’s see how they do when we
run our FTs:

[...]

self.assertRegex(edith_list_url, '/lists/.+')
AssertionError: Regex didn't match: '/lists/.+' not found in
"http://localhost:8081/"'

As expected. Let’s do a commit, and then go and build some new models and views:

$ git commit -a

I found the FTs hung when I tried to run them today. It turns out I
needed to upgrade Selenium, with a pip3 install --upgrade sele
nium. You may remember from the preface that it's important to have
the latest version of Selenium installed—it’s only been a couple of
months since I last upgraded, and Selenium had gone up by six point
versions. If something weird is happening, always try upgrading
Selenium!

Iterating Towards the New Design

Being all excited about our new design, I had an overwhelming urge to dive in at this
point and start changing models.py, which would have broken half the unit tests, and
then pile in and change almost every single line of code, all in one go. That’s a natural
urge, and TDD, as a discipline, is a constant fight against it. Obey the Testing Goat, not
Refactoring Cat! We don’t need to implement our new, shiny design in a single big bang.
Let’s make small changes that take us from a working state to a working state, with our
design guiding us gently at each stage.

There are four items on our to-do list. The FT, with its Regexp didn't match, is telling
us that the second item—giving lists their own URL and identifier—is the one we should
work on next. Let’s have a go at fixing that, and only that.

The URL comes from the redirect after POST. In lists/tests.py, find test_home_page_re
directs_after_POST, and change the expected redirect location:

lists/tests.py.
self.assertEqual(response.status_code, 302)

self.assertEqual(response['location'], '/lists/the-only-list-in-the-world/")

86 | Chapter6: Getting to the Minimum Viable Site

Does that seem slightly strange? Clearly, /lists/the-only-list-in-the-worldisn’ta URL that’s
going to feature in the final design of our application. But we're committed to changing
one thing at a time. While our application only supports one list, this is the only URL
that makes sense. We're still moving forwards, in that we’ll have a different URL for our
list and our home page, which is a step along the way to a more REST-ful design. Later,
when we have multiple lists, it will be easy to change.

Another way of thinking about it is as a problem-solving technique:
our new URL design is currently not implemented, so it works for 0
items. Ultimately, we want to solve for n items, but solving for 1 item
is a good step along the way.

Running the unit tests gives us an expected fail:

$ python3 manage.py test lists

[...]
AssertionError: '/' != '/lists/the-only-list-in-the-world/'

We can go adjust our home_page view in lists/views.py:

lists/views.py.
def home_page(request):
if request.method == 'POST':
Item.objects.create(text=request.POST['item_text'])
return redirect('/lists/the-only-1list-in-the-world/"')

items = Item.objects.all()
return render(request, 'home.html', {'items': items})

Of course, that will now totally break the functional tests, because there is no such URL
on our site yet. Sure enough, if you run them, you’ll find they fail just after trying to
submit the first item, saying that they can’t find the list table; it’s because URL /the-only-
list-in-the-world/ doesn’t exist yet!

self.check_for_row_in_list_table('1: Buy peacock feathers')

[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"id_list_table"}

So, let’s build a special URL for our one and only list.

Testing Views, Templates, and URLs Together with the
Django Test Client

In previous chapters we've used unit tests that check the URL resolution explicitly, that
test view functions by actually calling them, and that check that views render templates
correctly too. Django actually provides us with a little tool that can do all three at once,
which we’ll use now.

Testing Views, Templates, and URLs Together with the Django Test Client | 87

I wanted to show you how to “roll your own” first, partially because it’s a better intro-
duction to how Django works, but also because those techniques are portable—you may
not always use Django, but you’ll almost always have view functions, templates, and
URL mappings, and now you know how to test them.

A New Test Class

So let’s use the Django test client. Open up lists/tests.py, and add a new test class called
ListViewTest. Then copy the method called test_home_page_displays_all_
list_items across from HomePageTest into our new class, rename it, and adapt it
slightly:

lists/tests.py (ch061009).
class ListViewTest(TestCase):

def test_displays_all_items(self):
Item.objects.create(text="'itemey 1')
Item.objects.create(text="1itemey 2')

response = self.client.get('/lists/the-only-1list-in-the-world/') #@

self.assertContains(response, 'itemey 1') #@
self.assertContains(response, 'itemey 2') #@
© Instead of calling the view function directly, we use the Django test client, which
is an attribute of the Django TestCase called self.client. We tell it to .get the
URL we're testing—it’s actually a very similar API to the one that Selenium uses.

® O Instead of using the slightly annoying assertIn/response.content.decode()
dance, Django provides the assertContains method which knows how to deal
with responses and the bytes of their content.

Some people really don't like the Django test client. They say it pro-
vides too much magic, and involves too much of the stack to be used
in a real “unit” test—you end up writing what are more properly called
integrated tests. They also complain that it is relatively slow (and
relatively is measured in milliseconds). We’ll explore this argument
further in a later chapter. For now we’ll use it because it’s extremely
convenient!

Let’s try running the test now:

AssertionError: 404 != 200 : Couldn't retrieve content: Response code was 404

A New URL

Our singleton list URL doesn’t exist yet. We fix that in superlists/urls.py.

88 | (Chapter 6: Getting to the Minimum Viable Site

Watch out for trailing slashes in URLSs, both here in the tests and in
urls.py—They’re a common source of bugs.

superlists/urls.py.
urlpatterns = [
url(r'~$', views.home_page, name='home'),
url(r'~lists/the-only-list-in-the-world/$', views.view_list, name='view_list'),
url(r'~admin/', include(admin.site.urls)),

]
Running the tests again, we get:

AttributeError: 'module' object has no attribute 'view_list'
[...]
FAILED (errors=4)

A New View Function
Nicely self-explanatory. Let’s create a dummy view function in lists/views.py:
lists/views.py.
def view_list(request):
pass
Now we get:

ValueError: The view lists.views.view_list didn't return an HttpResponse
object. It returned None instead.

Let’s copy the two last lines from the home_page view and see if they’ll do the trick:
lists/views.py.
def view_list(request):

items = Item.objects.all()
return render(request, 'home.html', {'items': items})

Rerun the tests and they should pass:

Ran 8 tests in 0.016s
0K

And the FTs should get a little further on:

AssertionError: '2: Use peacock feathers to make a fly' not found in ['1l: Buy
peacock feathers']

Green? Refactor
Time for a little tidying up.

In the Red/Green/Refactor dance, we've arrived at green, so we should see what needs
a refactor. We now have two views, one for the home page, and one for an individual

Testing Views, Templates, and URLs Together with the Django Test Client | 89

list. Both are currently using the same template, and passing it all the list items currently
in the database. If we look through our unit test methods, we can see some stuff we
probably want to change:

$ grep -E "class|def" lists/tests.py
class HomePageTest(TestCase):
def test_root_url_resolves_to_home_page_view(self):
def test_home_page_returns_correct_html(self):
def test_home_page _displays_all_list_items(self):
def test_home_page_can_save_a_POST_request(self):
def test_home_page redirects_after_POST(self):
def test_home_page_only_saves_1items_when_necessary(self):
class ListViewTest(TestCase):
def test_displays_all_items(self):
class ItemModelTest(TestCase):
def test_saving_and_retrieving_items(self):

We can definitely delete the test_home_page_displays_all_list_items method, it
no longer needed. If you run manage.py test lists now, it should say it ran 7 tests
instead of 8:

Ran 7 tests in 0.016s

OK

Next, we don’t actually need the home page to display all list items any more; it should
just show a single input box inviting you to start a new list.

A Separate Template for Viewing Lists

Since the home page and the list view are now quite distinct pages, they should be using
different HTML templates; home.html can have the single input box, whereas a new
template, list.html, can take care of showing the table of existing items.

Let’s add a new test to check that it’s using a different template:

lists/tests.py.
class ListViewTest(TestCase):

def test_uses_list_template(self):
response = self.client.get('/lists/the-only-1list-in-the-world/")
self.assertTemplateUsed(response, 'list.html')

def test_displays_all_items(self):
[...]
assertTemplateUsed is one of the more useful functions that the Django test client
gives us. Let’s see what it says:

AssertionError: False is not true : Template 'list.html' was not a template
used to render the response. Actual template(s) used: home.html

90 | Chapter6: Getting to the Minimum Viable Site

Great! Let’s change the view:

lists/views.py.
def view_list(request):
items = Item.objects.all()
return render(request, 'list.html', {'items': items})

But, obviously, that template doesn’t exist yet. If we run the unit tests, we get:
django.template.base.TemplateDoesNotExist: list.html

Let’s create a new file at lists/templates/list. html:
$ touch lists/templates/list.html

A blank template, which gives us this error—good to know the tests are there to make
sure we fill it in:

AssertionError: False is not true : Couldn't find 'itemey 1' in response

The template for an individual list will reuse quite a lot of the stuff we currently have in
home.html, so we can start by just copying that:

$ cp lists/templates/home.html lists/templates/list.html

That gets the tests back to passing (green). Now let’s do a little more tidying up (refac-
toring). We said the home page doesn’t need to list items, it only needs the new list input
field, so we can remove some lines from lists/templates/home.html, and maybe slightly
tweak the h1 to say “Start a new To-Do list™:

lists/templates/home.html.
<body>
<h1>Start a new To-Do list</h1>
<form method="POST">
<input name="item_text" id="1d_new_item" placeholder="Enter a to-do item" />
{% csrf_token %}
</form>
</body>

We rerun the unit tests to check that hasn’t broken anything—good...

There’s actually no need to pass all the items to the home.htmltemplate in our home_page
view, so we can simplify that:

lists/views.py.
def home_page(request):

if request.method == 'POST':
Item.objects.create(text=request.POST['item_text'])
return redirect('/lists/the-only-list-in-the-world/")
return render(request, 'home.html'")

Rerun the unit tests; they still pass. Let’s run the functional tests:

AssertionError: '2: Use peacock feathers to make a fly' not found in ['1l: Buy
peacock feathers']

We're still failing to input the second item. What’s going on here? Well, it's not imme-
diately obvious, but it looks like our POST requests aren’t working the way they should.

Testing Views, Templates, and URLs Together with the Django Test Client | 91

After a bit of head-scratching and digging through the various views and templates, we
will eventually uncover the problem: both our forms are missing the action= attribute,
which means that, by default, they submit to the same URL they were rendered from.
That works for the home page, because it’s the only one that knows how to deal with
POST requests currently, but it won’t work for our view_list function, which is just
ignoring the POST.

We can fix that in lists/templates/list.html.:

lists/templates/list.html (ch061019).
<form method="POST" action="/">

And try running the FT again:

self.assertNotEqual(francis_list_url, edith_list_url)

AssertionError: 'http://localhost:8081/1lists/the-only-list-in-the-world/' ==

'http://localhost:8081/1ists/the-only-1list-in-the-world/"'
Hooray! We're back to where we were earlier, which means our refactoring is complete
—we now have a unique URL for our one list. It may feel like we haven't made much
headway since, functionally, the site still behaves almost exactly like it did when we
started the chapter, but this really is progress. We've started on the road to our new
design, and we’ve implemented a number of stepping stones without making anything
worse than it was before. Let’s commit our progress so far:

$ git status # should show 4 changed files and 1 new file, list.html
$ git add lists/templates/list.html
$ git diff # should show we've simplified home.html,
moved one test to a new class in lists/tests.py added a new view
in views.py, and simplified home_page and made one addition to
urls.py
$ git commit -a # add a message summarising the above, maybe something like
"new URL, view and template to display lists"

Another URL and View for Adding List Items

Where are we with our own to-do list?

92 | Chapter6: Getting to the Minimum Viable Site

§

|

L

)

£ o GetFTsrFocteanvoalttervthemsetres

" i o Adjusé mode/ so Fhart ifems are assocated
2 with different /ists

< o Add vrigve URLs For each /is¥

2

) o Add 2 URL #or creading a new /st via POST
) o Adol URLs For adding a new item +o an
D existing st via POST

B

’TIA\\WA///\\ ‘\\N//\\\// ﬂ/‘\\\\/'f\\/ //f\\// R

We've sort of made progress on the third item, even if there’s still only one list in the
world. Item 2 is a bit scary. Can we do something about items 4 or 5?

Let’s have a new URL for adding new list items. If nothing else, it'll simplify the home
page view.

A Test Class for New List Creation

Open up lists/tests.py, and move the test_home_page_can_save_a_POST_request and

test_home_page_redirects_after_POST methods into a new class, then change their
names:

lists/tests.py (ch061021-1).
class NewListTest(TestCase):

def test_saving_a_POST_request(self):
request = HttpRequest()
request.method = 'POST'
[...]

def test_redirects_after_POST(self):
[...]

Now let’s use the Django test client:

lists/tests.py (ch061021-2).
class NewListTest(TestCase):

def test_saving_a_POST_request(self):

self.client.post(

'/lists/new',

data={'item_text': 'A new list item'}
)
self.assertEqual(Item.objects.count(), 1)
new_item = Item.objects.first()
self.assertEqual(new_item.text, 'A new list item')

def test_redirects_after_POST(self):

Another URL and View for Adding List tems | 93

response = self.client.post(
'/lists/new',
data={'1item_text': 'A new list item'}
)
self.assertEqual(response.status_code, 302)
self.assertEqual(response['location'], '/lists/the-only-list-in-the-world/")

This is another place to pay attention to trailing slashes, incidentally. It's /new, with no
trailing slash. The convention I'm using is that URLs without a trailing slash are “action”
URLSs which modify the database.

Try running that:
self.assertEqual(Item.objects.count(), 1)
AssertionError: 0 !=1
[...]

self.assertEqual(response.status_code, 302)
AssertionError: 404 != 302

The first failure tells us we're not saving a new item to the database, and the second says

that, instead of returning a 302 redirect, our view is returning a 404. That’s because we
haven't built a URL for /lists/new, so the client.post is just getting a 404 response.

Do you remember how we split this out into two tests in the last
chapter? If we only had one test that checked both the saving and the
redirect, it would have failed on the 0 != 1 failure, which would have
been much harder to debug. Ask me how I know this.

A URL and View for New List Creation

Let’s build our new URL now:

superlists/urls.py.
urlpatterns = [

url(r'~$', views.home_page, name='home'),

url(r'~lists/new$', views.new_list, name='new_list'),
url(r'~lists/the-only-list-in-the-world/$', views.view_list, name='view_ list'),
url(r'?admin/', include(admin.site.urls)),

]
Next we get ano attribute 'new_list', so let’s fix that, in lists/views.py:
lists/views.py.

def new_list(request):
pass

Then we get “The view lists.views.new_list didn’t return an HttpResponse object”. (This
is getting rather familiar!) We could return a raw Ht tpResponse, but since we know we’ll
need a redirect, let’s borrow a line from home_page:

94 | Chapter 6: Getting to the Minimum Viable Site

lists/views.py.
def new_list(request):
return redirect('/lists/the-only-list-in-the-world/")

That gives:
self.assertEqual(Item.objects.count(), 1)
AssertionError: 0 !=1
[...]

AssertionError: 'http://testserver/lists/the-only-list-in-the-world/' !=
'/lists/the-only-list-in-the-world/"'
Let’s start with the first failure, because it’s reasonably straightforward. We borrow an-
other line from home_page:
lists/views.py.
def new_list(request):

Item.objects.create(text=request.POST['item_text'])
return redirect('/lists/the-only-1list-in-the-world/"')

And that takes us down to just the second, unexpected failure:

self.assertEqual(response['location'],

'/lists/the-only-list-in-the-world/")

AssertionError: 'http://testserver/lists/the-only-list-in-the-world/' !=

'/lists/the-only-list-in-the-world/"'
It's happening because the Django test client behaves slightly differently to our pure view
function; it’s using the full Django stack which adds the domain to our relative URL.
Let’s use another of Django’s test helper functions, instead of our two-step check for the
redirect:

lists/tests.py.
def test_redirects_after_POST(self):

response = self.client.post(
"/lists/new',
data={'item_text': 'A new list item'}

)

self.assertRedirects(response, '/lists/the-only-list-in-the-world/")

That now passes:

Ran 8 tests in 0.030s

0K

Removing Now-Redundant Code and Tests

We'relooking good. Since our new views are now doing most of the work that home_page
used to do, we should be able to massively simplify it. Can we remove the whole if
request.method == 'POST' section, for example?

Another URL and View for Adding List tems | 95

lists/views.py.
def home_page(request):

return render(request, 'home.html")

Yep!
0K

And while were at it, we can remove the now-redundant test_home_page_on
ly_saves_ items_when_necessary test too!

Doesn't that feel good? The view functions are looking much simpler. We rerun the tests
to make sure...

Ran 7 tests in 0.016s
oK

Pointing Our Forms at the New URL
Finally, let’s wire up our two forms to use this new URL. In both home.html and lists. html:
lists/templates/home.html, lists/templates/list.html.
<form method="POST" action="/lists/new">

And we rerun our FTs to make sure everything still works, or works at least as well as
it did earlier. ..

AssertionError: 'http://localhost:8081/1lists/the-only-1list-in-the-world/' ==
'"http://localhost:8081/1lists/the-only-1ist-in-the-world/'
Yup, we get to the same point we did before. That’s a nicely self-contained commit, in
that we've made a bunch of changes to our URLs, our views.py is looking much neater
and tidier, and we're sure the application is still working as well as it did before. We’re
getting good at this refactoring malarkey!

$ git status # 5 changed files
$ git diff # URLs for forms x2, moved code in views + tests, new URL
$ git commit -a

And we can cross out an item on the to-do list:

96 | Chapter6: Getting to the Minimum Viable Site

5
r{ o GetFTsrFocteanvoalttervthemsetres
‘ o Adyvst mode/ so thartitems are associated
g with different /ists
< o Adod vrigve URLs for each /st
:/\/\‘ R A e/ Z 2 fak s 2087
) o Adol URLs For adding a new item +o an
D existing ist via POST
]
i '/\\\/ Py x,//,/r\‘\ g /f»‘\\\\//’ \\\//,/’ ‘\\////’ N

Adjusting Our Models

Enough housekeeping with our URLSs. It’s time to bite the bullet and change our models.
Let’s adjust the model unit test. Just for a change, I'll present the changes in the form of

a diff:

lists/tests.py.
@@ -3,7 +3,7 @@ from django.http import HttpRequest

from django.template.loader import render_to_string
from django.test import TestCase

-from lists.models import Item
+from lists.models import Item, List

from lists.views import home_page

class HomePageTest(TestCase):
@@ -60,22 +60,32 @@ class ListViewTest(TestCase):

-class ItemModelTest(TestCase):
+class ListAndItemModelsTest(TestCase):

def test_saving_and_retrieving_items(self):

+ list_ = List()
+ list_.save()
¥

first_item = Item()

first_item.text = 'The first (ever) list item'
+ first_item.list = list_

first_item.save()

second_item = Item()

second_item.text = 'Item the second'
+ second_item.list = list_

second_item.save()

Adjusting Our Models | 97

+ saved_list = List.objects.first()
+ self.assertEqual(saved_list, list_)

saved_1items = Item.objects.all()
self.assertEqual(saved_items.count(), 2)

first_saved_1item = saved_items[0]
second_saved_1item = saved_items[1]
self.assertEqual(first_saved_item.text, 'The first (ever) list item')

+ self.assertEqual(first_saved_item.list, list_)
self.assertEqual(second_saved_item.text, 'Item the second')
+ self.assertEqual(second_saved_item.list, list_)

We create a new List object, and then we assign each item to it by assigning it as
its . List property. We check the list is properly saved, and we check that the two items
have also saved their relationship to the list. You’ll also notice that we can compare list
objects with each other directly (saved_list and list)—behind the scenes, these will
compare themselves by checking their primary key (the .1d attribute) is the same.

I'm using the variable name list_ to avoid “shadowing” the Python
built-in 1ist function. It’s ugly, but all the other options I tried were
equally ugly or worse (my_1l1ist, the_list, list1, listey...).

Time for another unit-test/code cycle.

For the first couple of iterations, rather than explicitly showing you what code to enter
in between every test run, 'm only going to show you the expected error messages from
running the tests. I'll let you figure out what each minimal code change should be on
your own:

Your first error should be:
ImportError: cannot import name 'List'
Fix that, then you should see:
AttributeError: 'List' object has no attribute 'save'
Next you should see:
django.db.utils.OperationalError: no such table: lists_list
So we run a makemigrations:

$ python3 manage.py makemigrations
Migrations for 'lists':
0003_list.py:
- Create model List

And then you should see:

98 | Chapter 6: Getting to the Minimum Viable Site

self.assertEqual(first_saved_item.list, list_)
AttributeError: 'Item' object has no attribute 'list'

A Foreign Key Relationship

How do we give our Item a list attribute? Let’s just try naively making it like the text
attribute:

lists/models.py.
from django.db import models

class List(models.Model):
pass

class Item(models.Model):
text = models.TextField(default="")
list = models.TextField(default="")

As usual, the tests tell us we need a migration:

$ python3 manage.py test lists
[...]

django.db.utils.OperationalError: no such column: lists_item.list

$ python3 manage.py makemigrations
Migrations for 'lists':
0004_item_list.py:
- Add field list to item

Let’s see what that gives us:
AssertionError: 'List object' != <List: List object>

We're not quite there. Look closely at each side of the !=. Django has only saved the

string representation of the List object. To save the relationship to the object itself, we

tell Django about the relationship between the two classes using a ForeignKey:
lists/models.py.

from django.db import models

class List(models.Model):
pass

class Item(models.Model):
text = models.TextField(default="")
list = models.ForeignKey(List, default=None)
That'll need a migration too. Since thelast one was ared herring, let’s delete itand replace

it with a new one:
$ rm lists/migrations/0004_item_list.py

$ python3 manage.py makemigrations
Migrations for 'lists':

Adjusting Our Models | 99

0004_item_list.py:
- Add field list to item

Deleting migrations is dangerous. If you delete a migration that’s
already been applied to a database somewhere, Django will be con-
fused about what state it’s in, and how to apply future migrations.
You should only do it when you're sure the migration hasn't been
used. A good rule of thumb is that you should never delete a migra-
tion that’s been committed to your VCS.

Adjusting the Rest of the World to Our New Models

Back in our tests, now what happens?

$ python3 manage.py test lists

[...]

ERROR: test_displays_all_items (lists.tests.ListViewTest)
django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id

[...]
ERROR: test_redirects_after_POST (lists.tests.NewlListTest)
django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id

[...]
ERROR: test_saving_a_POST_request (lists.tests.NewListTest)
django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id

Ran 7 tests in 0.021s

FAILED (errors=3)
Oh dear!

There is some good news. Although it’s hard to see, our model tests are passing. But
three of our view tests are failing nastily.

The reason is because of the new relationship we’ve introduced between Items and Lists,
which requires each item to have a parent list, which our old tests weren’t prepared for.

Still, this is exactly why we have tests. Let’s get them working again. The easiest is the
ListViewTest; we just create a parent list for our two test items:

lists/tests.py (ch061031).
class ListViewTest(TestCase):

def test_displays_all_items(self):
list_ = List.objects.create()
Item.objects.create(text="'1itemey 1', list=1list_)
Item.objects.create(text="'itemey 2', list=1list_)
That gets us down to two failing tests, both on tests that try to POST to our new_list
view. Decoding the tracebacks using our usual technique, working back from error, to
line of test code, to the line of our own code that caused the failure, we identify:

100 | Chapter 6: Getting to the Minimum Viable Site

File "/workspace/superlists/lists/views.py", line 14, in new_list
Item.objects.create(text=request.POST['item_text'])
It's when we try and create an item without a parent list. So we make a similar change
in the view:

lists/views.py.
from lists.models import Item, List

[...]

def new_list(request):
list_ = List.objects.create()
Item.objects.create(text=request.POST['item_text'], list=list_)
return redirect('/lists/the-only-list-in-the-world/")

And that gets our tests passing again:
0K

Are you cringing internally at this point? Arg! This feels so wrong, we create a new list
for every single new item submission, and we’re still just displaying all items as if they
belong to the same list! know, I feel the same. The step-by-step approach, in which you
go from working code to working code, is counterintuitive. I always feel like just diving
inand tryingto fix everything all in one go, instead of going from one weird half-finished
state to another. But remember the Testing Goat! When you're up a mountain, you want
to think very carefully about where you put each foot, and take one step at a time,
checking at each stage that the place you've put it hasn’t caused you to fall off a cliff.

So just to reassure ourselves that things have worked, we rerun the FT. Sure enough, it
gets all the way through to where we were before. We haven’t broken anything, and we’ve
made a change to the database. That’s something to be pleased with! Let’s commit:

$ git status # 3 changed files, plus 2 migrations
$ git add lists

$ git diff --staged

$ git commit

And we can cross out another item on the to-do list:

Adjusting Our Models | 101

Z o GelSfFsAFotteanvoalierrthemsetres
o Actrrsimostersodhatit o

) e s

< o Add vrigve URLs For each /st

:3 o Actot-a-tiRbAorcreatinsarerHstvialrOST
// o Adol URLs For adding a new item +o an
D existing st via POST

[\

A P PN N L
| \\W/'\\/ //\\\\v\/,/ \‘\ // -, /»"\\/// \//f' ~

Each List Should Have Its Own URL

What shall we use as the unique identifier for our lists? Probably the simplest thing, for
now, is just to use the auto-generated id field from the database. Let’s change List
ViewTest so that the two tests point at new URLs.

We'll also change the old test_displays_all_itenms testand call it test_displays_on
ly_items_for_that_list instead, and make it check that only the items for a specific
list are displayed:

lists/tests.py (ch061033-1).
class ListViewTest(TestCase):

def test_uses_list_template(self):
list_ = List.objects.create()
response = self.client.get('/lists/%d/"' % (list_.id,))
self.assertTemplateUsed(response, 'list.html')

def test_displays_only_items_for_that_list(self):
correct_list = List.objects.create()
Item.objects.create(text="'1itemey 1', list=correct_list)
Item.objects.create(text="'itemey 2', list=correct_list)
other_list = List.objects.create()
Item.objects.create(text="'other list item 1', list=other_list)
Item.objects.create(text="'other list item 2', list=other_list)

response = self.client.get('/lists/%d/"' % (correct_list.id,))

self.assertContains(response, 'itemey 1')
self.assertContains(response, 'itemey 2')
self.assertNotContains(response, 'other list item 1')
self.assertNotContains(response, 'other list item 2')

102 | Chapter 6: Getting to the Minimum Viable Site

If youre not familiar with Python string substitutions, or the printf
function from C, maybe that %d is a little confusing? Dive Into Python
has a good overview, if you want to go look them up quickly. We'll
see an alternative string substitution syntax later in the book too.

Running the unit tests gives an expected 404, and another related error:

FAIL: test_displays_only_items_for_that_list (lists.tests.ListViewTest)
AssertionError: 404 != 200 : Couldn't retrieve content: Response code was 404
(expected 200)

[...]
FAIL: test_uses_list_template (lists.tests.ListViewTest)
AssertionError: No templates used to render the response

Capturing Parameters from URLs
It’s time to learn how we can pass parameters from URLs to views:

superlists/urls.py.
urlpatterns = [

url(r'~$', views.home_page, name='home'),

url(r'~lists/new$', 'lists.views.new_list', name='new_list'),

url(r'~lists/(.+)/S$"', 'lists.views.view_list', name='view_list'),

url(r'?admin/', include(admin.site.urls)),

1

We adjust the regular expression for our URL to include a capture group, (.+), which
will match any characters, up to the following /. The captured text will get passed to the
view as an argument.

In other words, if we go to the URL /lists/1/, view_list will get a second argument after
the normal request argument, namely the string "1". If we go to /lists/foo/, we get
view_list(request, "foo").

But our view doesn’t expect an argument yet! Sure enough, this causes problems:

ERROR: test_displays_only_items_for_that_list (lists.tests.ListViewTest)
ERROR: test_uses_list_template (lists.tests.ListViewTest)

ERROR: test_redirects_after_POST (lists.tests.NewlListTest)

[...]

TypeError: view_list() takes 1 positional argument but 2 were given
We can fix that easily with a dummy parameter in views.py:

lists/views.py.
def view_list(request, list_id):

[...]
Now we’re down to our expected failure:

FAIL: test_displays_only_items_for_that_list (lists.tests.ListViewTest)
AssertionError: 1 != 0 : Response should not contain 'other list item 1'

Each List Should Have ItsOwn URL | 103

http://www.diveintopython.net/

Let’s make our view discriminate over which items it sends to the template:

lists/views.py.
def view_list(request, list_id):

list_ = List.objects.get(id=1ist_1id)
items = Item.objects.filter(list=1ist_)
return render(request, 'list.html', {'items': items})

Adjusting new_list to the New World
Now we get errors in another test:

ERROR: test_redirects_after_POST (lists.tests.NewlListTest)
ValueError: invalid literal for int() with base 10:
'the-only-1list-in-the-world'

Let’s take a look at this test then, since it'’s whining:

lists/tests.py.
class NewListTest(TestCase):

[...]

def test_redirects_after_POST(self):
response = self.client.post(
"/lists/new',
data={'item_text': 'A new list item'}
)

self.assertRedirects(response, '/lists/the-only-list-in-the-world/")
It looks like it hasn’t been adjusted to the new world of Lists and Items. The test should
be saying that this view redirects to the URL of the new list it just created:

lists/tests.py (ch061036-1).
def test_redirects_after_POST(self):

response = self.client.post(
"/lists/new',
data={'item_text': 'A new list item'}
)
new_list = List.objects.first()
self.assertRedirects(response, '/lists/%d/' % (new_list.id,))

That still gives us the invalid literal error. We take a look at the view itself, and change
it so it redirects to a valid place:

lists/views.py (ch061036-2).
def new_list(request):

list_ = List.objects.create()
Item.objects.create(text=request.POST['item_text'], list=1list_)
return redirect('/lists/%d/' % (list_.1d,))
That gets us back to passing unit tests. What about the functional tests? We must be
almost there?

AssertionError: '2: Use peacock feathers to make a fly' not found in ['1l: Use
peacock feathers to make a fly']

104 | Chapter 6: Getting to the Minimum Viable Site

The functional tests have warned us of a regression in our application: because we’re
now creating a new list for every single POST submission, we have broken the ability
to add multiple items to a list. This is exactly what we have functional tests for!

And it correlates nicely with the last item on our to-do list:

‘E

i

’i o GetFFsrocteanvoalttervthemsetres

L p ot oo

i . , , .

2 ’

3 o Adol URLs For adding a new item +oan

D existing list via POST

,//\\\ J/’/\/ ///“*-\\ﬂrv\w/ﬂw“/\\v,/—/ //‘\\\\V/ #\\/,/"J/\\} J——— —

One More View to Handle Adding Items to an Existing List

We need a URL and view to handle adding a new item to an existing list (/lists/<list_id>/
add_item). We're getting pretty good at these now, so let’s knock one together quickly:

lists/tests.py.
class NewItemTest(TestCase):

def test_can_save_a_POST_request_to_an_existing_list(self):
other_list = List.objects.create()
correct_list = List.objects.create()

self.client.post(
'"/lists/%d/add_item' % (correct_list.id,),
data={'item_text': 'A new item for an existing list'}

)

self.assertEqual(Item.objects.count(), 1)

new_item = Item.objects.first()

self.assertEqual(new_item.text, 'A new item for an existing list')
self.assertEqual(new_item.list, correct_list)

def test_redirects_to_list_view(self):
other_list = List.objects.create()
correct_list = List.objects.create()

One More View to Handle Adding Items to an Existing List | 105

response = self.client.post(
"/lists/%d/add_item' % (correct_list.id,),

data={'item_text': 'A new item for an existing list'}
)
self.assertRedirects(response, '/lists/%d/' % (correct_list.id,))
We get:
AssertionError: 0 !=1
[...]
AssertionError: 301 != 302 : Response didn't redirect as expected: Response

code was 301 (expected 302)

Beware of Greedy Regular Expressions!

That’s a little strange. We haven't actually specified a URL for /lists/1/add_item yet, so
our expected failure is 404 != 302. Why are we getting a 301?

This was a bit of a puzzler, but it’s because we've used a very “greedy” regular expression
in our URL:

url(r'~lists/(.+)/$", 'lists.views.view_list', name='view_list'),

Django has some built-in code to issue a permanent redirect (301) whenever someone
asks for a URL which is almost right, except for a missing slash. In this case, /lists/1/
add_item/ would be a match for 1ists/(.+)/, with the (.+) capturing 1/add_item. So
Django “helpfully” guesses that we actually wanted the URL with a trailing slash.

We can fix that by making our URL pattern explicitly capture only numerical digits, by
using the regular expression \d:

superlists/urls.py.
url(r'~lists/(\d+)/$', views.view_list, name='view_list'),
That gives:
AssertionError: 0 !=1
[...]
AssertionError: 404 != 302 : Response didn't redirect as expected: Response

code was 404 (expected 302)

The Last New URL

Now we've got our expected 404, let’s add a new URL for adding new items to existing
lists:

superlists/urls.py.

urlpatterns = [
url(r'~$', views.home_page, name='home'),
url(r'~lists/new$', views.new_list, name='new_list'),
url(r'~lists/(\d+)/$', views.view_list, name='view_list'),
url(r'~ists/(\d+)/add_item$', views.add_item, name='add_item'),

106 | Chapter 6: Getting to the Minimum Viable Site

url(r'”admin/', include(admin.site.urls)),

]

Three very similar-looking URLs there. Let’s make a note on our to-do list; they look
like good candidates for a refactoring.

5

1

|

D)

£ o GetFTsrFotteanvoaltterrthemsetres
: ot o
< : :

N . 7%u%f1ﬂjgvt~64663149f1ﬂztﬁvés#

¥y

) o Actot-a-tiRbAorcreatinsarerhstvialrOST
) o Adol URLs For adding a new item +o an
D existing st via POST

£

D, o Retactor away some dyplication in vr/spy

ot P P T N ™

Back to the tests, we get the usual missing module objects:

AttributeError: 'module' object has no attribute 'add_item'

The Last New View
Let’s try:

lists/views.py.
def add_item(request):

pass

Aha:

TypeError: add_item() takes 1 positional argument but 2 were given
lists/views.py.
def add_item(request, list_1id):

pass

And then:

ValueError: The view lists.views.add_item didn't return an HttpResponse object.
It returned None instead.

One More View to Handle Adding Items to an Existing List | 107

We can copy the redirect from new_list and the List.objects.get from view_list:

lists/views.py.
def add_item(request, list_id):
list_ = List.objects.get(id=1list_1id)
return redirect('/lists/%d/' % (list_.1d,))
That takes us to:
self.assertEqual(Item.objects.count(), 1)
AssertionError: 0 != 1
Finally we make it save our new list item:
lists/views.py.

def add_item(request, list_id):
list_ = List.objects.get(id=1list_id)
Item.objects.create(text=request.POST['item_text'], list=list_)
return redirect('/lists/%d/' % (list_.1id,))

And we're back to passing tests.

Ran 9 tests in 0.050s

0K

But How to Use That URL in the Form?

Now we just need to use this URL in our list.html template. Open it up and adjust the
form tag...
lists/templates/list.html.
<form method="POST" action="but what should we put here?">
... oh. To get the URL for adding to the current list, the template needs to know what
list it’s rendering, as well as what the items are. We want to be able to do something like
this:
lists/templates/list.html.
<form method="POST" action="/lists/{{ list.id }}/add_item">
For that to work, the view will have to pass the list to the template. Let’s create a new
unit test in ListViewTest:

lists/tests.py (ch061041).
def test_passes_correct_list_to_template(self):

other_list = List.objects.create()

correct_list = List.objects.create()

response = self.client.get('/lists/%d/' % (correct_list.id,))

self.assertEqual(response.context['list'], correct_list)
response.context represents the context were going to pass into the render function
—the Django test client puts it on the response object for us, to help with testing. That
gives us:

KeyError: 'list'

108 | Chapter 6: Getting to the Minimum Viable Site

because we're not passing list into the template. It actually gives us an opportunity to
simplify a little:
lists/views.py.
def view_list(request, list_id):
list_ = List.objects.get(id=1ist_1id)
return render(request, 'list.html', {'list': list_})

That, of course, will break because the template is expecting items:
AssertionError: False is not true : Couldn't find 'itemey 1' in response

But we can fix it in list.html, as well as adjusting the form’s POST action:

lists/templates/list.html (ch061043).
<form method="POST" action="/lists/{{ list.id }}/add_item"s

[...]

{% for item in list.item_set.all %}
<tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
{% endfor %}

.item_set is called a “reverse lookup”—it’s one of Django’s incredibly useful bits of
ORM that lets you look up an object’s related items from a different table...

So that gets the unit tests to pass:
Ran 10 tests in 0.060s
OK

How about the FT?

$ python3 manage.py test functional_tests
Creating test database for alias 'default'...

Ran 1 test in 5.824s

OK
Destroying test database for alias 'default'...

Yes! And a quick check on our to-do list:

One More View to Handle Adding Items to an Existing List | 109

SO AL AYA

N/

w/ \w/

o Retactor away some dvplication in vr/spy

-/ \s

i ~ N e
| affaal PO s . ~ \ - ~
\M//\\V// S S A NG \\/ Vs

Irritatingly, the Testing Goat is a stickler for tying up loose ends too, so we’ve got to do
this one final thing.

Before we start, we’ll do a commit—always make sure you've got a commit of a working
state before embarking on a refactor:

$ git diff
$ git commit -am "new URL + view for adding to existing lists. FT passes :-)"

A Final Refactor Using URL includes

superlists/urls.py is really meant for URLs that apply to your entire site. For URLs that
only apply to the lists app, Django encourages us to use a separate lists/urls.py, to make
the app more self-contained. The simplest way to make one is to use a copy of the existing

urls.py:
$ cp superlists/urls.py lists/

Then we replace three lines in superlists/urls.py with an include. Notice that include
can take a part of a URL regex as a prefix, which will be applied to all the included URLs
(thisis the bit where we reduce duplication, as well as giving our code a better structure):

superlists/urls.py.

from django.conf.urls import include, url
from lists import views as list_views #@
from lists import urls as list_urls #@

urlpatterns = [
url(r'~$', list_views.home_page, name='home'),
url(r'~lists/', include(list_urls)),
url(r'?admin/', include(admin.site.urls)),

110 | Chapter 6: Getting to the Minimum Viable Site

@ © While we're at it, we use the import x as y syntax to alias views and urls. This
is good practice in your top-level urls.py, because it will let us import views and
urls from multiple apps if we need to—and indeed we will need to later on in
the book.

Back in lists/urls.py we can trim down to only include the latter part of our three URLSs,
and none of the other stuff from the parent urls.py:

lists/urls.py (ch061045).
from django.conf.urls import url

from lists import views

urlpatterns = [
url(r'*new$', views.new_list, name='new_list'),
url(r'~(\d+)/$", views.view_list, name='view list'),
url(r'~(\d+)/add_items$', views.add_item, name='add_item'),
1
Rerun the unit tests to check everything worked. When I did it, I couldn’t quite believe
I did it correctly on the first go. It always pays to be skeptical of your own abilities, so I
deliberately changed one of the URLs slightly, just to check if it broke a test. It did. We’re
covered.

Feel free to try it yourself! Remember to change it back, check the tests all pass again,
and then commit:

$ git status

$ git add lists/urls.py

$ git add superlists/urls.py

$ git diff --staged

$ git commit
Phew. A marathon chapter. But we covered a number of important topics, starting with
test isolation, and then some thinking about design. We covered some rules of thumb
like “YAGNI” and “three strikes then refactor”. But, most importantly, we saw how to
adapt an existing site step by step, going from working state to working state, in order
to iterate towards a new design.

I’d say we're pretty close to being able to ship this site, as the very first beta of the superlists
website that’s going to take over the world. Maybe it needs a little prettification first...
let’s look at what we need to do to deploy it in the next couple of chapters.

AFinal Refactor Using URL includes | 111

Useful TDD Concepts and Rules Of Thumb

Test Isolation and Global State
Different tests shouldn’t affect one another. This means we need to reset any per-
manent state at the end of each test. Django’s test runner helps us do this by creating
a test database, which it wipes clean in between each test. (See also Chapter 19.)

Working State to Working State (aka The Testing Goat vs. Refactoring Cat)
Our natural urge is often to dive in and fix everything at once...but if we’re not
careful, we’ll end up like Refactoring Cat, in a situation with loads of changes to
our code and nothing working. The Testing Goat encourages us to take one step at
a time, and go from working state to working state.

YAGNI
You ain’t gonna need it! Avoid the temptation to write code that you think might
be useful, just because it suggests itself at the time. Chances are, you won’t use it, or
you won't have anticipated your future requirements correctly. See Chapter 18 for
one methodology that helps us avoid this trap.

112 | Chapter 6: Getting to the Minimum Viable Site

PARTII
Web Development Sine Qua Nons

Real developers ship.
— Jeff Atwood

If this were just a guide to TDD in a normal programming field, we might be able to
congratulate ourselves about now. After all, we've got some solid basics of TDD and
Django under our belts; we've got all we need to start building a website.

But, real developers ship, and in order to ship, were going to have to tackle some of the
trickier but unavoidable aspects of web development: static files, form data validation,
the dreaded JavaScript, but most hairy of all, deployment to a production server.

At every stage, TDD can help us to get these things right too.

In this section, I'm still trying to keep the learning curve relatively soft, but we will meet
several major new concepts and technologies. I'll only be able to dip lightly into each
one—I hope to demonstrate enough of each to get you started when you get to your
own project, but you will also need to do your own reading around when you start to
apply these topics in “real life”

For example, if you weren’t familiar with Django before starting on the book, you may
find that taking a little time to run through the official Django tutorial at this point
would complement what you've learned so far nicely, and will leave you more confident
with the Django stuff over the next few chapters, so you can focus on the core concepts.

Oh, but there’s lots of fun stuff coming up! Just you wait!

CHAPTER 7
Prettification: Layout and Styling,
and What to Test About It

We're starting to think about releasing the first version of our site, but were a bit em-
barrassed by how ugly it looks at the moment. In this chapter, we’ll cover some of the
basics of styling, including integrating an HTML/CSS framework called Bootstrap. We’ll
learn how static files work in Django, and what we need to do about testing them.

What to Functionally Test About Layout and Style

Our site is undeniably a bit unattractive at the moment (Figure 7-1).

If you spin up your dev server with manage.py runserver, you may
run into a database error “table lists_item has no column named
list_id”. You need to update your local database to reflect the changes
we made in models.py. Use manage.py migrate.

We can’t be adding to Pythomn’s reputation for being ugly, so let’s do a tiny bit of polishing.
Here’s a few things we might want:

o A nice large input field for adding new and existing lists

o A large, attention-grabbing, centered box to put it in
How do we apply TDD to these things? Most people will tell you you shouldn’t test

aesthetics, and they’re right. It’s a bit like testing a constant, in that tests usually wouldn’t
add any value.

115

http://grokcode.com/746/dear-python-why-are-you-so-ugly/

® - o To-Do lists - Mozilla Firefox
| 3 To-Do lists | =R
§ localhost

Start a To-Do list

O~ %

hd C’ v Google

Q

& A~

S ®

Figure 7-1. Our homepage, looking a little ugly...

But we can test the implementation of our aesthetics—just enough to reassure ourselves
that things are working. For example, we're going to use Cascading Style Sheets (CSS)
for our styling, and they are loaded as static files. Static files can be a bit tricky to con-
figure (especially, as we’ll see later, when you move off your own PC and onto a hosting
site), so we’ll want some kind of simple “smoke test” that the CSS has loaded. We don’t
have to test fonts and colours and every single pixel, but we can do a quick check that
the main input box is aligned the way we want it on each page, and that will give us

confidence that the rest of the styling for that page is probably loaded too.

We start with a new test method inside our functional test:

class NewVisitorTest(LiveServerTestCase):

[...]

def test_layout_and_styling(self):
Edith goes to the home page

self.browser.get(self.live_server_url)
self.browser.set_window_size(1024, 768)

She notices the input box is nicely centered
inputbox = self.browser.find_element_by_id('id_new_item')

self.assertAlmostEqual(

inputbox.location['x'] + inputbox.size['width'] / 2,

512,
delta=5

functional_tests/tests.py (ch071001).

116 | Chapter7: Prettification: Layout and Styling, and What to Test About It

A few new things here. We start by setting the window size to a fixed size. We then find
the input element, look at its size and location, and do a little maths to check whether
it seems to be positioned in the middle of the page. assertAlmostEqual helps us to deal
with rounding errors by letting us specify that we want our arithmetic to work to within
plus or minus five pixels.

If we run the functional tests, we get:

$ python3 manage.py test functional_tests
Creating test database for alias 'default'...
.F

FAIL: test_layout_and_styling (functional_tests.tests.NewVisitorTest)
Traceback (most recent call last):
File "/workspace/superlists/functional_tests/tests.py", line 104, in
test_layout_and_styling
delta=5
AssertionError: 111.0 != 512 within 5 delta

Ran 2 tests in 9.188s

FAILED (failures=1)
Destroying test database for alias 'default'...

That’s the expected failure. Still, this kind of FT is easy to get wrong, so let’s use a quick-
and-dirty “cheat” solution, to check that the FT also passes when the input box is cen-
tered. We'll delete this code again almost as soon as we've used it to check the FT:

lists/templates/home.html (ch071002).

<form method="POST" action="/lists/new">
<p style="text-align: center;">
<input name="item_text" id="1d_new_item" placeholder="Enter a to-do item" />
</p>
{% csrf_token %}
</form>

That passes, which means the FT works. Let’s extend it to make sure that the input box
is also center-aligned on the page for a new list:

functional_tests/tests.py (ch071003).
She starts a new list and sees the input is nicely

centered there too
inputbox.send_keys('testing\n')
inputbox = self.browser.find_element_by_1id('id_new_item')
self.assertAlmostEqual(
inputbox.location['x"'] + inputbox.size['width'] / 2,
512,
delta=5
)

That gives us another test failure:

What to Functionally Test About Layout and Style | 117

File "/workspace/superlists/functional_tests/tests.py", line 114, in
test_layout_and_styling
delta=5
AssertionError: 111.0 != 512 within 5 delta

Let’s commit just the FT:

$ git add functional_tests/tests.py
$ git commit -m "first steps of FT for layout + styling"

Now it feels like were justified in finding a “proper” solution to our need for some better
styling for our site. We can back out our hacky <p style="text-align: center"s:

$ git reset --hard

git reset --hard is the “take off and nuke the site from orbit” Git
command, so be careful with it—it blows away all your un-
“1 committed changes. Unlike almost everything else you can do with
Git, there’s no way of going back after this one.

Prettification: Using a (SS Framework

Design is hard, and doubly so now that we have to deal with mobile, tablets, and so
forth. That’s why many programmers, particularly lazy ones like me, are turning to CSS
frameworks to solve some of those problems for them. There are lots of frameworks
out there, but one of the earliest and most popular is Twitter’s Bootstrap. Let’s use that.

You can find bootstrap at http://getbootstrap.com/.
We'll download it and put it in a new folder called static inside the lists app:'

$ wget -0 bootstrap.zip https://github.com/twbs/bootstrap/releases/download/\
v3.3.4/bootstrap-3.3.4-dist.zip

$ unzip bootstrap.zip

$ mkdir lists/static

$ mv bootstrap-3.3.4-dist lists/static/bootstrap

$ rm bootstrap.zip

Bootstrap comes with a plain, uncustomised installation in the dist folder. Were going
to use that for now, but you should really never do this for a real site—vanilla Bootstrap
is instantly recognisable, and a big signal to anyone in the know that you couldn’t be
bothered to style your site. Learn how to use LESS and change the font, if nothing else!
There is info in Bootstrap’s docs, or there’s a good guide here.

Our lists folder will end up looking like this:

1. On Windows, you may not have wget and unzip, but I'm sure you can figure out how to download Bootstrap,
unzip it, and put the contents of the dist folder into the lists/static/bootstrap folder.

118 | Chapter7: Prettification: Layout and Styling, and What to Test About It

http://getbootstrap.com/
http://coding.smashingmagazine.com/2013/03/12/customizing-bootstrap/

$ tree lists

lists

— __init__.py

}— _ pycache__

| —1...]

}— admin.py

}— models.py

— static

| — bootstrap

| — css

| | | bootstrap.css

| | | bootstrap.css.map

| | | bootstrap.min.css

| | b bootstrap-theme.css

| | | bootstrap-theme.css.map

| | — bootstrap-theme.min.css

| }— fonts

| | b glyphicons-halflings-regular.eot
| | | glyphicons-halflings-regular.svg
| | b glyphicons-halflings-regular.ttf
| | | glyphicons-halflings-regular.woff
| | — glyphicons-halflings-regular.woff2
| — js

| — bootstrap.js

| — bootstrap.min.js

| L— npm.js

}— templates

| | home.html

| L— list.html

— tests.py

F— urls.py

L— views.py

If we have alook at the “Getting Started” section of the Bootstrap documentation, you'll
see it wants our HTML template to include something like this:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Bootstrap 101 Template</title>
<!-- Bootstrap -->
<link href="css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
<hisHello, world!</h1>
<script src="http://code.jquery.com/jquery.js"></script>
<script src="js/bootstrap.min.js"s></script>
</body>
</html>

Prettification: Using a (SS Framework | 119

http://getbootstrap.com/getting-started/#template

We already have two HTML templates. We don't want to be adding a whole load of
boilerplate code to each, so now feels like the right time to apply the “Don’t repeat
yourself” rule, and bring all the common parts together. Thankfully, the Django tem-
plate language makes that easy using something called template inheritance.

Django Template Inheritance

Let’s have a little review of what the differences are between home.html and list.html:

$ diff lists/templates/home.html lists/templates/list.html

7,8c7,8

< <h1>Start a new To-Do list</hi1>

< <form method="POST" action="/lists/new">

> <h1>Your To-Do list</hi1>

> <form method="POST" action="/lists/{{ list.id }}/add_item">
11a12,18

>

> <table id="id_list_table">

> {% for item in list.item_set.all %}

> <tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
> {% endfor %}

> </table>

>

They have different header texts, and their forms use different URLs. On top of that,
list.html has the additional <table> element.

Now that we're clear on what’s in common and what’s not, we can make the two templates
inherit from a common “superclass” template. We'll start by making a copy of
home.html:

$ cp lists/templates/home.html lists/templates/base.html

We make this into a base template which just contains the common boilerplate, and
mark out the “blocks”, places where child templates can customise it:

lists/templates/base.html.
<html>

<head>
<title>To-Do lists</title>
</head>

<body>
<h1>{% block header_text %}{% endblock %}</h1>
<form method="POST" action="{% block form_action %}{% endblock %}">
<input name="item_text" id="1d_new_item" placeholder="Enter a to-do item" />
{% csrf_token %}
</form>
{% block table %}
{% endblock %}
</body>
</html>

120 | Chapter7: Prettification: Layout and Styling, and What to Test About It

The base template defines a series of areas called “blocks”, which will be places that other
templates can hook in and add their own content. Let’s see how that works in practice,
by changing home.html so that it “inherits from” base.html:

lists/templates/home.html.
{% extends 'base.html' %}

{% block header_text %}Start a new To-Do list{% endblock %}

{% block form_action %}/lists/new{% endblock %}
You can see that lots of the boilerplate HTML disappears, and we just concentrate on
the bits we want to customise. We do the same for list.html:

lists/templates/list.html.
{% extends 'base.html' %}

{% block header_text %}Your To-Do list{% endblock %}
{% block form_action %}/lists/{{ list.id }}/add_item{% endblock %}

{% block table %}
<table id="id_list_table"s
{% for item in list.item_set.all %}
<tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
{% endfor %}
</table>
{% endblock %}
That’s arefactor of the way our templates work. We rerun the FTs to make sure we haven’t

broken anything...
AssertionError: 111.0 != 512 within 5 delta

Sure enough, they’re still getting to exactly where they were before. That’s worthy of a
commit:

$ git diff -b

the -b means ignore whitespace, useful since we've changed some html indenting
$ git status

$ git add lists/templates # leave static, for now

$ git commit -m "refactor templates to use a base template"

Integrating Bootstrap

Now it’s much easier to integrate the boilerplate code that Bootstrap wants—we won't
add the JavaScript yet, just the CSS:
lists/templates/base.html (ch071006).

<!DOCTYPE html>
<html lang="en">

<head>

Integrating Bootstrap | 121

<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge"s>
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>To-Do lists</title>
<link href="css/bootstrap.min.css" rel="stylesheet">
</head>
[...]

Rows and Columns

Finally, lets actually use some of the Bootstrap magic! You'll have to read the docu-
mentation yourself, but should be able to use a combination of the grid system and the
text-center class to get what we want:

lists/templates/base.html (ch071007).
<body>
<div class="container"s

<div class="row">
<div class="col-md-6 col-md-offset-3">
<div class="text-center"s>
<h1>{% block header_text %}{% endblock %}</h1>
<form method="POST" action="{% block form_action %}{% endblock %}">
<input name="item_text" id="id_new_item"
placeholder="Enter a to-do item"
/>
{% csrf_token %}
</form>
</div>
</div>
</div>

<div class="row">
<div class="col-md-6 col-md-offset-3">
{% block table %}
{% endblock %}
</div>
</div>

</div>
</body>
(If you've never seen an HTML tag broken up over several lines, that <input> may be
alittle shocking. It is definitely valid, but you don’t have to use it if you find it offensive. ;)

Take the time to browse through the Bootstrap documentation, if
you've never seen it before. It's a shopping trolley brimming full of
useful tools to use in your site.

122 | Chapter7: Prettification: Layout and Styling, and What to Test About It

http://getbootstrap.com/

Does that work?

AssertionError: 111.0 != 512 within 5 delta
Hmm. No. Why isn’t our CSS loading?

Static Files in Django

Django, and indeed any web server, needs to know two things to deal with static files:

1. How to tell when a URL request is for a static file, as opposed to for some HTML
that’s going to be served via a view function

2. Where to find the static file the user wants

In other words, static files are a mapping from URLSs to files on disk.

For item 1, Django lets us define a URL “prefix” to say that any URLs which start with
that prefix should be treated as requests for static files. By default, the prefix is /stat
ic/.It’s defined in settings.py:

superlists/settings.py.
[...]

Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/1.8/howto/static-files/

STATIC_URL = '/static/'
The rest of the settings we will add to this section are all to do with item 2: finding the
actual static files on disk.

While we’re using the Django development server (manage.py runserver), we can rely
on Django to magically find static files for us—it’ll just look in any subfolder of one of
our apps called static.

You now see why we put all the Bootstrap static files into lists/static. So why are they not
working at the moment? It's because we're not using the /static/ URL prefix. Have
another look at the link to the CSS in base.html:
lists/templates/base.html.
<link href="css/bootstrap.min.css" rel="stylesheet"s>

To get this to work, we need to change it to:

lists/templates/base.html.
<link href="/static/bootstrap/css/bootstrap.min.css" rel="stylesheet">
When runserver sees the request, it knows that it’s for a static file because it begins
with /static/. It then tries to find a file called bootstrap/css/bootstrap.min.css,
looking in each of our app folders for subfolders called static, and it should find it at
lists/static/bootstrap/css/bootstrap.min.css.

StaticFilesinDjango | 123

So if you take a look manually, you should see it works, as in Figure 7-2.

@ - 0 To-Do lists - Mozilla Firefox
| {7} To-Do lists [
€ | @ localhost:8000/lists/s v & B~ Google a I d-

Your To-Do list

1: Download bootstrap
2: Explain static files
3: Take a screenshot
4: Finish chapter 7

O~ % S ®

Figure 7-2. Our site starts to look a little better...

Switching to StaticLiveServerTestCase
If you run the FT though, it won't pass:
AssertionError: 111.0 != 512 within 5 delta

That’s because, although runserver automagically finds static files, LiveServerTest
Case doesn't. Never fear though, the Django developers have made a more magical test
class called StaticLiveServerTestCase (see the docs).

Let’s switch to that:

functional_tests/tests.py.
@@ -1,8 +1,8 @@

-from django.test import LiveServerTestCase

+from django.contrib.staticfiles.testing import StaticLiveServerTestCase
from selenium import webdriver

from selenium.webdriver.common.keys import Keys

-class NewVisitorTest(LiveServerTestCase):
+class NewVisitorTest(StaticLiveServerTestCase):

And now it will now find the new CSS, which will get our test to pass:

124 | Chapter7: Prettification: Layout and Styling, and What to Test About It

http://bit.ly/Suv4Ip

$ python3 manage.py test functional_tests
Creating test database for alias 'default'...

Ran 2 tests in 9.764s

At this point, Windows users may see some (harmless, but distract-
ing) error messages that say socket.error: [WinError 10054] An
existing connection was forcibly closed by the remote host.
Add a self.browser.refresh() just before the self.brows
er.quit() in tearDown to get rid of them. The issue is being tracked
in this bug on the Django tracker.

Hooray!

Using Bootstrap Components to Improve the Look of the
Site

Let’s see if we can do even better, using some of the other tools in Bootstrap’s panoply.

Jumbotron!

Bootstrap has a class called jumbotron for things that are meant to be particularly
prominent on the page. Let’s use that to embiggen the main page header and the input
form:

lists/templates/base.html (ch071009).
<div class="col-md-6 col-md-offset-3 jumbotron">

<div class="text-center">
<h1>{% block header_text %}{% endblock %}</h1>
<form method="POST" action="{% block form_action %}{% endblock %}">

[...]

When hacking about with design and layout, it’s best to have a win-
dow open that we can hit refresh on, frequently. Use python3 man
age.py runserver to spin up the dev server, and then browse to
http://localhost:8000 to see your work as we go.

Large Inputs

The jumbotron is a good start, but now the input box has tiny text compared to every-
thing else. Thankfully, Bootstraps form control classes offer an option to set an input
to be “large”™

Using Bootstrap Components to Improve the Look of the Site | 125

https://code.djangoproject.com/ticket/21227

lists/templates/base.html (ch071010).
<input name="item_text" id="id_new_item"
class="form-control input-1g"
placeholder="Enter a to-do item'

/>
Table Styling

The table text also looks too small compared to the rest of the page now. Adding the
Bootstrap table class improves things:

lists/templates/list.html (ch071011).
<table 1d="id_list_table" class="table">

Using Qur Own (5SS

Finally I'd like to just offset the input from the title text slightly. There’s no ready-made
fix for that in Bootstrap, so we’ll make one ourselves. That will require specifying our
own CSS file:

lists/templates/base.html.
[...]
<title>To-Do lists</title>
<link href="/static/bootstrap/css/bootstrap.min.css" rel="stylesheet">
<link href="/static/base.css" rel="stylesheet">
</head>
We create a new file at lists/static/base.css, with our new CSS rule. We'll use the 1d of the
input element, id_new_item, to find it and give it some styling:
lists/static/base.css.
#id_new_item {
margin-top: 2ex;
}
All that took me a few goes, but I'm reasonably happy with it now (Figure 7-3).

If you want to go further with customising Bootstrap, you need to get into compiling
LESS. I definitely recommend taking the time to do that some day. LESS and other
pseudo-CSS-alikes like SCSS are a great improvement on plain old CSS, and a useful
tool even if you don’'t use Bootstrap. I won't cover it in this book, but you can find
resources on the Internets. Here’s one, for example.

A last run of the functional tests, to see if everything still works OK?

$ python3 manage.py test functional_tests
Creating test database for alias 'default'...

Ran 2 tests in 10.084s

OK
Destroying test database for alias 'default'...

126 | Chapter7: Prettification: Layout and Styling, and What to Test About It

http://coding.smashingmagazine.com/2013/03/12/customizing-bootstrap/

To-Do lists - Mozilla Firefox ®
File Edit View History Bookmarks Tools Help
|£ To-Do lists (=]
4 localhost ~ @] [B~ coogle a &L & 4~
Y ['0-Do list
Ente
1: Collect chapters of TDD book
2.
3: Profit!
O~ % S @

Figure 7-3. The lists page, with all big chunks...

That’s it! Definitely time for a commit:

$ git status # changes tests.py, base.html, list.html + untracked lists/static
$ git add .

$ git status # will now show all the bootstrap additions

$ git commit -m "Use Bootstrap to improve layout"

What We Glossed Over: collectstatic and Other Static
Directories

We saw earlier that the Django dev server will magically find all your static files inside
app folders, and serve them for you. That’s fine during development, but when you’re
running on a real web server, you don't want Django serving your static content—using
Python to serve raw files is slow and inefficient, and a web server like Apache or Nginx
can do this all for you. You might even decide to upload all your static files to a CDN,
instead of hosting them yourself.

For these reasons, you want to be able to gather up all your static files from inside their
various app folders, and copy them into a single location, ready for deployment. This
is what the collectstatic command is for.

The destination, the place where the collected static files go, is defined in settings.py as
STATIC_ROOT. In the next chapter we’ll be doing some deployment, so let’s actually ex-

What We Glossed Over: collectstatic and Other Static Directories | 127

periment with that now. We'll change its value to a folder just outside our repo—I'm
going to make it a folder just next to the main source folder:

workspace

— superlists

| — lists
| — models.py
|

}— manage.py
}— superlists

}— base.css

— etc...

The logic is that the static files folder shouldn’t be a part of your repository—we don’t
want to put it under source control, because it’s a duplicate of all the files that are inside
lists/static.

|
|
| |
| |
| |
| |
| |
| — static
| |
| |

Here’s a neat way of specifying that folder, making it relative to the location of project
base directory:

superlists/settings.py (ch071018).
Static files (CSS, JavaScript, Images)

https://docs.djangoproject.com/en/1.8/howto/static-files/
STATIC_URL = '/static/'
STATIC_ROOT = os.path.abspath(os.path.join(BASE_DIR, '../static'))

Take a look at the top of the settings file, and you’ll see how that BASE_DIR variable is
helpfully defined for us, using __file__ (which itself is a really, really useful Python
built-in).

Anyway, let’s try running collectstatic:

$ python3 manage.py collectstatic

You have requested to collect static files at the destination
location as specified in your settings:

/workspace/static

This will overwrite existing files!
Are you sure you want to do this?

Type 'yes' to continue, or 'nmo' to cancel:
yes

[...]

Copying '/workspace/superlists/lists/static/bootstrap/js/bootstrap.js'
Copying '/workspace/superlists/lists/static/bootstrap/js/bootstrap.min.js’'
Copying '/workspace/superlists/lists/static/bootstrap/js/npm.js'

128 | Chapter7: Prettification: Layout and Styling, and What to Test About It

77 static files copied to '/workspace/static'.

$ tree ../static/
../static/

}— admin

| | css

| | F— base.css

[...]

| L— urlify.js
}— base.css
L— bootstrap
— css
| | bootstrap.css
— bootstrap.min.css
— bootstrap-theme.css

L— bootstrap-theme.min.css

— glyphicons-halflings-regular.
— glyphicons-halflings-regular.
— glyphicons-halflings-regular.
— glyphicons-halflings-regular.
L— glyphicons-halflings-regular.

And if we look in ../static, we’ll find all our CSS files:

eot
svg
ttf
woff
woff2

|

|

|

}— fonts
|

|

|

|

|

L

s

}— bootstrap.js

— bootstrap.min.js
L— npm.js

.

10 directories, 77 files

INSTALLED_APPS = (
#'django.contrib.admin’,
'django.contrib.auth',

'django.contrib.contenttypes’,

'django.contrib.sessions’',
'django.contrib.messages’',

'django.contrib.staticfiles',

'lists’',

collectstatic has also picked up all the CSS for the admin site. It's one of Django’s
powerful features, and we’ll find out all about it one day, but we’re not ready to use that
yet, so let’s disable it for now:

superlists/settings.py.

What We Glossed Over: collectstatic and Other Static Directories | 129

And we try again:

$rm -rf ../static/

$ python3 manage.py collectstatic --noinput

Copying '/workspace/superlists/lists/static/base.css’

[...]

Copying '/workspace/superlists/lists/static/bootstrap/js/bootstrap.js’
Copying '/workspace/superlists/lists/static/bootstrap/js/bootstrap.min.js’'
Copying '/workspace/superlists/lists/static/bootstrap/js/npm.js'

15 static files copied to '/workspace/static'.
Much better.

Anyway, now we know how to collect all the static files into a single folder, where it’s
easy for a web server to find them. We'll find out all about that, including how to test
it, in the next chapter!

For now let’s save our changes to settings.py:

$ git diff # should show changes in settings.py*
$ git commit -am "set STATIC_ROOT in settings and disable admin"

A Few Things That Didn’t Make It

Inevitably this was only a whirlwind tour of styling and CSS, and there were several
topics that I'd hoped to cover in more depth that didn’t make it. Here’s a few candidates
for further study:

 Customising bootstrap with LESS

o The {% static %} template tag, for more DRY and less hard-coded URLs

o Client-side packaging tools, like bower

Recap: On Testing Design and Layout

The short answer is: you shouldn’t write tests for design and layout. It’s too much like
testing a constant, and any tests you write are likely to be brittle.

With that said, the implementation of design and layout involves something quite tricky:
CSS and static files. As a result, it is valuable to have some kind of minimal “smoke test”
which checks that your static files and CSS are working. As we’ll see in the next chapter,
it can help pick up problems when you deploy your code to production.

Similarly, if a particular piece of styling required a lot of client-side JavaScript code to
get it to work (dynamic resizing is one I've spent a bit of time on), you'll definitely want
some tests for that.

130 | Chapter7: Prettification: Layout and Styling, and What to Test About It

So be aware that this is a dangerous area. Try and write the minimal tests that will give
you confidence that your design and layout is working, without testing what it actually
is. Try and leave yourself in a position where you can freely make changes to the design
and layout, without having to go back and adjust tests all the time.

AFew Things That Didnt Make It | 131

CHAPTER 8
Testing Deployment Using a Staging Site

Is all fun and game until you are need of put it in production.
— Devops Borat

It’s time to deploy the first version of our site and make it public. They say that if you
wait until you feel ready to ship, then you've waited too long.

Is our site usable? Is it better than nothing? Can we make lists on it? Yes, yes, yes.

No, you can't log in yet. No, you can’t mark tasks as completed. But do we really need
any of that stuft? Not really—and you can never be sure what your users are actually
going to do with your site once they get their hands on it. We think our users want to
use the site for to-do lists, but maybe they actually want to use it to make “top 10 best
fly-fishing spots” lists, for which you don’'t need any kind of “mark completed” function.
We won't know until we put it out there.

In this chapter we’re going to go through and actually deploy our site to a real, live web
server.

You might be tempted to skip this chapter—there’s lots of daunting stuffin it, and maybe
you think this isn’t what you signed up for. But I strongly urge you to give it a go. This
is one of the chapters 'm most pleased with, and it’s one that people often write to me
saying they were really glad they stuck through it.

If you've never done a server deployment before, it will demystify a whole world for
you, and there’s nothing like the feeling of seeing your site live on the actual Internet.
Give it a buzzword name like “DevOps” if that's what it takes to convince you its
worth it.

133

https://twitter.com/DEVOPS_BORAT/status/192271992253190144

Why not ping me a note once your site is live on the web, and send
me the URL? It always gives me a warm and fuzzy feeling... obeythe
testinggoat@gmail.com.

TDD and the Danger Areas of Deployment

Deploying a site to a live web server can be a tricky topic. Oft-heard is the forlorn cry
—"but it works on my machine!*.

Some of the danger areas of deployment include:

Static files (CSS, JavaScript, images, etc.)
Web servers usually need special configuration for serving these.

The database
There can be permissions and path issues, and we need to be careful about pre-
serving data between deploys.

Dependencies
We need to make sure that the packages our software relies on are installed on the
server, and have the correct versions.

But there are solutions to all of these. In order:

« Using a staging site, on the same infrastructure as the production site, can help us
test out our deployments and get things right before we go to the “real” site.

o We can also run our functional tests against the staging site. That will reassure us
that we have the right code and packages on the server, and since we now have a
“smoke test” for our site layout, we’ll know that the CSS is loaded correctly.

o Virtualenvsare a useful tool for managing packages and dependencies on a machine
that might be running more than one Python application.

o And finally, automation, automation, automation. By using an automated script to
deploy new versions, and by using the same script to deploy to staging and pro-
duction, we can reassure ourselves that staging is as much like live as possible.!

Over the next few pages I'm going to go through a deployment procedure. It isn't meant
to be the perfect deployment procedure, so please don’t take it as being best practice, or
arecommendation—it’s meant to be an illustration, to show the kinds of issues involved
in deployment and where testing fits in.

1. What I'm calling a “staging” server, some people would call a “development” server, and some others would
also like to distinguish “preproduction” servers. Whatever we call it, the point is to have somewhere we can
try our code out in an environment that’s as similar as possible to the real production server.

134 | Chapter 8: Testing Deployment Using a Staging Site

mailto:obeythetestinggoat@gmail.com
mailto:obeythetestinggoat@gmail.com

Chapter Overview

There’s lots of stuff in this chapter, so here’s an overview to help you keep your bearings:

1. Adapt our FTs so they can run against a staging server.

2. Spin up a server, install all the required software on it, and point our staging and
live domains at it.

3. Upload our code to the server using Git.

4. Try and get a quick & dirty version of our site running on the staging domain using
the Django dev server.

5. Learn how to use a virtualenv to manage our project’s Python dependencies on the
server.

6. As we go, we'll keep running our FT, to tell us what's working and what’s not.

7. Move from our quick & dirty version to a production-ready configuration, using
Gunicorn, Upstart, and domain sockets.

8. Once we have a working config, we’ll write a script to automate the process we've
just been through manually, so that we can deploy our site automatically in future.

9. Finally we’ll use this script to deploy the production version of our site on its real
domain.

As Always, Start with a Test

Let’s adapt our functional tests slightly so that it can be run against a staging site. We’ll
do it by slightly hacking an argument that is normally used to change the address which
the test’s temporary server gets run on:

functional_tests/tests.py (ch081001).
import sys

[...]

class NewVisitorTest(StaticLiveServerTestCase):

def setUpClass(cls): #@
for arg in sys.argv: #@
if 'liveserver' in arg: #@
cls.server_url = 'http://' + arg.split('=')[1] #O
return #@
super().setUpClass() #0@
cls.server_url = cls.live_server_url

def tearDownClass(cls):

As Always, Start withaTest | 135

if cls.server_url == cls.live_server_url:
super().tearDownClass()

def setUp(self):
[...]

OK, when I said slightly hacking, I meant seriously hacking. Do you remember I said
that LiveServerTestCase had certain limitations? Well, one is that it always assumes
you want to use its own test server. I still want to be able to do that sometimes, but I also
want to be able to selectively tell it not to bother, and to use a real server instead.

© setUpClass is a similar method to setUp, also provided by unittest, which is
used to do test setup for the whole class—that means it only gets executed once,
rather than before every test method. This is where LiveServerTestCase/Stat
icLiveServerTestCase usually starts up its test server.

@ O We look for the liveserver command-line argument (which is found in
sys.argv).

O O If we find it, we tell our test class to skip the normal setUpClass, and just store
away our staging server URL in a variable called server_url instead.

O And if the for loop completes without finding a 1iveserver argument on the
command-line, we do the normal superclass setup, and use the normal
live_server_url. Be careful with the indentation here!

This means we also need to change the three places we used to use self.live_serv

er_url:

functional_tests/tests.py (ch081002).

def test_can_start_a_list_and_retrieve_it_later(self):

Edith has heard about a cool new online to-do app. She goes

to check out its homepage

self.browser.get(self.server_url)

[...]

Francis visits the home page. There is no sign of Edith's

list

self.browser.get(self.server_url)

[...]

def test_layout_and_styling(self):
Edith goes to the home page
self.browser.get(self.server_url)

We test that our little hack hasn’t broken anything by running the functional tests
“normally”™:

$ python3 manage.py test functional_tests

[...

]

Ran 2 tests in 8.544s

136

| Chapter 8: Testing Deployment Using a Staging Site

0K

And now we can try them against our staging server URL. I'm hosting my staging server
at superlists-staging.ottg.eu:
$ python3 manage.py test functional_tests --liveserver=superlists-staging.ottg.eu

Creating test database for alias 'default'...
FE

FAIL: test_can_start_a_list_and_retrieve_it_later
(functional_tests.tests.NewVisitorTest)
Traceback (most recent call last):

File "/workspace/superlists/functional_tests/tests.py", line 42, in
test_can_start_a_list_and_retrieve_it_later

self.assertIn('To-Do', self.browser.title)

AssertionError: 'To-Do' not found in 'Domain name registration | Domain names
| Web Hosting | 123-reg'

FAIL: test_layout_and_styling (functional_tests.tests.NewVisitorTest)

Traceback (most recent call last):
File
" /workspace/superlists/functional_tests/tests.py", line 114, in
test_layout_and_styling
inputbox = self.browser.find_element_by_1id('id_new_item')

[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"id_new_1item"}

[...]

Ran 2 tests in 16.480s

FAILED (failures=2)
Destroying test database for alias 'default'...

You can see that both tests are failing, as expected, since I haven’t actually set up my
staging site yet. In fact, you can see from the first traceback that the test is actually ending
up on the home page of my domain registrar.

The FT seems to be testing the right things though, so let’s commit:

$ git diff # should show changes to functional_tests.py
$ git commit -am "Hack FT runner to be able to test staging"

Getting a Domain Name

We're going to need a couple of domain names at this point in the book—they can both
be subdomains of a single domain. I'm going to use superlists.ottg.eu and superlists-
staging.ottg.eu. If you don’t already own a domain, this is the time to register one! Again,

Getting a Domain Name | 137

this is something I really want you to actually do. If you've never registered a domain
before, just pick any old registrar and buy a cheap one—it should only cost you $5 or

so, and you can even find free ones. I promise seeing your site on a “real” web site will
be a thrill.

Manually Provisioning a Server to Host Our Site

We can separate out “deployment” into two tasks:

o Provisioning a new server to be able to host the code

o Deploying a new version of the code to an existing server

Some people like to use a brand new server for every deployment—it’s what we do at
PythonAnywhere. That’s only necessary for larger, more complex sites though, or major
changes to an existing site. For a simple site like ours, it makes sense to separate the two
tasks. And, although we eventually want both to be completely automated, we can
probably live with a manual provisioning system for now.

As you go through this chapter, you should be aware that provisioning is something
that varies alot, and that as a result there are few universal best practices for deployment.
So, rather than trying to remember the specifics of what I'm doing here, you should be
trying to understand the rationale, so that you can apply the same kind of thinking in
the specific future circumstances you encounter.

Choosing Where to Host Our Site

There are loads of different solutions out there these days, but they broadly fall into two
camps:

 Running your own (possibly virtual) server

o Using a Platform-As-A-Service (PaaS) offering like Heroku, DotCloud, OpenShift,
or PythonAnywhere

Particularly for small sites, a Paa$ offers a lot of advantages, and I would definitely
recommend looking into them. Were not going to use a Paa$ in this book however, for
several reasons. Firstly, I have a conflict of interest, in that I think PythonAnywhere is
the best, but then again I would say that because I work there. Secondly, all the PaaS
offerings are quite different, and the procedures to deploy to each vary a lot—learning
about one doesn’t necessarily tell you about the others. Any one of them might change
their process radically, or simply go out of business by the time you get to read this book.

Instead, we’ll learn just a tiny bit of good old-fashioned server admin, including SSH
and web server config. They’re unlikely to ever go away, and knowing a bit about them
will get you some respect from all the grizzled dinosaurs out there.

138 | Chapter 8: Testing Deployment Using a Staging Site

What I have done is to try and set up a server in such a way that it’s a lot like the
environment you get from a Paa$, so you should be able to apply the lessons we learn
in the deployment section, no matter what provisioning solution you choose.

Spinning Up a Server

I'm not going to dictate how you do this—whether you choose Amazon AWS, Rack-
space, Digital Ocean, your own server in your own data centre or a Raspberry Pi in a
cupboard behind the stairs, any solution should be fine, as long as:

« Your server is running Ubuntu 14.04 (aka “Trusty/LTS”)
« You have root access to it.

o It’s on the public Internet.

» You can SSH into it.

I'm recommending Ubuntu as a distro because it has Python 3.4 and it has some specific
ways of configuring Nginx, which 'm going to make use of next. If you know what
you're doing, you can probably get away with using something else, but you’re on your
own.

Some people get to this chapter, and are tempted to skip the do-
main bit, and the “getting a real server” bit, and just use a VM on their
own PC. Don't do this. It’s not the same, and you’ll have more diffi-
culty following the instructions, which are complicated enough as it
is. If youre worried about cost, dig around and you’ll find free op-
tions for both. Email me if you need further pointers, 'm always
happy to help.

User Accounts, SSH, and Privileges

In these instructions, 'm assuming that you have a nonroot user account set up that
has “sudo” privileges, so whenever we need to do something that requires root access,
we use sudo, and I'm explicit about that in the various instructions below. If you need
to create a nonroot user, here’s how:

these commands must be run as root

root@server:$ useradd -m -s /bin/bash elspeth # add user named elspeth

-m creates a home folder, -s sets elspeth to use bash by default
root@server:$ usermod -a -G sudo elspeth # add elspeth to the sudoers group
root@server:$ passwd elspeth # set password for elspeth

root@server:$ su - elspeth # switch-user to being elspeth!

elspeth@server:$

Name your own user whatever you like! I also recommend learning up how to use
private key authentication rather than passwords for SSH. It’s a matter of taking the

Manually Provisioning a Server to Host Qur Site | 139

public key from your own PC, and appending it to ~/.ssh/authorized_keys in the user
account on the server. You probably went through a similar procedure if you signed up
for Bitbucket or Github.

There are some good instructions here (note that ssh-keygen is available as part of Git-
Bash on Windows).

Look out for that elspeth@server in the command-line listings in
this chapter. It indicates commands that must be run on the server,
as opposed to commands you run on your own PC.

Installing Nginx

We'll need a web server, and all the cool kids are using Nginx these days, so we will too.
Having fought with Apache for many years, I can tell you it’s a blessed relief in terms of
the readability of its config files, if nothing else!

Installing Nginx on my server was a matter of doing an apt-get, and I could then see
the default Nginx “Hello World” screen:

elspeth@server:$ sudo apt-get install nginx
elspeth@server:$ sudo service nginx start

(You may need to do an apt-get update and/or an apt-get upgrade first.)

You should be able to go to the IP address of your server, and see the “Welcome to nginx”
page at this point, as in Figure 8-1.

If you don’t see it, it may be because your firewall does not open port 80 to the world.
On AWS for example, you may need to configure the “security group” for your server
to open port 80.

While we've got root access, let’s make sure the server has the key pieces of software we
need at the system level: Python, Git, pip, and virtualenv.

elspeth@server:$ sudo apt-get install git python3 python3-pip
elspeth@server:$ sudo pip3 install virtualenv

140 | Chapter 8: Testing Deployment Using a Staging Site

https://library.linode.com/security/ssh-keys

® - 0 Welcome to nginx! - Mozilla Firefox
| 3 welcome to nginx! [=]

~ @] [B~ Google a & € d-

perlists-staging.ottg.eu

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and working.
Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

O % 9e

Figure 8-1. Nginx—it works!

Configuring Domains for Staging and Live

We don’t want to be messing about with IP addresses all the time, so we should point
our staging and live domains to the server. At my registrar, the control screens looked
a bit like Figure 8-2.

DNS ENTRY TYPE PRIORITY TTL DESTINATIONITARGET
* A 81.21.76.62 Yau:i
A 81.21.76.62 Yau: i
MX 10 mx0.123-reg.co.uk. VanRk:|
@ MX 20 mx1.123-reg.co.uk. VaRk: |
dev CNAME harry.pythonanywhere... VA |
WWW CNAME harry.pythonanywhere... VA |
book-example A 82.196.1.70 A
book-example-staging A 82.196.1.70 A i
A [v | Add

Figure 8-2. Domain setup

Manually Provisioning a Server to Host Our Site

| 14

In the DNS system, pointing a domain at a specific IP address is called an “A-Record”.
All registrars are slightly different, but a bit of clicking around should get you to the
right screen in yours.

Using the FT to Confirm the Domain Works and Nginx Is Running

To confirm this works, we can rerun our functional tests and see that their failure mes-
sages have changed slightly—one of them in particular should now mention Nginx:

$ python3 manage.py test functional_tests --liveserver=superlists-staging.ottg.eu
[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"id_new_1item"}

[...]

AssertionError: 'To-Do' not found in 'Welcome to nginx!'

Progress!

Deploying Our Code Manually

The next step is to get a copy of the staging site up and running, just to check whether
we can get Nginx and Django to talk to each other. As we do so, were starting to move
into doing “deployment” rather than provisioning, so we should be thinking about how
we can automate the process, as we go.

One rule of thumb for distinguishing provisioning from deploy-
ment is that you tend to need root permissions for the former, but we
don't for the latter.

We need a directory for the source to live in. Let’s assume we have a home folder for a
nonroot user; in my case it would be at /home/elspeth (this is likely to be the setup on
any shared hosting system, but you should always run your web apps as a nonroot user,
in any case). I'm going to set up my sites like this:

/home/elspeth

— sites

| b www.live.my-website.com
| |— database

| | L— db.sqlite3
| — source

[I F— manage.py
| | }— superlists
I I { — etc...

| — static

| | }— base.css

142 | Chapter 8: Testing Deployment Using a Staging Site

— etc...

I

I

L— virtualenv
— 1ib
— etc...

I

I

I

I

I

I

— www.staging.my-website.com
| — database

| — etc...

Each site (staging, live, or any other website) has its own folder. Within that we have a
separate folder for the source code, the database, and the static files. The logic is that,
while the source code might change from one version of the site to the next, the database
will stay the same. The static folder is in the same relative location, ../static, that we set
up at the end of the last chapter. Finally, the virtualenv gets its own subfolder too. What’s
a virtualenv, I hear you ask? We'll find out shortly.

Adjusting the Database Location

First let’s change the location of our database in settings.py, and make sure we can get
that working on our local PC:

superlists/settings.py (ch081003).
Build paths inside the project like this: os.path.join(BASE_DIR, ...)

import os
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
[...]

DATABASES = {
'default': {
"ENGINE': 'django.db.backends.sqlite3',
'"NAME': os.path.join(BASE_DIR, '../database/db.sqlite3'),

Check out the way BASE_DIR is defined, further up in settings.py.
Notice the abspath gets done first (i.e., innermost). Always follow this
pattern when path-wrangling, otherwise you can see strange things
happening depending on how the file is imported. Thanks to Green
Nathan for that tip!

Now let’s try it locally:

$ mkdir ../database

$ python3 manage.py migrate --noinput
Creating tables ...

[...]

$ 1s ../database/

db.sqlite3

Deploying Our Code Manually | 143

https://github.com/CleanCut/green
https://github.com/CleanCut/green

That seems to work. Let’s commit it:

$ git diff # should show changes in settings.py
$ git commit -am "move sqlite database outside of main source tree"

To get our code onto the server, we’ll use Git and go via one of the code sharing sites. If
you haven’t already, push your code up to GitHub, BitBucket, or similar. They all have
excellent instructions for beginners on how to do that.

Here’s some bash commands that will set this all up. If you're not familiar with it, note
the export command which lets me set up a “local variable” in bash:

elspeth@server:$ export SITENAME=superlists-staging.ottg.eu

elspeth@server:$ mkdir -p ~/sites/$SITENAME/database

elspeth@server:$ mkdir -p ~/sites/$SITENAME/static

elspeth@server:$ mkdir -p ~/sites/$SITENAME/virtualenv

you should replace the URL in the next line with the URL for your own repo
elspeth@server:$ git clone https://github.com/hjwp/book-example.git \
~/[sites/SSITENAME/source

Resolving deltas: 100% [...]

A bash variable defined using export only lasts as long as that con-
sole session. If you log out of the server and log back in again, you'll
need to redefine it. It's devious because Bash won’t error, it will just
substitute the empty string for the variable, which will lead to weird
results...if in doubt, do a quick echo $SITENAME.

Now we’ve got the site installed, let’s just try running the dev server—this is a smoke
test, to see if all the moving parts are connected:

elspeth@server:$ $ cd ~/sites/$SITENAME/source
$ python3 manage.py runserver
Traceback (most recent call last):
File "manage.py", line 8, in <module>
from django.core.management import execute_from_command_line
ImportError: No module named django.core.management

Ah. Django isn’t installed on the server.

Creating a Virtualenv

We could install it at this point, but that would leave us with a problem: if we ever wanted
to upgrade Django when a new version comes out, it would be impossible to test the
staging site with a different version from live. Similarly, if there are other users on the
server, we'd all be forced to use the same version of Django.

The solution is a “virtualenv”’—a neat way of having different versions of Python pack-
ages installed in different places, in their own “virtual environments”.

Let’s try it out locally, on our own PC first:

144 | Chapter 8: Testing Deployment Using a Staging Site

$ pip3 install virtualenv # will need a sudo on linux/macos.
We'll follow the same folder structure as we’re planning for the server:

$ virtualenv --python=python3 ../virtualenv
$ ls ../virtualenv/
bin 1include 1ib

That will create a folder at ../virtualenv which will contain its own copy of Python and
pip, as well as a location to install Python packages to. It’s a self-contained “virtual”
Python environment. To start using it, we run a script called act ivate, which will change
the system path and the Python path in such a way as to use the virtualenv’s executables
and packages:

$ which python3

/usr/bin/python3

$ source ../virtualenv/bin/activate

$ which python # note switch to virtualenv Python
/workspace/virtualenv/bin/python

(virtualenv)$ python3 manage.py test lists

[...]

ImportError: No module named 'django'

It’s not required, but you might want to look into a tool called vir
tualenvwrapper for managing virtualenvs on your own PC.

Virtualenvs on Windows

On Windows, things are slightly different. There are two main things to watch out for:

o The virtualenv/bin folder is called virtualenv/Scripts, so you should substitute that
in as appropriate.

» When using Git-Bash, do not try and run activate.bat—it is written for the DOS
shell. Use source ..\virtualenv\Scripts\activate. The source is important.

We're seeing that ImportError: No module named django because Django isn't in-
stalled inside the virtualenv. So, we can install it, and see that it ends up inside the
virtualenv’s site-packages folder:

(virtualenv)$ pip install django==1.8
[...]

Successfully installed django

Cleaning up...

(virtualenv)$ python3 manage.py test lists
[...]

Deploying Our Code Manually | 145

0K
$ 1s ../virtualenv/lib/python3.4/site-packages/

django pip setuptools
Django-1.8.dist-info pip-1.5.6.dist-info setuptools-3.6.dist-info
easy_install.py pkg_resources.py

_markerlib __pycache__

To “save” the list of packages we need in our virtualenv, and be able to re-create it later,
we create a requirements.txt file, using pip freeze, and add that to our repository:

(virtualenv)$ pip freeze > requirements.txt
(virtualenv)$ deactivate

$ cat requirements.txt

Django==1.8

$ git add requirements.txt

$ git commit -m "Add requirements.txt for virtualenv"

And now we do a git push to send our updates up to our code-sharing site:
$ git push

And we can pull those changes down to the server, create a virtualenv on the server, and
use requirements.txt along with pip install -r to make the server virtualenv just like
our local one:

elspeth@server:$ git pull # may ask you to do some git config first
elspeth@server:$ virtualenv --python=python3 ../virtualenv/
elspeth@server:$../virtualenv/bin/pip install -r requirements.txt
Downloading/unpacking Django==1.8 (from -r requirements.txt (line 1))
[...]

Successfully installed Django

Cleaning up...

elspeth@server:$../virtualenv/bin/python3 manage.py runserver
Validating models...

0 errors found

[...]
That looks like it’s running happily. We can Ctrl-C it for now.

Notice you don’t have to use the activate to use the virtualenv. Directly specifying the
path to the virtualenv copies of python or pip works too. We’ll use the direct paths on
the server.

Most people like to create a virtualenv for a project as soon as they
start it. T only waited until now because I wanted to keep the first few
chapters as simple as possible.

146 | Chapter 8: Testing Deployment Using a Staging Site

Simple Nginx Configuration

Next we create an Nginx config file to tell it to send requests for our staging site along
to Django. A minimal config looks like this:

server: /etc/nginx/sites-available/superlists-staging.ottg.eu.
server {

listen 80;
server_name superlists-staging.ottg.eu;

location / {
proxy_pass http://localhost:8000;
}
}

This config says it will only work for our staging domain, and will “proxy” all requests
to the local port 8000 where it expects to find Django waiting to respond to requests.

I saved? this to a file called superlists-staging.ottg.eu inside /etc/nginx/sites-available
folder, and then added it to the enabled sites for the server by creating a symlink to it:

elspeth@server:$ echo $SITENAME # check this still has our site in
superlists-staging.ottg.eu

elspeth@server:$ sudo ln -s ../sites-available/$SITENAME \
/etc/nginx/sites-enabled/$SITENAME

elspeth@server:$ 1s -1 /etc/nginx/sites-enabled # check our symlink is there

That’s the Debian/Ubuntu preferred way of saving Nginx configurations—the real con-
fig file in sites-available, and a symlink in sites-enabled; the idea is that it makes it easier
to switch sites on or off.

We also may as well remove the default “Welcome to nginx” config, to avoid any
confusion:

elspeth@server:$ sudo rm /etc/nginx/sites-enabled/default

And now to test it:

elspeth@server:$ sudo service nginx reload
elspeth@server:$../virtualenv/bin/python3 manage.py runserver

I also had to edit /etc/nginx/nginx.conf and uncomment a line
saying server_names_hash_bucket_size 64; to get my long do-
main name to work. You may not have this problem; Nginx will
warn you when you do a reload if it has any trouble with its config

files.

2. Not sure how to edit a file on the server? There’s always vi, which I'll keep encouraging you to learn a bit of.
Alternatively, try the relatively beginner-friendly nano. Note you'll also need to use sudo because the file is
in a system folder.

Deploying Our Code Manually | 147

A quick visual inspection confirms—the site is up (Figure 8-3)!

To-Do lists - Mozilla Firefox (Private Browsing) ®
File Edit View History Bookmarks Tools Help
==} | i To-Do lists |]lﬂ!|
@ [superlists-staging.ottg.eu - D] B~ Google q J\-/L @ Tﬁ-'
[0-Do list
Enter a to-do item
Q- % 38

Figure 8-3. The staging site is up!

If you ever find Nginx isn’t behaving as expected, try the command
sudo nginx -t, which does a config test, and will warn you of any
problems in your configuration files.

Let’s see what our functional tests say:

$ python3 manage.py test functional_tests --liveserver=superlists-staging.ottg.eu
[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
[...]

AssertionError: 0.0 != 512 within 3 delta

The tests are failing as soon as they try and submit a new item, because we haven't set
up the database. You’'ll probably have spotted the yellow Django debug page (Figure 8-4)
telling us as much as the tests went through, or if you tried it manually.

148 | Chapter 8: Testing Deployment Using a Staging Site

The tests saved us from potential embarrassment there. The site
looked fine when we loaded its front page. If we'd been a little hasty,
we might have thought we were done, and it would have been the first
users that discovered that nasty Django DEBUG page. Okay, slight
exaggeration for effect, maybe we would have checked, but what hap-

pens as the site gets bigger and more complex? You can't check

everything. The tests can.

f @ - 0 DatabaseError at /lists/new - Mozilla Firefox

atabaseError at /lists/new |[=0 \

< & superlists-staging.ottg.eu/lists/new

DatabaseError at /lists/new

no such table: lists_list

Request Method: POST
Request URL: http://localhost:8000/lists/new
Django Version: 1.5.1
Exception Type: DatabaseError
Exceptiﬂn Value: no such table: lists list

Python Version: 3.3.1

*Jusr/lib/python3.3",

Traceback switch to copy-and-paste view

» Local vars
D~ %

: ['/home/harry/sites/superlists-staging.ottg.eu/source’,
Eythonlbath: */home/harry/sites/superlists-staging.ottg.eu/virtualenv/lib/python3.3',
* /home/harry/sites/superlists-staging.ottg.eu/virtualenv/Lib/python3.3/plat-x86_64-linux-gnu®,
* /home/harry/sites/superlists-staging.ottg.eu/virtualenv/1ib/python3.3/Lib-dynload",

*Jusr/Lib/python3.3/plat-xB6_64-1inux-gnu’,
* /home/harry/sites/superlists-staging. ottg. eu/virtualenv/1ib/python3. 3/site-packages' |

Server time: Mon, 5 Aug 2013 10:49:12 -0500

115, response = callback(request, *callback args, *

-@ v:ix-\:'ge Q J\-/L @ jﬁ,v

Exception Location: /home/harry/sites/superlists-staging.ottg.eu/virtualenv/lib/python3.3/site-packages/django
/db/backends/sqlite 3/base.py in execute, line 362
Python Executable: /home/harry/sites/superlists-staging.ottg.eu/virtualenv/bin/python3

/home/harry/sites/superlists-staging.ottg.eu/virtualenv/1ib/python3. 3/site-packages/django/core/handlers/base.py iN get response

S®

Figure 8-4. But the database isn’t

Creating the Database with migrate

We run migrate using the - -noinput argument to suppress the two little “are you sure”

prompts:

elspeth@server:$../virtualenv/bin/python3 manage.py migrate --noinput

Creating tables ...

[...]

elspeth@server:$ 1s ../database/
db.sqlite3

elspeth@server:$../virtualenv/bin/python3 manage.py runserver

Let’s try the FTs again:

Deploying Our Code Manually

149

$ python3 manage.py test functional_tests --liveserver=superlists-staging.ottg.eu
Creating test database for alias 'default'...

Ran 2 tests in 10.718s

OK
Destroying test database for alias 'default'...

It’s great to see the site up and running! We might reward ourselves with a well-earned
tea break at this point, before moving on to the next section...

If you see a “502 - Bad Gateway’, it’s probably because you forgot to
restart the dev server with manage.py runserver after the migrate.

Getting to a Production-Ready Deployment

We're at least reassured that the basic piping works, but we really can’t be using the
Django dev server in production. We also can’t be relying on manually starting it up
with runserver.

Switching to Gunicorn

Do you know why the Django mascot is a pony? The story is that Django comes with
so many things you want: an ORM, all sorts of middleware, the admin site... “What else
do you want, a pony?” Well, Gunicorn stands for “Green Unicorn’”, which I guess is what
youd want next if you already had a pony...

elspeth@server:$../virtualenv/bin/pip install gunicorn

Gunicorn will need to know a path to a WSGI server, which is usually a function called
application. Django provides one in superlists/wsgi.py:

elspeth@server:$../virtualenv/bin/gunicorn superlists.wsgi:application
2013-05-27 16:22:01 [10592] [INFO] Starting gunicorn 0.18.0

2013-05-27 16:22:01 [10592] [INFO] Listening at: http://127.0.0.1:8000 (10592)
[...]

If you now take a look at the site, you’ll find the CSS is all broken, as in Figure 8-5.
And if we run the functional tests, you'll see they confirm that something is wrong. The

test for adding list items passes happily, but the test for layout + styling fails. Good job
tests!

$ python3 manage.py test functional_tests --liveserver=superlists-staging.ottg.eu

[...]

150 | Chapter 8: Testing Deployment Using a Staging Site

AssertionError: 125.0 != 512 within 3 delta
FAILED (failures=1)

The reason that the CSS is broken is that although the Django dev server will serve static
tiles magically for you, Gunicorn doesn’t. Now is the time to tell Nginx to do it instead.

-
@ - 0 To-Do lists - Mozilla Firefox

|Myour ne... | = Digitalo... | W Name-b... | € QuickCo... | (iTo-D... ® |CYhjwp/bo... |[ElHowto... [FaNUSe... |oF |
< 2 obeythetestinggoat.com + @| |B~ he configfiles w@| JL @ o v

4

Start a To-Do list

& scripts Partially Allowed, 1/2 (obeythetestinggoat.com) | <SCRIPT>: 2 | <OBJECT>: 0
O~ % s ®

Figure 8-5. Broken CSS

Getting Nginx to Serve Static Files

First we run collectstatic to copy all the static files to a folder where Nginx can find
them:

elspeth@server:$../virtualenv/bin/python3 manage.py collectstatic --noinput
elspeth@server:$ 1ls ../static/
base.css bootstrap

Note that, again, instead of using the virtualenv activate command, we can use the
direct path to the virtualenv’s copy of Python instead.

Now we tell Nginx to start serving those static files for us:

server: /etc/nginx/sites-available/superlists-staging.ottg.eu.
server {

listen 80;
server_name superlists-staging.ottg.eu;

Getting to a Production-Ready Deployment | 151

location /static {
alias /home/elspeth/sites/superlists-staging.ottg.eu/static;

}

location / {
proxy_pass http://localhost:8000;
}
}

Reload Nginx and restart Gunicorn...

elspeth@server:$ sudo service nginx reload

elspeth@server:$../virtualenv/bin/gunicorn superlists.wsgi:application
And if we take another look at the site, things are looking much healthier. We can rerun
our FTs:

$ python3 manage.py test functional_tests --liveserver=superlists-staging.ottg.eu
Creating test database for alias 'default'...

Ran 2 tests in 10.718s

OK
Destroying test database for alias 'default'...

Switching to Using Unix Sockets

When we want to serve both staging and live, we can’t have both servers trying to use
port 8000. We could decide to allocate different ports, but thats a bit arbitrary, and it
would be dangerously easy to get it wrong and start the staging server on the live port,
or vice versa.

A better solution is to use Unix domain sockets—they’re like files on disk, but can be
used by Nginx and Gunicorn to talk to each other. We'll put our sockets in /tmp. Let’s
change the proxy settings in Nginx:
server: /etc/nginx/sites-available/superlists-staging.ottg.eu.
[...]
location / {

proxy_set_header Host $host;
proxy_pass http://unix:/tmp/superlists-staging.ottg.eu.socket;

}
proxy_set_header is used to make sure Gunicorn and Django know what domain it’s
running on. We need that for the ALLOWED_HOSTS security feature, which we’re about to
switch on.

Now we restart Gunicorn, but this time telling it to listen on a socket instead of on the
default port:

152 | Chapter 8: Testing Deployment Using a Staging Site

elspeth@server:$ sudo service nginx reload
elspeth@server:$../virtualenv/bin/gunicorn --bind \
unix:/tmp/superlists-staging.ottg.eu.socket superlists.wsgi:application

And again, we rerun the functional test again, to make sure things still pass:

$ python3 manage.py test functional_tests --liveserver=superlists-staging.ottg.eu
0K

A couple more steps!

Switching DEBUG to False and Setting ALLOWED_HOSTS

Django’s DEBUG mode is all very well for hacking about on your own server, but leaving
those pages full of tracebacks available isn’t secure.

You’'ll find the DEBUG setting at the top of settings.py. When we set this to False, we also
need to set another setting called ALLOWED_HOSTS. This was added as a security feature
in Django 1.5. Unfortunately it doesn’t have a helpful comment in the default set-
tings.py, but we can add one ourselves. Do this on the server:

server: superlists/settings.py.
SECURITY WARNING: don't run with debug turned on in production!

DEBUG = False
TEMPLATE_DEBUG = DEBUG

Needed when DEBUG=False
ALLOWED_HOSTS = ['superlists-staging.ottg.eu']
[...]

And, once again, we restart Gunicorn and run the FT to check things still work.

Don’'t commit these changes on the server. At the moment this is just
a hack to get things working, not a change we want to keep in our
repo. In general, to keep things simple, I'm only going to do Git
commits from the local PC, using git push and git pull when I
need to sync them up to the server.

Using Upstart to Make Sure Gunicorn Starts on Boot

Our final step is to make sure that the server starts up Gunicorn automatically on boot,
and reloads it automatically if it crashes. On Ubuntu, the way to do this is using Upstart:

server: /etc/init/gunicorn-superlists-staging.ottg.eu.conf.
description "Gunicorn server for superlists-staging.ottg.eu"

start on net-device-up @
stop on shutdown

respawn @

Getting to a Production-Ready Deployment | 153

http://bit.ly/SuvluV
https://docs.djangoproject.com/en/1.8/ref/settings/#std:setting-ALLOWED_HOSTS

setuid elspeth @
chdir /home/elspeth/sites/superlists-staging.ottg.eu/source @

exec ../virtualenv/bin/gunicorn \ @
--bind unix:/tmp/superlists-staging.ottg.eu.socket \
superlists.wsgi:application

Upstart s joyously simple to configure (especially if you've ever had the dubious pleasure
of writing an init.d script), and is fairly self-explanatory.

© start on net-device-up makes sure Gunicorn only runs once the server has
connected up to the Internet.

respawn will restart the process automatically if it crashes.
setuid makes the process run as the “elspeth” user.

chdir sets the working directory.

® 0600

exec is the actual process to execute.

Upstart scripts live in /etc/init, and their names must end in .conf.
Now we can start Gunicorn with the start command:

elspeth@server:$ sudo start gunicorn-superlists-staging.ottg.eu

And we can rerun the FTs to see that everything still works. You can even test that the
site comes back up if you reboot the server!

Debugging Tips

Deployments are tricky! If ever things don’t go exactly as expected, here are a few tips
and things to look out for:

o I’'m sure you already have, but double-check that each file is exactly where it should
be and has the right contents—a single stray character can make all the difference.

o Nginx error logs go into /var/log/error.log.
« You can ask Nginx to “check” its config using the -t flag:
nginx -t
o Check the /var/log/upstart/ folder for logs from Upstart and Gunicorn.
o Remember to restart both services whenever you make changes.

o Make sure your browser isn’t caching an out-of-date response. Use Ctrl+Refresh,
or start a new private browser window.

154 | Chapter 8: Testing Deployment Using a Staging Site

o This may be clutching at straws, but I've sometimes seen inexplicable behaviour on
the server that’s only been resolved when I fully restarted it with a sudo reboot.

If you ever get completely stuck, there’s always the option of blowing away your server
and starting again from scratch! It should go faster the second time...

Saving Our Changes: Adding Gunicorn to Our requirements.txt

Back in the local copy of your repo, we should add Gunicorn to the list of packages we
need in our virtualenvs:

$ source ../virtualenv/bin/activate # if necessary
(virtualenv)$ pip install gunicorn

(virtualenv)$ pip freeze > requirements.txt

(virtualenv)$ deactivate

$ git commit -am "Add gunicorn to virtualenv requirements"
$ git push

On Windows, at the time of writing, Gunicorn would pip install quite
happily, but it wouldn’t actually work if you tried to use it. Thankful-
ly we only ever run it on the server, so that’s not a problem. And,
Windows support is being discussed. ..

Automating

Let’s recap our provisioning and deployment procedures:

Provisioning
1. Assume we have a user account and home folder

2. apt-get install nginx git python-pip
3. pip install virtualenv
4. Add Nginx config for virtual host
5. Add Upstart job for Gunicorn
Deployment
1. Create directory structure in ~/sites
2. Pull down source code into folder named source
3. Start virtualenv in ../virtualenv
4. pip install -r requirements.txt
5

. manage.py migrate for database

Automating | 155

http://stackoverflow.com/questions/11087682/does-gunicorn-run-on-windows

collectstatic for static files
Set DEBUG = False and ALLOWED_HOSTS in settings.py

Restart Gunicorn job

v 2 N

Run FTs to check everything works

Assuming we’re not ready to entirely automate our provisioning process, how should
we save the results of our investigation so far? I would say that the Nginx and Upstart
config files should probably be saved somewhere, in a way that makes it easy to reuse
them later. Let’s save them in a new subfolder in our repo:

$ mkdir deploy_tools

deploy_tools/nginx.template.conf.
server {

listen 80;
server_name SITENAME;

location /static {
alias /home/elspeth/sites/SITENAME/static;
}

location / {
proxy_set_header Host $host;
proxy_pass http://unix:/tmp/SITENAME.socket;

}

deploy_tools/gunicorn-upstart.template.conf.
description "Gunicorn server for SITENAME"

start on net-device-up
stop on shutdown

respawn

setuid elspeth
chdir /home/elspeth/sites/SITENAME/source

exec ../virtualenv/bin/gunicorn \
--bind unix:/tmp/SITENAME.socket \
superlists.wsgi:application
Then it’s easy for us to use those two files to generate a new site, by doing a find & replace
on SITENAME.

For the rest, just keeping a few notes is OK. Why not keep them in a file in the repo too?

156 | Chapter 8: Testing Deployment Using a Staging Site

deploy_tools/provisioning_notes.md.
Provisioning a new site

Required packages:

*

nginx
Python 3

* Gt

pip

* virtualenv

*

*

e.g.,, on Ubuntu:

sudo apt-get install nginx git python3 python3-pip
sudo pip3 install virtualenv

Nginx Virtual Host config

* see nginx.template.conf
* replace SITENAME with, e.g., staging.my-domain.com

Upstart Job

* see gunicorn-upstart.template.conf
* replace SITENAME with, e.g., staging.my-domain.com

Folder structure:
Assume we have a user account at /home/username

/home/username
L— sites
L— SITENAME
— database
— source
— static

L— virtualenv

We can do a commit for those:

$ git add deploy_tools
$ git status # see three new files
$ git commit -m "Notes and template config files for provisioning"

Our source tree will now look something like this:

$ tree -I __pycache__

}— deploy_tools

| b gunicorn-upstart.template.conf
| — nginx.template.conf

| L— provisioning_notes.md

}— functional_tests

| B _init__.py

Automating | 157

|_

ist

-
Ull—|

— __init__.py
}— models.py
— static

| base css
| ..

— templates

| | base.html
| ...
manage. py
requirements.txt
L— superlists

—r...]

IR

Test-Driving Server Configuration and Deployment

Tests take some of the uncertainty out of deployment
As developers, server administration is always “fun”, by which I mean, a process full
of uncertainty and surprises. My aim during this chapter was to show a functional
test suite can take some of the uncertainty out of the process.

Typical pain points—database, static files, dependencies, custom settings
The things that you need to keep an eye out on any deployment include your da-
tabase configuration, static files, software dependencies, and custom settings that
differ between development and production. You’ll need to think through each of
these for your own deployments.

Tests allow us to experiment
Whenever we make a change to our server configuration, we can rerun the test
suite, and be confident that everything works as well as it did before. It allows us to
experiment with our setup with less fear.

“Saving Your Progress”

Being able to run our FTs against a staging server can be very reassuring. But, in most
cases, you don’t want to run your FTs against your “real” server. In order to “save our
work”, and reassure ourselves that the production server will work just as well as the
real server, we need to make our deployment process repeatable.

Automation is the answer, and it’s the topic of the next chapter.

158 | Chapter 8: Testing Deployment Using a Staging Site

CHAPTER 9
Automating Deployment with Fabric

Automate, automate, automate.

— Cay Horstman

Automating deployment is critical for our staging tests to mean anything. By making
sure the deployment procedure is repeatable, we give ourselves assurances that every-
thing will go well when we deploy to production.

Fabric is a tool which lets you automate commands that you want to run on servers.
You can install fabric systemwide—it’s not part of the core functionality of our site, so
it doesn't need to go into our virtualenv and requirements.txt. So, on your local PC:

$ pip2 install fabric
At the time of writing, Fabric had not been ported to Python 3, so we

have to use the Python 2 version. Thankfully, the Fabric code is to-
tally separate from the rest of our codebase, so it’s not a problem.

Installing Fabric on Windows

Fabric depends on pycrypto, which is a package that needs compiling. Compiling on
Windows is a rather fraught process; it’s often quicker to try and get hold of precompiled
binaries put out there by some kindly soul. In this case the excellent Michael Foord" has
provided some Windows binaries. (Don't forget to giggle at the mention of absurd US
munitions export controls.)

So the instructions, for Windows, are:

1. Author of the Mock library and maintainer of unittest; if the Python testing world has a rock star, it is he.

159

http://bit.ly/Suxt67

1. Download and install pycrypto from the previous URL.
2. pip install Fabric.

Another amazing source of precompiled Python packages for Windows is maintained
by Christoph Gohlke.

The usual setup is to have a file called fabfile.py, which will contain one or more functions
that can later be invoked from a command-line tool called fab, like this:

fab function_name,host=SERVER_ADDRESS

That will invoke the function called function_name, passing in a connection to the
server at SERVER_ADDRESS. There are many other options for specifying usernames and
passwords, which you can find out about using fab - -help.

Breakdown of a Fabric Script for Our Deployment

The best way to see how it works is with an example. Here’s one I made earlier, auto-
mating all the deployment steps we've been going through. The main function is called
deploy; that’s the one we’ll invoke from the command line. It uses several helper func-
tions. env.host will contain the server address that we've passed in:
deploy_tools/fabfile.py.

from fabric.contrib.files import append, exists, sed
from fabric.api import env, local, run
import random

REPO_URL = 'https://github.com/hjwp/book-example.git' #Q

def deploy():
site_folder = '/home/%s/sites/%s' % (env.user, env.host) /@@
source_folder = site_folder + '/source'
_create_directory_structure_if_necessary(site_folder)
_get_latest_source(source_folder)
_update_settings(source_folder, env.host)
_update_virtualenv(source_folder)
_update_static_files(source_folder)
_update_database(source_folder)

© You'll want to update the REPO_URL variable with the URL of your own Git repo
on its code sharing site.

® env.host will contain the address of the server we've specified at the command
line, e.g., superlists.ottg.eu.

© env.user will contain the username you're using to log in to the server.

160 | Chapter9: Automating Deployment with Fabric

http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.bbc.co.uk/cult/classic/bluepeter/valpetejohn/trivia.shtml

Hopefully each of those helper functions have fairly self-descriptive names. Because any
function in a fabfile can theoretically be invoked from the command line, I've used the
convention of a leading underscore to indicate that they’re not meant to be part of the
“public API” of the fabfile. Here they are in chronological order.

Here’s how we build our directory structure, in a way that doesn’t fall down if it already
exists:
deploy_tools/fabfile.py.
def _create_directory_structure_if_necessary(site_folder):
for subfolder in ('database', 'static', 'virtualenv', 'source'):
run('mkdir -p %s/%s' % (site_folder, subfolder)) #Q@
© run is the most common Fabric command. It says “run this shell command on
the server”.

® nmkdir -pis a useful flavor of mkdir, which is better in two ways: it can create
directories several levels deep, and it only creates them if necessary. So, mkdir -
p /tmp/foo/bar will create the directory bar but also its parent directory foo if
it needs to. It also won’t complain if bar already exists.

Next we want to pull down our source code:

deploy_tools/fabfile.py.
def _get latest_source(source_folder):
if exists(source_folder + '/.git'): #@
run('cd %s && git fetch' % (source_folder,)) @@
else:
run('git clone %s %s' % (REPO_URL, source_folder)) #@
current_commit = local("git log -n 1 --format=%H", capture=True) #®
run('cd %s && git reset --hard %s' % (source_folder, current_commit)) #@®
© exists checks whether a directory or file already exists on the server. We look
for the .git hidden folder to check whether the repo has already been cloned in

that folder.

® Many commands start with a cd in order to set the current working directory.
Fabric doesn’t have any state, so it doesn't remember what directory you’re in
from one run to the next.’

© git fetch inside an existing repository pulls down all the latest commits from
the Web.

O Alternatively we use git clone with the repo URL to bring down a fresh source
tree.

2. If youre wondering why we're building up paths manually with %s instead of the os.path. join command
we saw earlier, it's because path.join will use backslashes if you run the script from Windows, but we
definitely want forward slashes on the server

3. There is a Fabric “cd” command, but I figured it was one thing too many to add in this chapter.

Breakdown of a Fabric Script for Our Deployment | 161

© TFabric’s local command runs a command on your local machine—it’s just a
wrapper around subprocess.Popen really, but it’s quite convenient. Here we
capture the output from that git log invocation to get the hash of the current
commit that’s in your local tree. That means the server will end up with whatever
code is currently checked out on your machine (as long as you've pushed it up
to the server).

O Wereset --hard to that commit, which will blow away any current changes in
the server’s code directory.

For this script to work, you need to have done a git push of your
current local commit, so that the server can pull it down and reset
to it. If you see an error saying Could not parse object, try doing
agit push.

Next we update our settings file, to set the ALLOWED_HOSTS and DEBUG, and to create a
new secret key:

deploy_tools/fabfile.py.
def _update_settings(source_folder, site_name):
settings_path = source_folder + '/superlists/settings.py'
sed(settings_path, "DEBUG = True", "DEBUG = False") #@
sed(settings_path,
'ALLOWED_HOSTS
"ALLOWED_HOSTS

4S80,
["%s"]1" % (site_name,) #@

)

secret_key_file = source_folder + '/superlists/secret_key.py'
if not exists(secret_key_file): #@®
chars = 'abcdefghijklmnopgrstuvwxyz0123456789! @#S$%"&*(-_=+)'
key = ''.join(random.SystemRandom().choice(chars) for _ in range(50))
append(secret_key_file, "SECRET_KEY = '%s'" % (key,))
append(settings_path, '\nfrom .secret_key import SECRET_KEY') #D@
© The Fabric sed command does a string substitution in a file; here it's changing

DEBUG from True to False.
® And here it is adjusting ALLOWED_HOSTS, using a regex to match the right line.

©® Django uses SECRET_KEY for some of its crypto—cookies and CSRF protection.
It’s good practice to make sure the secret key on the server is different from the
one in your (possibly public) source code repo. This code will generate a new
key to import into settings, if there isn’t one there already (once you have a secret
key, it should stay the same between deploys). Find out more in the Django docs.

O append just adds a line to the end of a file. (It’s clever enough not to bother if
the line is already there, but not clever enough to automatically add a newline
if the file doesn’t end in one. Hence the back-n.)

162 | Chapter9: Automating Deployment with Fabric

https://docs.djangoproject.com/en/1.8/topics/signing/

© TI'm using a relative import (from .secret key instead of from secret_key) to
be absolutely sure were importing the local module, rather than one from
somewhere else on sys.path. I'll talk a bit more about relative imports in the
next chapter.

Other people, such as the eminent authors of the excellent Two Scoops
of Django, suggest using environment variables to set things like se-
cret keys; you should use whatever you feel is most secure in your
environment.

Next we create or update the virtualenv:

deploy_tools/fabfile.py.

def _update_virtualenv(source_folder):
virtualenv_folder = source_folder + '/../virtualenv'
if not exists(virtualenv_folder + '/bin/pip'): #@
run('virtualenv --python=python3 %s' % (virtualenv_folder,))
run('%s/bin/pip install -r %s/requirements.txt' % (#@
virtualenv_folder, source_folder

))
© Welook inside the virtualenv folder for the pip executable as a way of checking
whether it already exists.

® Then we use pip install -r like we did earlier.

Updating static files is a single command:

deploy_tools/fabfile.py.

def _update_static_files(source_folder):
run('cd %s && ../virtualenv/bin/python3 manage.py collectstatic --noinput' % (# o
source_folder,

))
©® We use the virtualenv binaries folder whenever we need to run a Django
manage.py command, to make sure we get the virtualenv version of Django, not
the system one.

Finally, we update the database with manage.py migrate:

deploy_tools/fabfile.py.

def _update_database(source_folder):
run('cd %s && ../virtualenv/bin/python3 manage.py migrate --noinput' % (
source_folder,

))

Breakdown of a Fabric Script for Our Deployment | 163

Trying It Out

We can try this command out on our existing staging site—the script should work for
an existing site as well as for a new one. If you like words with Latin roots, you might
describe it as idempotent, which means it does nothing if run twice...

$ cd deploy_tools
$ fab deploy:host=elspeth@superlists-staging.ottg.eu

[superlists-staging.ottg.eu] Executing task 'deploy'
[superlists-staging.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists-stagin
[superlists-staging.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists-stagin
[superlists-staging.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists-stagin
[superlists-staging.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists-stagin
[superlists-staging.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists-stagin
[superlists-staging.ottg.eu] run: cd /home/elspeth/sites/superlists-staging.ottg
[localhost] local: git log -n 1 --format=%H

[superlists-staging.ottg.eu] run: cd /home/elspeth/sites/superlists-staging.ottg
[superlists-staging.ottg.eu] out: HEAD is now at 85a6c87 Add a fabfile for autom
[superlists-staging.ottg.eu] out:

[superlists-staging.ottg.eu] run: sed -i.bak -r -e 's/DEBUG = True/DEBUG = False
[superlists-staging.ottg.eu] run: echo 'ALLOWED_HOSTS = ["superlists-staging.ott
[superlists-staging.ottg.eu] run: echo 'SECRET_KEY = '\\''4p2u8fi6)bltep(6nd_3tt
[superlists-staging.ottg.eu] run: echo 'from .secret_key import SECRET_KEY' >> "

[superlists-staging.ottg.eu] run: /home/elspeth/sites/superlists-staging.ottg.eu
[superlists-staging.ottg.eu] out: Requirement already satisfied (use --upgrade t
[superlists-staging.ottg.eu] out: Requirement already satisfied (use --upgrade t
[superlists-staging.ottg.eu] out: Cleaning up...

[superlists-staging.ottg.eu] out:

[superlists-staging.ottg.eu] run: cd /home/elspeth/sites/superlists-staging.ottg
[superlists-staging.ottg.eu] out:

[superlists-staging.ottg.eu] out: 0 static files copied, 11 unmodified.
[superlists-staging.ottg.eu] out:

[superlists-staging.ottg.eu] run: cd /home/elspeth/sites/superlists-staging.ottg
[superlists-staging.ottg.eu] out: Creating tables ...
[superlists-staging.ottg.eu] out: Installing custom SQL ...
[superlists-staging.ottg.eu] out: Installing indexes ...
[superlists-staging.ottg.eu] out: Installed 0 object(s) from 0 fixture(s)
[superlists-staging.ottg.eu] out:

Done.

Disconnecting from superlists-staging.ottg.eu... done.

Awesome. I love making computers spew out pages and pages of output like that (in
fact I find it hard to stop myself from making little '70s computer <brrp, brrrp, brrrp>
noises like Mother in Alien). If we look through it we can see it is doing our bidding:
the mkdir -pcommands go through happily, even though the directories already exist.
Next git pull pulls down the couple of commits we just made. The sed and echo >>

164 | Chapter9: Automating Deployment with Fabric

modify our settings.py. Then pip3 install -r requirements.txt, completes happily,
noting that the existing virtualenv already has all the packages we need. collectstat
ic also notices that the static files are all already there, and finally the migrate completes
without a hitch.

Fabric Configuration

If you are using an SSH key to log in, are storing it in the default location, and are using
the same username on the server as locally, then Fabric should “just work”. If you aren’t
there are several tweaks you may need to apply in order to get the fab command to do
your bidding. They revolve around the username, the location of the SSH key to use, or
the password.

You can pass these in to Fabric at the command line. Check out:
$ fab --help

Or see the Fabric documentation for more info.

Deploying to Live
So, let’s try using it for our live site!

$ fab deploy:host=elspeth@superlists.ottg.eu

$ fab deploy --host=superlists.ottg.eu

[superlists.ottg.eu] Executing task 'deploy'

[superlists.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists.ottg.eu
[superlists.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists.ottg.eu/databa
[superlists.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists.ottg.eu/static
[superlists.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists.ottg.eu/virtua
[superlists.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists.ottg.eu/source
[superlists.ottg.eu] run: git clone https://github.com/hjwp/book-example.git [ho
[superlists.ottg.eu] out: Cloning into '/home/elspeth/sites/superlists.ottg.eu/s
[superlists.ottg.eu] out: remote: Counting objects: 3128, done.
[superlists.ottg.eu] out: Receiving objects: 0% (1/3128)

[...]

[superlists.ottg.eu] out: Receiving objects: 100% (3128/3128), 2.60 MiB | 829 Ki
[superlists.ottg.eu] out: Resolving deltas: 100% (1545/1545), done.
[superlists.ottg.eu] out:

[localhost] local: git log -n 1 --format=%H

[superlists.ottg.eu] run: cd /home/elspeth/sites/superlists.ottg.eu/source && gi
[superlists.ottg.eu] out: HEAD is now at 6c8615b use a secret key file
[superlists.ottg.eu] out:

[superlists.ottg.eu] run: sed -i.bak -r -e 's/DEBUG = True/DEBUG = False/g' "S$(e
[superlists.ottg.eu] run: echo 'ALLOWED_HOSTS = ["superlists.ottg.eu"]' >> "$(ec
[superlists.ottg.eu] run: echo 'SECRET_KEY = '\\''mqu(ffwid5vleol%kerjil*x1imkj-4

TryingItOut | 165

http://docs.fabfile.org
https://github.com/hjwp/book-example.git

[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.

[superlists.
[superlists.
[superlists.

[...]

[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.

[...]

[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.
[superlists.

[superlists.
[superlists.
[superlists.

[...]

[superlists.
[superlists.
[superlists.
[superlists.

[superlists.
[superlists.

ottg

ottg

ottg

ottg

ottg.
ottg.
ottg.

ottg.
ottg.
ottg.
ottg.
ottg.
ottg.
ottg.

ottg.
ottg.
ottg.
ottg.
ottg.
ottg.
ottg.
.eu]
ottg.
.eu]
ottg.
.eu]
ottg.
ottg.
ottg.
ottg.
ottg.
ottg.

ottg

ottg

ottg

ottg.
ottg.
ottg.

ottg.
ottg.
ottg.
ottg.

ottg.
ottg.

.eu]
ottg.
.eu]
ottg.
.eu]
ottg.
.eu]
ottg.
ottg.

eu]
eu]
eu]

eu]
eu]

eu]
eu]
eu]

eu]
eu]
eu]
eu]
eu]
eu]
eu]

eu]
eu]
eu]
eu]
eu]
eu]
eu]

eu]
eu]

eu]
eu]
eu]
eu]
eu]
eu]

eu]
eu]
eu]

eu]
eu]
eu]
eu]

eu]
eu]

run:
run:
out:
out:
out:
out:
out:
out:
out:

run:
out:
out:

out:
out:
out:
out:
out:
out:
out:

out:
out:
out:
out:
out:
out:
out:
out:
out:
out:
out:
out:
out:
out:
out:
out:
out:
out:

run:
out:
out:

out:
out:
out:
out:

run:
out:

echo 'from .secret_key import SECRET_KEY' >> "$(echo /
virtualenv --python=python3 /home/elspeth/sites/superl
Already using interpreter /usr/bin/python3

Using base prefix '/fusr'

New python executable in /home/elspeth/sites/superlist
Also creating executable in /home/elspeth/sites/superl
Installing Setuptools......cvvirineninennnnnnnn. done.
INStalling Pip. e eee i inini it i it ininennennnn done.

/home/elspeth/sites/superlists.ottg.eu/source/../virtu
Downloading/unpacking Django==1.8 (from -r /home/elspe
Downloading Django-1.8.tar.gz (8.0MB):

Downloading Django-1.8.tar.gz (8.0MB): 100% 8.0MB
Running setup.py egg_info for package Django
warning: no previously-included files matching '
warning: no previously-included files matching '*.
Downloading/unpacking gunicorn==17.5 (from -r /home/el
Downloading gunicorn-17.5.tar.gz (367kB): 100% 367k

Downloading gunicorn-17.5.tar.gz (367kB): 367kB down
Running setup.py egg_info for package gunicorn

Installing collected packages: Django, gunicorn
Running setup.py install for Django
changing mode of build/scripts-3.3/django-admin.py
warning: no previously-included files matching '
warning: no previously-included files matching '*.
changing mode of /home/elspeth/sites/superlists.ot
Running setup.py install for gunicorn

Installing gunicorn_paster script to /home/elspeth
Installing gunicorn script to /home/elspeth/sites/
Installing gunicorn_django script to /home/elspeth
Successfully installed Django gunicorn
Cleaning up...

cd /home/elspeth/sites/superlists.ottg.eu/source && ..
Copying '/home/elspeth/sites/superlists.ottg.eu/source
Copying '/home/elspeth/sites/superlists.ottg.eu/source
Copying '/home/elspeth/sites/superlists.ottg.eu/source
11 static files copied.

cd /home/elspeth/sites/superlists.ottg.eu/source && ..
Creating tables ...

166

| Chapter 9: Automating Deployment with Fabric

[superlists.ottg.eu] out: Creating table auth_permission

[...]

[superlists.ottg.eu] out: Creating table lists_item
[superlists.ottg.eu] out: Installing custom SQL ...
[superlists.ottg.eu] out: Installing indexes ...
[superlists.ottg.eu] out: Installed O object(s) from 0 fixture(s)
[superlists.ottg.eu] out:

Done.

Disconnecting from superlists.ottg.eu... done.
Brrp brrp brpp. You can see the script follows a slightly different path, doing a git
clone to bring down a brand new repo instead of a git pull. It also needs to set up a
new virtualenv from scratch, including a fresh install of pip and Django. The collect
static actually creates new files this time, and the migrate seems to have worked too.

Nginx and Gunicorn Config Using sed

What else do we need to do to get our live site into production? We refer to our provi-

sioning notes, which tell us to use the template files to create our Nginx virtual host and

the Upstart script. How about a little Unix command-line magic?

elspeth@server:$ sed "s/SITENAME/superlists.ottg.eu/g" \

deploy_tools/nginx.template.conf | sudo tee \
/etc/nginx/sites-available/superlists.ottg.eu

sed (“stream editor”) takes a stream of text and performs edits on it. It’s no accident that

the fabric string substitution command has the same name. In this case we ask it to

substitute the string SITENAME for the address of our site, with the s/replaceme/

withthis/g syntax. We pipe (|) the output of that to a root-user process (sudo), which

uses tee to write what’s piped to it to a file, in this case the Nginx sites-available vir-

tualhost config file.

We can now activate that file:

elspeth@server:$ sudo ln -s ../sites-available/superlists.ottg.eu \
/etc/nginx/sites-enabled/superlists.ottg.eu

Then we write the upstart script:

elspeth@server: sed "s/SITENAME/superlists.ottg.eu/g" \
deploy_tools/gunicorn-upstart.template.conf | sudo tee \
/etc/init/gunicorn-superlists.ottg.eu.conf

Finally we start both services:

elspeth@server:$ sudo service nginx reload
elspeth@server:$ sudo start gunicorn-superlists.ottg.eu

And we take a look at our site. It works, hooray!

TryingltOut | 167

Let’s add the fabfile to our repo:

$ git add deploy_tools/fabfile.py
$ git commit -m "Add a fabfile for automated deploys"

Git Tag the Release

One final bit of admin. In order to preserve a historical marker, we’ll use Git tags to
mark the state of the codebase that reflects what’s currently live on the server:

$ git tag LIVE

$ export TAG='date +DEPLOYED-%F/%H%M"~ # this generates a timestamp

$ echo $TAG # should show "DEPLOYED-" and then the timestamp

$ git tag $TAG

$ git push origin LIVE $TAG # pushes the tags up
Now it’s easy, at any time, to check what the difference is between our current codebase
and what’s live on the servers. This will come in useful in a few chapters, when we look
at database migrations. Have a look at the tag in the history:

$ git log --graph --oneline --decorate

Anyway, you now have a live website! Tell all your friends! Tell your mum, if no one else
is interested! And, in the next chapter, it’s back to coding again.

Further Reading

There’s no such thing as the One True Way in deployment, and I'm no grizzled expert
in any case. I've tried to set you off on a reasonably sane path, but there’s plenty of things
you could do differently, and lots, lots more to learn besides. Here are some resources
I used for inspiration:

o Solid Python Deployments for Everybody by Hynek Schlawack
o Git-based fabric deployments are awesome by Dan Bravender

o The deployment chapter of Two Scoops of Django by Dan Greenfeld and Audrey
Roy

o The 12-factor App by the Heroku team

For some ideas on how you might go about automating the provisioning step, and an
alternative to Fabric called Ansible, go check out Appendix C.

168 | Chapter 9: Automating Deployment with Fabric

http://hynek.me/talks/python-deployments
http://bit.ly/U6tUo5
http://12factor.net/

Automated Deployments

Fabric
Fabriclets you run commands on servers from inside Python scripts. This is a great
tool for automating server admin tasks.

Idempotency
If your deployment script is deploying to existing servers, you need to design them
so that they work against a fresh installation and against a server thats already
configured.

Keep config files under source control
Make sure your only copy of a config file isn’t on the server! They are critical to
your application, and should be under version control like anything else.

Automating provisioning
Ultimately, everything should be automated, and that includes spinning up brand
new servers and ensuring they have all the right software installed. This will involve
interacting with the API of your hosting provider.

Configuration management tools
Fabric is very flexible, but its logic is still based on scripting. More advanced tools
take a more “declarative” approach, and can make your life even easier. Ansible and
Vagrant are two worth checking out (see Appendix C), but there are many more
(Chef, Puppet, Salt, Juju...).

FurtherReading | 169

CHAPTER 10
Input Validation and Test Organisation

Over the next few chapters we’ll talk about testing and implementing validation of user
inputs. We'll also take the opportunity to do a little tidying up—both in our application
code, and also in our tests.

Validation FT: Preventing Blank Items

As our first few users start using the site, we’ve noticed they sometimes make mistakes
that mess up their lists, like accidentally submitting blank list items, or accidentally
inputting two identical items to a list. Computers are meant to help stop us from making
silly mistakes, so let’s see if we can get our site to help.

Here’s the outline of an FT:

functional_tests/tests.py (ch101001).
def test_cannot_add_empty_list_items(self):

Edith goes to the home page and accidentally tries to submit
an empty list item. She hits Enter on the empty input box

The home page refreshes, and there is an error message saying
that list items cannot be blank

She tries again with some text for the item, which now works
Perversely, she now decides to submit a second blank list item
She receives a similar warning on the list page

And she can correct it by filling some text in

self.fail('write me!'")
That’s all very well, but before we go any further—our functional tests file is beginning
to get a little crowded. Let’s split it out into several files, in which each has a single test
method.

7

Remember that functional tests are closely linked to “user stories” If you were using
some sort of project management tool like an issue tracker, you might make it so that
each file matched one issue or ticket, and its filename contained the ticket ID. Or, if you
prefer to think about things in terms of “features”, where one feature may have several
user stories, then you might have one file and class for the feature, and several methods
for each of its user stories.

We'll also have one base test class which they can all inherit from. Here’s how to get
there step by step.

Skipping a Test

It’s always nice, when doing refactoring, to have a fully passing test suite. We've just
written a test with a deliberate failure. Let’s temporarily switch it off, using a decorator
called “skip” from unittest:

functional_tests/tests.py (ch101001-1).
from unittest import skip

[...]

def test_cannot_add_empty_list_items(self):
This tells the test runner to ignore this test. You can see it works—if we rerun the tests,
it'll say it passes:

$ python3 manage.py test functional_tests

[...]
Ran 3 tests in 11.577s
0K

Skips are dangerous—you need to remember to remove them be-
fore you commit your changes back to the repo. This is why line-by-
line reviews of each of your diffs are a good idea!

Don’t Forget the “Refactor” in “Red, Green, Refactor”

A criticism that’s sometimes levelled at TDD is that it leads to badly architected code,
as the developer just focuses on getting tests to pass rather than stopping to think about
how the whole system should be designed. I think it’s slightly unfair.

TDD is no silver bullet. You still have to spend time thinking about good design. But
what often happens is that people forget the “Refactor” in “Red, Green, Refactor”. The
methodology allows you to throw together any old code to get your tests to pass, but it
also asks you to then spend some time refactoring it to improve its design.

172 | Chapter 10: Input Validation and Test Organisation

Often, however, the best ideas for how to refactor code don't occur to you straight away.
They may occur to you days, weeks, even months after you wrote a piece of code, when
youre working on something totally unrelated and you happen to see some old code
again with fresh eyes. But if you're halfway through something else, should you stop to
refactor the old code?

The answer is that it depends. In the case at the beginning of the chapter, we haven’t
even started writing our new code. We know we are in a working state, so we can justify
putting a skip on our new FT (to get back to fully passing tests) and do a bit of refactoring
straight away.

Later in the chapter we’ll spot other bits of code we want to alter. In those cases, rather
than taking the risk of refactoring an application that’s not in a working state, we’ll make
a note of the thing we want to change on our scratchpad and wait until we’re back to a
tully passing test suite before refactoring.

Splitting Functional Tests out into Many Files
We start putting each test into its own class, still in the same file:

functional_tests/tests.py (ch101002).
class FunctionalTest(StaticLiveServerTestCase):

def setUpClass(cls):

[...]
def tearDownClass(cls):
[...]
def setUp(self):
[...]
def tearDown(self):
[...]
def check_for_row_in_list_table(self, row_text):
[...]

class NewVisitorTest(FunctionalTest):

def test_can_start_a_list_and_retrieve_it_later(self):

[...]

class LayoutAndStylingTest(FunctionalTest):

def test_layout_and_styling(self):
[...]

Validation FT: Preventing Blank Items | 173

class ItemValidationTest(FunctionalTest):

def test_cannot_add_empty_list_items(self):
[...]
At this point we can rerun the FTs and see they all still work:

Ran 3 tests in 11.577s

0K

That’s labouring it a little bit, and we could probably get away doing this stuff in fewer
steps, but, as I keep saying, practising the step-by-step method on the easy cases makes
it that much easier when we have a complex case.

Now we switch from a single tests file to using one for each class, and one “base” file to
contain the base class all the tests will inherit from. We’ll make four copies of tests.py,
naming them appropriately, and then delete the parts we don’t need from each:

$ git mv functional_tests/tests.py functional_tests/base.py

$ cp functional_tests/base.py functional_tests/test_simple_list_creation.py
$ cp functional_tests/base.py functional_tests/test_layout_and_styling.py

$ cp functional_tests/base.py functional_tests/test_list_item_validation.py

base.py can be cut down to just the FunctionalTest class. We leave the helper method
on the base class, because we suspect we’re about to reuse it in our new FT:
functional_tests/base.py (ch101003).
from django.contrib.staticfiles.testing import StaticLiveServerTestCase

from selenium import webdriver
import sys

class FunctionalTest(StaticLiveServerTestCase):

def setUpClass(cls):

[...]
def tearDownClass(cls):
[...]
def setUp(self):
[...]
def tearDown(self):
[...]
def check_for_row_in_list_table(self, row_text):
[...]

Keeping helper methods in a base FunctionalTest class is one use-
ful way of preventing duplication in FTs. Later in the book (in Chap-
ter 21) we’'ll use the “Page pattern’, which is related, but prefers com-
position over inheritance.

174 | Chapter 10: Input Validation and Test Organisation

Our first FT is now in its own file, and should be just one class and one test method:

functional_tests/test_simple_list_creation.py (ch101004).
from .base import FunctionalTest

from selenium import webdriver
from selenium.webdriver.common.keys import Keys

class NewVisitorTest(FunctionalTest):

def test_can_start_a_list_and_retrieve_it_later(self):
[...]
I used a relative import (from .base). Some people like to use them a lot in Django
code (e.g., your views might import models using from .models import List,instead
of from list.models). Ultimately this is a matter of personal preference. I prefer to use
relative imports only when I'm super-super sure that the relative position of the thing
I'm importing won't change. That applies in this case because I know for sure all the
tests will sit next to base.py, which they inherit from.

The layout and styling FT should now be one file and one class:

functional_tests/test_layout_and_styling.py (ch101005).
from .base import FunctionalTest

class LayoutAndStylingTest(FunctionalTest):
[...]
Lastly our new validation test is in a file of its own too:
functional_tests/test_list_item_validation.py (ch101006).

from unittest import skip
from .base import FunctionalTest

class ItemValidationTest(FunctionalTest):

def test_cannot_add_empty_list_items(self):

[...]
And we can test everything worked by rerunning manage.py test function
al_tests, and checking once again that all three tests are run:

Ran 3 tests in 11.577s

0K
Now we can remove our skip:

functional_tests/test_list_item_validation.py (ch101007).
class ItemValidationTest(FunctionalTest):

def test_cannot_add_empty_list_items(self):
[...]

Validation FT: Preventing Blank Items | 175

Running a Single Test File
As a side bonus, we’re now able to run an individual test file, like this:

$ python3 manage.py test functional_tests.test_list_item_validation

[...]

AssertionError: write me!

Brilliant, no need to sit around waiting for all the FTs when were only interested in a
single one. Although we need to remember to run all of them now and again, to check
for regressions. Later in the book we’ll see how to give that task over to an automated
Continuous Integration loop. For now let’s commit!

$ git status
$ git add functional_tests
$ git commit -m "Moved Fts into their own individual files"

Fleshing Qut the FT

Now let’s start implementing the test, or at least the beginning of it:

functional_tests/test_list_item_validation.py (ch101008).
def test_cannot_add_empty_list_items(self):

Edith goes to the home page and accidentally tries to submit
an empty list item. She hits Enter on the empty input box
self.browser.get(self.server_url)
self.browser.find_element_by_id('id_new_item').send_keys('\n')

The home page refreshes, and there is an error message saying

that list items cannot be blank

error = self.browser.find_element_by_css_selector('.has-error') #@
self.assertEqual(error.text, "You can't have an empty list item")

She tries again with some text for the item, which now works
self.browser.find_element_by_1id('id_new_item').send_keys('Buy milk\n"')
self.check_for_row_in_list_table('1: Buy milk') #@®

Perversely, she now decides to submit a second blank list item
self.browser.find_element_by_1id('id_new_item').send_keys('\n')

She receives a similar warning on the list page
self.check_for_row_in_list_table('1: Buy milk")

error = self.browser.find_element_by_css_selector('.has-error')
self.assertEqual(error.text, "You can't have an empty list item")

And she can correct it by filling some text in
self.browser.find_element_by_1id('id_new_item').send_keys('Make tea\n')
self.check_for_row_in_list_table('1: Buy milk")
self.check_for_row_in_list_table('2: Make tea')

176 | Chapter 10: Input Validation and Test Organisation

A couple of things to note about this test:

© We specify were going to use a CSS class from Bootstrap called .has-error to
mark our error text. We'll see that Bootstrap has some useful styling for those

©® As predicted, we are reusing the check_for_row_in_list_table helper
function when we want to confirm that list item submission does work.

The technique of keeping helper methods in a parent class is meant to prevent dupli-
cation across your functional test code. The day we decide to change the implementation
of how our list table works, we want to make sure we only have to change our FT code
in one place, not in dozens of places across loads of FTs...

And we're off!

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate

element: {"method":"css selector","selector":".has-error"}

I'll let you do your own “first-cut FT” commit.

Using Model-Layer Validation

There are two levels at which you can do validation in Django. One is at the model level,
and the other is higher up at the forms level. I like to use the lower level whenever
possible, partially because I'm a bit too fond of databases and database integrity rules,
and partially because it’s safer—you can sometimes forget which form you use to validate
input, but you're always going to use the same database.

Refactoring Unit Tests into Several Files

We're going to want to add another test for our model, but before we do so, it’s time to
tidy up our unit tests in a similar way to the functional tests. A difference will be that,
because the lists app contains real application code as well as tests, we’ll separate out
the tests into their own folder:

$ mkdir lists/tests

$ touch lists/tests/__init__.py

$ git mv lists/tests.py lists/tests/test_all.py
$ git status

$ git add lists/tests

$ python3 manage.py test lists

[...]

Ran 10 tests in 0.034s

OK
$ git commit -m "Move unit tests into a folder with single file"

Using Model-Layer Validation | 177

If you get a message saying “Ran 0 tests”, you probably forgot to add the dunderinit—
it needs to be there or else the tests folder isn’'t a valid Python package...!

Now we turn test_all.py into two files, one called test_views.py, which only contains view
tests, and one called test_models.py:

$ git mv lists/tests/test_all.py lists/tests/test_views.py
$ cp lists/tests/test_views.py lists/tests/test_models.py

We strip test_models.py down to being just the one test—it means it needs far fewer
imports:
lists/tests/test_models.py (ch101009).

from django.test import TestCase
from lists.models import Item, List

class ListAndItemModelsTest(TestCase):
[...]
Whereas test_views.py just loses one class:

lists/tests/test_views.py (ch101010).
--- a/lists/tests/test_views.py
+++ b/lists/tests/test_views.py
@@ -103,34 +104,3 @@ class ListViewTest(TestCase):
self.assertNotContains(response, 'other list item 1')
self.assertNotContains(response, 'other list item 2')

-class ListAndItemModelsTest(TestCase):

- def test_saving_and_retrieving_items(self):
[...]
We rerun the tests to check everything is still there:

$ python3 manage.py test lists

[...]
Ran 10 tests in 0.040s

OK
Great!

$ git add lists/tests
$ git commit -m "Split out unit tests into two files"

1. “Dunder” is shorthand for double-underscore, so “dunderinit” means __init__.py.

178 | Chapter 10: Input Validation and Test Organisation

Some people like to make their unit tests into a tests folder straight
away, as soon as they start a project, with the addition of another file,
test_forms.py. That’s a perfectly good idea; I just thought I'd wait until
it became necessary, to avoid doing too much housekeeping all in the
first chapter!

Unit Testing Model Validation and the self.assertRaises Context
Manager

Let’s add a new test method to ListAndItemModelsTest, which tries to create a blank
list item:

lists/tests/test_models.py (ch101012-1).
from django.core.exceptions import ValidationError

[...]

class ListAndItemModelsTest(TestCase):

[...]

def test_cannot_save_empty_list_items(self):
list_ = List.objects.create()
item = Item(list=1list_, text="")
with self.assertRaises(ValidationError):
item.save()

If youre new to Python, you may never have seen the with state-
ment. It’s used with what are called “context managers”, which wrap a
block of code, usually with some kind of setup, cleanup, or error-
handling code. There’s a good write-up in the Python 2.5 release notes.

This is a new unit testing technique: when we want to check that doing something will
raise an error, we can use the self.assertRatises context manager. We could have used
something like this instead:
try:
item.save()
self.fail('The save should have raised an exception')

except ValidationError:
pass

But the with formulation is neater. Now, we can try running the test, and see it fail:

item.save()
AssertionError: ValidationError not raised

Using Model-Layer Validation | 179

http://docs.python.org/release/2.5/whatsnew/pep-343.html

A Django Quirk: Model Save Doesn’t Run Validation

And now we discover one of Django’s little quirks. This test should already pass. If you
take a look at the docs for the Django model fields, you’'ll see that TextField actually
defaults to blank=False, which means that it should disallow empty values.

So why is the test not failing? Well, for slightly counterintuitive historical reasons, Djan-
go models don't run full validation on save. As we’ll see later, any constraints that are
actually implemented in the database will raise errors on save, but SQLite doesn’t sup-
port enforcing emptiness constraints on text columns, and so our save method is letting
this invalid value through silently.

There’s a way of checking whether the constraint will happen at the database level or
not: if it was at the database level, we would need a migration to apply the constraint.
But, Django knows that SQLite doesn’t support this type of constraint, so if we try and
run makemigrations, it will report there’s nothing to do:

$ python3 manage.py makemigrations
No changes detected

Django does have a method to manually run full validation however, called
full_clean. Let’s hack it in to see it work:

lists/tests/test_models.py.
with self.assertRaises(ValidationError):

item.save()
item.full_clean()

That gets the test to pass:
0K

That taught us a little about Django validation, and the test is there to warn us if we ever
forget our requirement and set blank=True on the text field (try it!).

Surfacing Model Validation Errors in the View

Let’s try and enforce our model validation in the views layer and bring it up through
into our templates, so the user can see them. Here’s how we can optionally display an
error in our HTML—we check whether the template has been passed an error variable,
and if so, we display it next to the form:

lists/templates/base.html (ch101013).
<form method="POST" action="{% block form_action %}{% endblock %}">

<input name="item_text" 1d="id_new_item"
class="form-control input-1lg"
placeholder="Enter a to-do item"
/>
{% csrf_token %}
{% if error %}
<div class="form-group has-error"s

180 | Chapter 10: Input Validation and Test Organisation

http://bit.ly/SuxPJO
https://groups.google.com/forum/#!topic/django-developers/uIhzSwWHj4c

{{ error }}
</div>
{% endif %}
</form>

Take a look at the Bootstrap docs for more info on form controls.

Passing this error to the template is the job of the view function. Let’s take a look at the
unit tests in the NewListTest class. I'm going to use two slightly different error-handling
patterns here.

In the first case, our URL and view for new lists will optionally render the same template
as the home page, but with the addition of an error message. Here’s a unit test for that:

lists/tests/test_views.py (ch101014).
class NewlListTest(TestCase):

[...]

def test_validation_errors_are_sent_back_to_home_page_ template(self):

response = self.client.post('/lists/new', data={'item_text': ''})

self.assertEqual(response.status_code, 200)

self.assertTemplateUsed(response, 'home.html')

expected_error = "You can't have an empty list item"

self.assertContains(response, expected_error)
As we're writing this test, we might get slightly offended by the /lists/new URL, which
we’re manually entering as a string. We've got a lot of URLs hardcoded in our tests, in
our views, and in our templates, which violates the DRY principle. I don't mind a bit of
duplication in tests, but we should definitely be on the lookout for hardcoded URLs in
our views and templates, and make a note to refactor them out. But we won’t do them
straight away, because right now our application is in a broken state. We want to get
back to a working state first.

Back to our test, which is failing because the view is currently returning a 302 redirect,
rather than a “normal” 200 response:

AssertionError: 302 != 200
Let’s try calling full_clean() in the view:

lists/views.py.
def new_list(request):

list_ = List.objects.create()

item = Item.objects.create(text=request.POST['item_text'], list=1list_)
item.full_clean()

return redirect('/lists/%d/' % (list_.1d,))

As we’re looking at the view code, we find a good candidate for a hardcoded URL to get
rid of. Let’s add that to our scratchpad:

Surfacing Model Validation Errorsin the View | 181

http://getbootstrap.com/css/#forms

D)
2 o Remove hardcoded URLs From views py

J
[

L~ /\“\\W/A \/ //\\ w/,/“\/ \\\\v /\\\/ /,f\\\/ e

Now the model validation raises an exception, which comes up through our view:

[...]

File "/workspace/superlists/lists/views.py", line 11, in new_list
item.full_clean()

[...]

django.core.exceptions.ValidationError: {'text': ['This field cannot be
blank.']}

So we try our first approach: using a try/except to detect errors. Obeying the Testing
Goat, we start with just the try/except and nothing else. The tests should tell us what
to code next...

lists/views.py (ch101015).
from django.core.exceptions import ValidationError

[...]

def new_list(request):
list_ = List.objects.create()
item = Item.objects.create(text=request.POST['item_text'], list=1list_)
try:
item.full_clean()
except ValidationError:
pass
return redirect('/lists/%d/' % (list_.1id,))

That gets us back to the 302 != 200:
AssertionError: 302 != 200

Let’s return a rendered template then, which should take care of the template check as
well:

lists/views.py (ch101016).
except ValidationError:

return render(request, 'home.html')

And the tests now tell us to put the error message into the template:

AssertionError: False is not true : Couldn't find 'You can't have an empty list
item' in response

182 | Chapter 10: Input Validation and Test Organisation

We do that by passing a new template variable in:

lists/views.py (ch101017).
except ValidationError:

error = "You can't have an empty list item"
return render(request, 'home.html', {"error": error})

Hmm, it looks like that didn’t quite work:

AssertionError: False i1s not true : Couldn't find 'You can't have an empty list
item' in response

A little print-based debug...

lists/tests/test_views.py.
expected_error = "You can't have an empty list item"

print(response.content.decode())
self.assertContains(response, expected_error)

...will show us the cause: Django has HTML-escaped the apostrophe:
[...]

You can't have an
empty list item

We could hack something like this into our test:
expected_error = "You can't have an empty list item"
But using Django’s helper function is probably a better idea:

lists/tests/test_views.py (ch101019).
from django.utils.html import escape

[...]

expected_error = escape("You can't have an empty list item")
self.assertContains(response, expected_error)

That passes!

Ran 12 tests in 0.047s

0K

Checking Invalid Input Isnt Saved to the Database

Before we go further though, did you notice a little logic error we've allowed to creep
into our implementation? We're currently creating an object, even if validation fails:

lists/views.py.
item = Item.objects.create(text=request.POST['item_text'], list=1list_)

try:
item.full_clean()
except ValidationError:

[...]
Let’s add a new unit test to make sure that empty list items don't get saved:

Surfacing Model Validation Errorsin the View | 183

http://bit.ly/SuxUgF

lists/tests/test_views.py (ch101020-1).
class NewListTest(TestCase):

[...]

def test_validation_errors_are_sent_back_to_home_page_template(self):

[...]

def test_invalid_list_items_arent_saved(self):
self.client.post('/lists/new', data={'item_text': ''})
self.assertEqual(List.objects.count(), 0)
self.assertEqual(Item.objects.count(), 0)

That gives:
[...]

Traceback (most recent call last):
File "/workspace/superlists/lists/tests/test_views.py", line 57, in
test_invalid_list_1items_arent_saved
self.assertEqual(List.objects.count(), 0)
AssertionError: 1 != 0

We fix it like this:

lists/views.py (ch101020-2).
def new_list(request):

list_ = List.objects.create()
item = Item(text=request.POST['item_text'], list=1list_)
try:

item.full_clean()

item.save()
except ValidationError:

list_.delete()

error = "You can't have an empty list item"

return render(request, 'home.html', {"error": error})
return redirect('/lists/%d/' % (list_.1id,))

Do the FTs pass?

$ python3 manage.py test functional_tests.test_list_item_validation
[...]

File "/workspace/superlists/functional_tests/test_list_item_validation.py",
line 26, in test_cannot_add_empty_list_items

[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"css selector","selector":".has-error"}

Not quite, but they did get a little further. Checking the line 26, we can see that we've
got past the first part of the test, and are now onto the second check—that submitting
a second empty item also shows an error.

We've got some working code though, so let’s have a commit:

$ git commit -am "Adjust new list view to do model validation"

184 | Chapter 10: Input Validation and Test Organisation

Django Pattern: Processing POST Requests in the Same
View as Renders the Form

This time we’ll use a slightly different approach, one that’s actually a very common
pattern in Django, which is to use the same view to process POST requests as to render
the form that they come from. Whilst this doesn’t fit the REST-ful URL model quite as
well, it has the important advantage that the same URL can display a form, and display
any errors encountered in processing the user’s input.

The current situation is that we have one view and URL for displaying a list, and one
view and URL for processing additions to that list. We're going to combine them into
one. So, in list.html, our form will have a different target:
lists/templates/list.html (ch101020).
{% block form_action %}/lists/{{ list.id }}/{% endblock %

Incidentally, that’s another hardcoded URL. Let’s add it to our to-do list, and while were
thinking about it, there’s one in home.html too:

o Kemove hardcoded URLs from views.py

5 o Lemove bardcoded UKL from Forms /n
Hst btm/ and bome.hém/

@/ &/

T VP O

This will immediately break our original functional test, because the view_list page
doesn’t know how to process POST requests yet:

$ python3 manage.py test functional_tests
[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate

element: {"method":"css selector","selector":".has-error"}

[...]
AssertionError: '2: Use peacock feathers to make a fly' not found in ['1l: Buy
peacock feathers']

In this section we're performing a refactor at the application level. We
execute our application-level refactor by changing or adding unit
tests, and then adjusting our code. We use the functional tests to tell
us when our refactor is complete and things are back to working as
before. Have another look at the diagram from the end of Chapter 4
if you need to get your bearings.

Django Pattern: Processing POST Requests in the Same View as Renders the Form | 185

Refactor: Transferring the new_item Functionality into view_list

Let’s take all the old tests from NewItemTest, the ones that are about saving POST re-
quests to existing lists, and move them into ListViewTest. As we do so, we also make
them point at the base list URL, instead of .../add_item:

def

def

def

def

def

lists/tests/test_views.py (ch101021).

class ListViewTest(TestCase):

test_uses_list_template(self):
[...]

test_passes_correct_list_to_template(self):

[...]

test_displays_only_1items_for_that_list(self):
[...]

test_can_save_a_POST_request_to_an_existing_list(self):
other_list = List.objects.create()
correct_list = List.objects.create()

self.client.post(
"/lists/%d/"' % (correct_list.id,),
data={'item_text': 'A new item for an existing list'}

)

self.assertEqual(Item.objects.count(), 1)

new_item = Item.objects.first()

self.assertEqual(new_1item.text, 'A new item for an existing list')
self.assertEqual(new_item.list, correct_list)

test_POST_redirects_to_list_view(self):
other_list = List.objects.create()
correct_list = List.objects.create()

response = self.client.post(
"/lists/%d/' % (correct_list.id,),
data={'item_text': 'A new item for an existing list'}

)

self.assertRedirects(response, '/lists/%d/' % (correct_list.id,))

Note that the NewItemTest class disappears completely. I've also changed the name of
the redirect test to make it explicit that it only applies to POST requests.

That gives:

IL

]

FAIL: test_POST_redirects_to_list_view (lists.tests.test_views.ListViewTest)
AssertionError: 200 != 302 : Response didn't redirect as expected: Response
code was 200 (expected 302)

: test_can_save_a_POST_request_to_an_existing_list

186

Chapter 10: Input Validation and Test Organisation

(lists.tests.test_views.ListViewTest)
AssertionError: 0 !=1

We change the view_list function to handle two types of request:

lists/views.py (ch101022-1).
def view_list(request, list_id):
list_ = List.objects.get(id=1ist_1id)
if request.method == 'POST':
Item.objects.create(text=request.POST['item_text'], list=list_)
return redirect('/lists/%d/' % (list_.1d,))
return render(request, 'list.html', {'list': list_})

That gets us passing tests:

Ran 13 tests in 0.047s

0K

Now we can delete the add_1item view, since it’s no longer needed...oops, a couple of
unexpected failures:

[...]
AttributeError: 'module' object has no attribute 'add_item'
[...]

FAILED (errors=10)
It's because we've deleted the view, but it’s still being referred to in urls.py. We remove
it from there:

lists/urls.py (ch101023).
urlpatterns = [

url(r'~new$', views.new_list, name='new_list'),
url(r'~(\d+)/$', views.view_list, name='view_list'),

]
And that gets us to the OK. Let’s try a full FT run:

$ python3 manage.py test
[...]

Ran 16 tests in 15.276s

FAILED (errors=1)

We’re back to the one failure in our new functional test. Our refactor of the add_item
functionality is complete. We should commit there:

$ git commit -am "Refactor list view to handle new item POSTs"

Django Pattern: Processing POST Requests in the Same View as Renders the Form | 187

So did I break the rule about never refactoring against failing tests?
In this case, its allowed, because the refactor is required to get our
new functionality to work. You should definitely never refactor
against failing unit tests. But in my book it's OK for the FT for the
current story youre working on to be failing. If you prefer a clean test
run, you could add a skip to the current FT.

Enforcing Model Validation in view_list

We still want the addition of items to existing lists to be subject to our model validation
rules. Let’s write a new unit test for that; it’s very similar to the one for the home page,
with just a couple of tweaks:

lists/tests/test_views.py (ch101024).
class ListViewTest(TestCase):

[...]

def test_validation_errors_end_up_on_lists_page(self):
list_ = List.objects.create()
response = self.client.post(
"/lists/%d/"' % (list_.1id,),
data={"'item_text': "'}
)
self.assertEqual(response.status_code, 200)
self.assertTemplateUsed(response, 'list.html')
expected_error = escape("You can't have an empty list item")
self.assertContains(response, expected_error)

That should fail, because our view currently does not do any validation, and just redirects
for all POSTs:

self.assertEqual(response.status_code, 200)
AssertionError: 302 != 200

Here’s an implementation:

lists/views.py (ch101025).
def view_list(request, list_id):
list_ = List.objects.get(id=1list_id)
error = None

if request.method == 'POST':

try:
item = Item(text=request.POST['item_text'], list=list_)
item.full_clean()
item.save()
return redirect('/lists/%d/' % (list_.1id,))

except ValidationError:
error = "You can't have an empty list item"

return render(request, 'list.html', {'list': list_, 'error': error})

188 | Chapter 10: Input Validation and Test Organisation

It’s not deeply satisfying is it? There’s definitely some duplication of code here, that try/
except occurs twice in views.py, and in general things are feeling clunky.

Ran 14 tests in 0.047s

0K

Let’s wait a bit before we do more refactoring though, because we know we’re about to
do some slightly different validation coding for duplicate items. We'll just add it to our
scratchpad for now:

o Remove hardcoded URLs from views.py

o Remove bardcoded URL From Forms /n
sst htm/ and bome.hEm/

v/ o/

&/ W\

o Remove dyplication of validation /ogic in
vews

=

LA A 4

o\ » W e W P SN
e W Y R LN o SN -

One of the reasons that the “three strikes and refactor” rule exists is
that, if you wait until you have three use cases, each might be slight-
ly different, and it gives you a better view for what the common
functionality is. If you refactor too early, you may find that the third
use case doesn't quite fit with your refactored code...

At least our functional tests are back to passing:

$ python3 manage.py test functional_tests

[...]
0K

We're back to a working state, so we can take a look at some of the items on our scratch-
pad. This would be a good time for a commit. And possibly a tea break.

$ git commit -am "enforce model validation in list view"

Refactor: Removing Hardcoded URLs

Do you remember those name= parameters in urls.py? We just copied them across from
the default example Django gave us, and I've been giving them some reasonably de-
scriptive names. Now we find out what they’re for.

Refactor: Removing Hardcoded URLs | 189

lists/urls.py.
url(r'~newsS', views.new_list, name='new_list'),
url(r'~(\d+)/$"', views.view_list, name='view_list'),

The {% url %} Template Tag

We can replace the hardcoded URL in home.html with a Django template tag which

>

refers to the URLs “hame”:

lists/templates/home.html (ch101026-1).
{% block form_action %}{% url 'new_list' %}{% endblock %}

We check that doesn’t break the unit tests:

$ python3 manage.py test lists
OK

Let’s do the other template. This one is more interesting, because we pass it a parameter:

lists/templates/list. html (ch101026-2).
{% block form_action %}{% url 'view_list' list.id %}{% endblock %}

Check out the Django docs on reverse URL resolution for more info.
We run the tests again, and check they all pass:

$ python3 manage.py test lists

OK

$ python3 manage.py test functional_tests
OK

Excellent:

$ git commit -am "Refactor hard-coded URLs out of templates”

o Remove hardcoded URLs From views py
o Remove—Fardcostert—tRE—rrom—rForms—rn

5 o Remove dyplication of validation /fogic in
/ views

i - PN

A - s P N ~ N\ e~
s S N///“ o M o e N A\,

Using get_absolute_url for Redirects

Now let’s tackle views.py. One way of doing it is just like in the template, passing in the
name of the URL and a positional argument:

190 | Chapter10: Input Validation and Test Organisation

https://docs.djangoproject.com/en/1.8/topics/http/urls/#reverse-resolution-of-urls

lists/views.py (ch101026-3).
def new_list(request):

[...]

return redirect('view_list', list_.id)

That would get the unit and functional tests passing, but the redirect function can do
even better magic than that! In Django, because model objects are often associated with
aparticular URL, you can define a special function called get_absolute_ur1 which says
what page displays the item. It’s useful in this case, but it’s also useful in the Django
admin (which I don’t cover in the book, but you’ll soon discover for yourself): it will let
you jump from looking at an object in the admin view to looking at the object on the
live site. I'd always recommend defining a get_absolute_url for a model whenever
there is one that makes sense; it takes no time at all.

All it takes is a super-simple unit test in test_models.py:

lists/tests/test_models.py (ch101026-4).
def test_get_absolute_url(self):

list_ = List.objects.create()
self.assertEqual(list_.get_absolute_url(), '/lists/%d/' % (list_.id,))

Which gives:
AttributeError: 'List' object has no attribute 'get_absolute_url'

And the implementation is to use Django’s reverse function, which essentially does the
reverse of what Django normally does with urls.py (see docs):

lists/models.py (ch101026-5).
from django.core.urlresolvers import reverse

class List(models.Model):

def get_absolute_url(self):
return reverse('view_list', args=[self.id])

And now we can use it in the view—the redirect function just takes the object we want
to redirect to, and it uses get_absolute_url under the hood automagically!

lists/views.py (ch101026-6).
def new_list(request):

[...]

return redirect(list_)

There’s more info in the Django docs. Quick check that the unit tests still pass:
oK

Then we do the same to view_list:

Refactor: Removing Hardcoded URLs | 191

https://docs.djangoproject.com/en/1.8/topics/http/urls/#reverse-resolution-of-urls
https://docs.djangoproject.com/en/1.8/topics/http/shortcuts/#redirect

lists/views.py (ch101026-7).
def view_list(request, list_id):

[...]

item.save()
return redirect(list_)
except ValidationError:
error = "You can't have an empty list item"

And a full unit test and functional test run to assure ourselves that everything still works:

$ python3 manage.py test lists
OK

$ python3 manage.py test functional_tests
OK

Cross off our to-dos:

i1
|
|
H
Z o Removerardcostedt-tiRlts-Fromrienspy
N\
)
o o ot ate et B —
4
o Kemove dyplication of vafidation fogic in
2 Views
4
\\
U N, o~ e N ot T
e o \V// s _— \'/A \// \\/

Let’s do a commit:

$ git commit -am "Use get_absolute_url on List model to DRY urls in views"

That final to-do item will be the subject of the next chapter...

Tips on Organising Tests and Refactoring
Use a tests folder

Just as you use multiple files to hold your application code, you should split your
tests out into multiple files.

o Use a folder called fests, with a __init__.py.
o For functional tests, group them into tests for a particular feature or user story.

o For unit tests, you want a separate test file for each tested source code file. For
Django, that’s typically test_models.py, test_views.py, and test_forms.py.

« Have at least a placeholder test for every function and class.

192 | Chapter 10: Input Validation and Test Organisation

Don’t forget the “Refactor” in “Red, Green, Refactor”
The whole point of having tests is to allow you to refactor your code! Use them, and
make your code as clean as you can.

Don’t refactor against failing tests
o In general!

o But the FT you're currently working on doesn’t count.

« You can occasionally put a skip on a test which is testing something you haven’t
written yet.

o More commonly, make a note of the refactor you want to do, finish what youre
working on, and do the refactor a little later, when you’re back to a working
state.

» Don't forget to remove any skips before you commit your code! You should
always review your diffs line by line to catch things like this.

Refactor: Removing Hardcoded URLs | 193

CHAPTER 11
A Simple Form

At the end of the last chapter, we were left with the thought that there was too much
duplication of code in the validation handling bits of our views. Django encourages you
to use form classes to do the work of validating user input, and choosing what error
messages to display. Let’s see how that works.

As we go through the chapter, we'll also spend a bit of time tidying up our unit tests,
and making sure each of them only tests one thing at a time.

Moving Validation Logicinto a Form

In Django, a complex view is a code smell. Could some of that logic
be pushed out to a form? Or to some custom methods on the mod-
el class? Or maybe even to a non-Django module that represents your
business logic?

Forms have several superpowers in Django:

o They can process user input and validate it for errors.

o They can be used in templates to render HTML input elements, and error messages
too.

o And, as well see later, some of them can even save data to the database for you.
You don’t have to use all three form superpowers in every form. You may prefer to roll

your own HTML, or do your own saving. But they are an excellent place to keep vali-
dation logic.

195

Exploring the Forms API with a Unit Test

Let’s do a little experimenting with forms by using a unit test. My plan is to iterate
towards a complete solution, and hopefully introduce forms gradually enough that
they’ll make sense if you've never seen them before.

First we add a new file for our form unit tests, and we start with a test that just looks at
the form HTML:

lists/tests/test_forms.py.
from django.test import TestCase

from lists.forms import ItemForm

class ItemFormTest(TestCase):

def test_form_renders_item_text_input(self):
form = ItemForm()
self.fatl(form.as_p())
form.as_p() renders the form as HTML. This unit test is using a self.fatil for some
exploratory coding. You could just as easily use a manage.py shell session, although
you'd need to keep reloading your code for each change.

Let’s make a minimal form. It inherits from the base Form class, and has a single field
called item_text:

lists/forms.py.

from django import forms

class ItemForm(forms.Form):
item_text = forms.CharField()
We now see a failure message which tells us what the auto-generated form HTML will
look like:

self.fail(form.as_p())
AssertionError: <p><label for="1d_item_text">Item text:</label> <input
id="1d_item_text" name="item_text" type="text" /></p>

It's already pretty close to what we have in base.html. We're missing the placeholder
attribute and the Bootstrap CSS classes. Let’s make our unit test into a test for that:

lists/tests/test_forms.py.
class ItemFormTest(TestCase):

def test_form_item_input_has_placeholder_and_css_classes(self):
form = ItemForm()
self.assertIn('placeholder="Enter a to-do item
self.assertIn('class="form-control input-1g"'

"', form.as_p())
, form.as_p())
That gives us a fail which justifies some real coding. How can we customise the input

for a form field? Using a “widget”. Here it is with just the placeholder:

196 | Chapter11: A Simple Form

lists/forms.py.
class ItemForm(forms.Form):

item_text = forms.CharField(
widget=forms.fields.TextInput(attrs={
'placeholder': 'Enter a to-do item',
b,
)

That gives:

AssertionError: 'class="form-control input-1g"' not found in '<p><label
for="1d_1item_text">Item text:</label> <input id="id_item_text" name="{item_text"
placeholder="Enter a to-do item" type="text" /></p>'

And then:
lists/forms.py.
widget=forms.fields.TextInput(attrs={
'placeholder': 'Enter a to-do item',
'class': 'form-control input-lg',

b,

Doing this sort of widget customisation would get tedious if we had
a much larger, more complex form. Check out django-crispy-forms
and django-floppyforms for some help.

Development-Driven Tests: Using Unit Tests for Exploratory Coding
Does this feel a bit like development-driven tests? That’s OK, now and again.

When you're exploring a new API, you're absolutely allowed to mess about with it for
a while before you get back to rigorous TDD. You might use the interactive console, or
write some exploratory code (but you have to promise the Testing Goat that you’ll throw
it away and rewrite it properly later).

Here were actually using a unit test as a way of experimenting with the forms API. It’s
actually a pretty good way of learning how it works.

Switching to a Django ModelForm

What’s next? We want our form to reuse the validation code that we've already defined
on our model. Django provides a special class which can auto-generate a form for a
model, called ModelForm. As you’ll see, it’s configured using a special attribute called
Meta:

lists/forms.py.
from django import forms

Moving Validation LogicintoaForm | 197

https://django-crispy-forms.readthedocs.org/
http://bit.ly/1rR5eyD

from lists.models import Item
class ItemForm(forms.models.ModelForm):

class Meta:
model = Item
fields = ('text',)

In Meta we specify which model the form is for, and which fields we want it to use.

ModelForms do all sorts of smart stuff, like assigning sensible HTML form input types
to different types of field, and applying default validation. Check out the docs for more
info.

We now have some different-looking form HTML:

AssertionError: 'placeholder="Enter a to-do item"' not found in '<p><label
for="1id_text">Text:</label> <textarea cols="40" id="{id_text" name="text"
rows="10">\r\n</textarea></p>'
It’s lost our placeholder and CSS class. But you can also see that it’s using name="text"
instead of name="1tem_text". We can probably live with that. But it’s using a textar
ea instead of a normal input, and that’s not the UI we want for our app. Thankfully, you
can override widgets for ModelForm fields, similarly to the way we did it with the normal
form:

lists/forms.py.
class ItemForm(forms.models.ModelForm):

class Meta:
model = Item
fields = ('text',)

widgets = {
"text': forms.fields.TextInput(attrs={
'placeholder': 'Enter a to-do item',
'class': 'form-control input-lg',
b,
}

That gets the test passing.

Testing and Customising Form Validation

Now let’s see if the Mode1Form has picked up the same validation rules which we defined
on the model. We'll also learn how to pass data into the form, as if it came from the user:

lists/tests/test_forms.py (ch111008).
def test_form_validation_for_blank_items(self):

form = ItemForm(data={'text': ''})
form.save()

That gives us:

ValueError: The Item could not be created because the data didn't validate.

198 | Chapter11: A Simple Form

https://docs.djangoproject.com/en/1.8/topics/forms/modelforms/

Good, the form won’t allow you to save if you give it an empty item text.

Now let’s see if we can get it to use the specific error message that we want. The API for
checking form validation before we try and save any data is a function called is_valid:

lists/tests/test_forms.py (ch111009).
def test_form_validation_for_blank_items(self):

form = ItemForm(data={'text': ''})
self.assertFalse(form.is_valid())
self.assertEqual(
form.errors['text'],
["You can't have an empty list item"]
)
Calling form.is_valid() returns True or False, but it also has the side effect of vali-
dating the input data, and populating the errors attribute. It’s a dictionary mapping the
names of fields to lists of errors for those fields (it’s possible for a field to have more than
one error).

That gives us:

AssertionError: ['This fileld is required.'] != ["You can't have an empty list
item"]
Django already has a default error message that we could present to the user—you might
use it if you were in a hurry to build your web app, but we care enough to make our
message special. Customising it means changing error_messages, another Meta
variable:

lists/forms.py (ch111010).
class Meta:

model = Item
fields = ('text',)
widgets = {
"text': forms.fields.TextInput(attrs={
'placeholder': 'Enter a to-do item',
'class': 'form-control input-lg',
b,
}
error_messages = {
"text': {'required': "You can't have an empty list item"}

}
0K

You know what would be even better than messing about with all these error strings?
Having a constant:

lists/forms.py (ch111011).
EMPTY_ITEM_ERROR = "You can't have an empty list item"

[...]

error_messages = {

Moving Validation LogicintoaForm | 199

"text': {'required': EMPTY_ITEM_ERROR}
}
Rerun the tests to see they pass...OK. Now we change the test:

lists/tests/test_forms.py (ch111012).
from lists.forms import EMPTY_ITEM_ERROR, ItemForm

[...]

def test_form_validation_for_blank_items(self):
form = ItemForm(data={'text': ''})
self.assertFalse(form.is_valid())
self.assertEqual(form.errors['text'], [EMPTY_ITEM_ERROR])

And the tests still pass:
0K
Great. Totes committable:

$ git status # should show lists/forms.py and tests/test_forms.py
$ git add lists
$ git commit -m "new form for list items"

Using the Form in Qur Views

I had originally thought to extend this form to capture uniqueness validation as well as
empty-item validation. But there’s a sort of corollary to the “deploy as early as possible”
lean methodology, which is “merge code as early as possible” In other words: while
building this bit of forms code, it would be easy to go on for ages, adding more and
more functionality to the form—I should know, because that’s exactly what I did during
the drafting of this chapter, and I ended up doing all sorts of work making an all-singing,
all-dancing form class before I realised it wouldn't really work for our most basic use
case.

So, instead, try and use your new bit of code as soon as possible. This makes sure you
never have unused bits of code lying around, and that you start checking your code
against “the real world” as soon as possible.

We have a form class which can render some HTML and do validation of at least one
kind of error—Ilet’s start using it! We should be able to use it in our base.html template,
and so in all of our views.

Using the Form in a View with a GET Request

Let’s start in our unit tests for the home view. Welll replace the old-style
test_home_page_returns_correct_html and test_root_url_resolves_to_home_
page_view with a set of tests that use the Django test client. We leave the old tests in at
first, to check that our new tests are equivalent:

200 | Chapter11:A Simple Form

lists/tests/test_views.py (ch111013).
from lists.forms import ItemForm

class HomePageTest(TestCase):

def test_root_url_resolves_to_home_page_view(self):

[...]

def test_home_page returns_correct_html(self):
request = HttpRequest()
[...]

def test_home_page_renders_home_template(self):
response = self.client.get('/")
self.assertTemplateUsed(response, 'home.html') #@)

def test_home_page_uses_item_form(self):
response = self.client.get('/")
self.assertIsInstance(response.context['form'], ItemForm) #@
© We'll use the helper method assertTemplateUsed to replace our old manual test
of the template.

©® We use assertIsInstance to check that our view uses the right kind of form.

That gives us:
KeyError: 'form'
So we use the form in our home page view:

lists/views.py (ch111014).
[...]
from lists.forms import ItemForm
from lists.models import Item, List

def home_page(request):
return render(request, 'home.html', {'form': ItemForm()})

OK, now lets try using it in the template—we replace the old <input ..> with
{{ form.text }}:

lists/templates/base.html (ch111015).
<form method="POST" action="{% block form_action %}{% endblock %}">

{{ form.text }}
{% csrf_token %}
{% if error %}
<div class="form-group has-error"s>

{{ form.text }} renders just the HTML input for the text field of the form.
Now the old test is out of date:

Using the Form in Our Views | 201

self.assertEqual(response.content.decode(), expected_html)
AssertionError: '<!DO[651 chars] <input class="form-control input-1g"
1d="[342 chars]1l>\n' != '<!DO[651 chars] \n \n
[233 chars]1>\n'

That error message is impossible to read though. Let’s clarify its message a little:

lists/tests/test_views.py (ch111016).
class HomePageTest(TestCase):
maxDiff = None #@

[...]

def test_home_page_returns_correct_html(self):
request = HttpRequest()
response = home_page(request)
expected_html = render_to_string('home.html')
self.assertMultiLineEqual(response.content.decode(), expected_html) #@
©® assertMultilineEqual is useful for comparing long strings; it gives you a diff-

style output, but it truncates long diffs by default...

O ...so that’s why we also need to set maxDiff = None on the test class.

Sure enough, it’s because our render_to_string call doesn’t know about the form:

[...]
<form method="POST" action="/lists/new">
- <input class="form-control input-1lg" id="1id_text"
name="text" placeholder="Enter a to-do item" type="text" />
+

[...]
But we can fix that:

lists/tests/test_views.py.
def test_home_page_returns_correct_html(self):
request = HttpRequest()
response = home_page(request)
expected_html = render_to_string('home.html', {'form': ItemForm()})
self.assertMultilLineEqual(response.content.decode(), expected_html)

And that gets us back to passing. We've now reassured ourselves enough that the be-
haviour has stayed the same, so it's now OK to delete the two old tests. The assertTem
plateUsed and response.context checks from the new test are sufficient for testing a
basic view with a GET request.

That leaves us with just two tests in HomePageTest:

lists/tests/test_views.py (ch111017).
class HomePageTest(TestCase):

def test_home_page_renders_home_template(self):

[...]

def test_home_page uses_item_form(self):

[...]

202 | Chapter11:A Simple Form

A Big Find and Replace

One thing we have done, though, is changed our form—it no longer uses the same id
and name attributes. You'll see if we run our functional tests that they fail the first time
they try and find the input box:

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate

element: {"method":"id","selector":"id_new_1item"}

We'll need to fix this, and it’s going to involve a big find and replace. Before we do that,
let’s do a commit, to keep the rename separate from the logic change:

$ git diff # review changes in home.html, views.py and its tests
$ git commit -am "use new form in home_page, simplify tests. NB breaks stuff"

Let’s fix the functional tests. A quick grep shows us there are several places where we’re
using id_new_item:

$ grep id_new_item functional_tests/test*

functional_tests/test_layout_and_styling.py: inputbox =
self.browser.find_element_by_1id('id_new_1item")
functional_tests/test_layout_and_styling.py: inputbox =

self.browser.find_element_by_1id('id_new_1item")
functional_tests/test_list_item_validation.py:
self.browser.find_element_by_id('id_new_item').send_keys('\n')

[...]

That’s a good call for a refactor. Let’s make a new helper method in base.py:

Sfunctional_tests/base.py (ch111018).
class FunctionalTest(StaticLiveServerTestCase):

[...]
def get_item_input_box(self):
return self.browser.find_element_by_id('id_text')
And then we use it throughout—I had to make three changes in test_simple_list_cre-
ation.py, two in test_layout_and_styling.py, and four in test_list_item_validation.py, eg:

functional_tests/test_simple_list_creation.py.
She 1s invited to enter a to-do item straight away

inputbox = self.get_item_1input_box()

functional_tests/test_list_item_validation.py.
an empty list item. She hits Enter on the empty input box

self.browser.get(self.server_url)

self.get_item_input_box().send_keys('\n")
I won’t show you every single one, I'm sure you can manage this for yourself! You can
redo the grep to check you've caught them all.

Using the Form in Qur Views | 203

We're past the first step, but now we have to bring the rest of the application code in line
with the change. We need to find any occurrences of the old id (1d_new_item) and name
(item_text) and replace them too, with id_text and text, respectively:

$ grep -r id_new_item lists/
lists/static/base.css:#id_new_item {

That’s one change, and similarly for the name:

$ grep -Ir item_text lists

lists/views.py: item = Item(text=request.POST['item_text'], list=list)
lists/views.py: item = Item(text=request.POST['item_text'],
lists/tests/test_views.py: data={'item_text': 'A new list item'}
lists/tests/test_views.py: data={'item_text': 'A new list item'}
lists/tests/test_views.py: response = self.client.post('/lists/new',
data={"'item_text': ''})

[...]

Once were done, we rerun the unit tests to check everything still works:

$ python3 manage.py test lists
Creating test database for alias 'default'...

Ran 17 tests in 0.126s

OK
Destroying test database for alias 'default'...

And the functional tests too:

$ python3 manage.py test functional_tests
[...]
File "/workspace/superlists/functional_tests/test_simple_list_creation.py",
line 40, in test_can_start_a_list_and_retrieve_it_later
return self.browser.find_element_by_id('id_text')
File "/workspace/superlists/functional_tests/base.py", line 31, in
get_item_1input_box
return self.browser.find_element_by_id('id_text')
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"id_text"}
[...]
FAILED (errors=3)

Not quite! Let’s look at where this is happening—if you check the line number from one
of the failures, you’ll see that each time after we've submitted a first item, the input box
has disappeared from the lists page.

Checking views.py and the new_list view we can see it’s because if we detect a validation
error, we're not actually passing the form to the home.html template:

204 | Chapter11:ASimple Form

lists/views.py.
except ValidationError:

error = "You can't have an empty list item"
return render(request, 'home.html', {"error": error})

We'll want to use the form in this view too. Before we make any more changes though,
let’s do a commit:

$ git status
$ git commit -am "rename all item input ids and names. still broken"

Using the Form in a View That Takes POST Requests

Now we want to adjust the unit tests for the new_11ist view, especially the one that deals
with validation. Let’s take a look at it now:

lists/tests/test_views.py.
class NewListTest(TestCase):

[...]

def test_validation_errors_are_sent_back_to_home_page_template(self):
response = self.client.post('/lists/new', data={"text': ''})
self.assertEqual(response.status_code, 200)
self.assertTemplateUsed(response, 'home.html")
expected_error = escape("You can't have an empty list item")
self.assertContains(response, expected_error)

Adapting the Unit Tests for the new_list View
For a start this test is testing too many things at once, so we’ve got an opportunity to
clarity things here. We should split out two different assertions:

o If there’s a validation error, we should render the home template, with a 200.

o If there’s a validation error, the response should contain our error text.
And we can add a new one too:
o If there’s a validation error, we should pass our form object to the template.
And while we're at it, we'll use our constant instead of the hardcoded string for that

€rror message:

lists/tests/test_views.py (ch111023).
from lists.forms import ItemForm, EMPTY_ITEM_ERROR

[...]

class NewListTest(TestCase):

[...]

def test_for_invalid_input_renders_home_template(self):
response = self.client.post('/lists/new', data={"text': ''})

Using the Form in a View That Takes POST Requests | 205

self.assertEqual(response.status_code, 200)
self.assertTemplateUsed(response, 'home.html")

def test_validation_errors_are_shown_on_home_page(self):
response = self.client.post('/lists/new', data={"text': ''})
self.assertContains(response, escape(EMPTY_ITEM_ERROR))

def test_for_invalid_input_passes_form_to_template(self):
response = self.client.post('/lists/new', data={"text': ''})
self.assertIsInstance(response.context['form'], ItemForm)
Much better. Each test is now clearly testing one thing, and, with a bit of luck, just one
will fail and tell us what to do:

$ python3 manage.py test lists
[...]

ERROR: test_for_invalid_1input_passes_form_to_template
(lists.tests.test_views.NewListTest)
Traceback (most recent call last):
File "/workspace/superlists/lists/tests/test_views.py", line 55, in
test_for_1invalid_input_passes_form_to_template
self.assertIsInstance(response.context['form'], ItemForm)
[...]

KeyError: 'form'

Ran 19 tests in 0.041s

FAILED (errors=1)

Using the Form in the View
And here’s how we use the form in the view:

lists/views.py.
def new_list(request):

form = ItemForm(data=request.POST) #@

if form.is_valid(): #@
list_ = List.objects.create()
Item.objects.create(text=request.POST['text'], list=1list_)
return redirect(list_)

else:
return render(request, 'home.html', {"form": form}) #@®

© We pass the request.POST data into the form’s constructor.

©® We use form.is_valid() to determine whether this is a good or a bad
submission.

206 | Chapter11:A Simple Form

©® In the invalid case, we pass the form down to the template, instead of our
hardcoded error string.

That view is now looking much nicer! And all our tests pass, except one:

self.assertContains(response, escape(EMPTY_ITEM_ERROR))
[...]

AssertionError: False is not true : Couldn't find 'You can't have an empty
list item' in response

Using the Form to Display Errors in the Template

We're failing because were not yet using the form to display errors in the template:

lists/templates/base.html (ch111026).
<form method="POST" action="{% block form_action %}{% endblock %}"s>

{{ form.text }}
{% csrf_token %}
{% if form.errors %}@
<div class="form-group has-error'"s
<div class="help-block"s>{{ form.text.errors }}</div>@
</div>
{% endif %}
</form>

@ form.errors contains a list of all the errors for the form.

® form.text.errors is a list of just the errors for the text field.

What does that do to our tests?

FAIL: test_validation_errors_end_up_on_lists_page
(lists.tests.test_views.ListViewTest)

[...]
AssertionError: False is not true : Couldn't find 'You can't have an empty
list item' in response
An unexpected failure—it’s actually in the tests for our final view, view_list. Because
we've changed the way errors are displayed in all templates, we're no longer showing
the error that we manually pass into the template.

That means were going to need to rework view_list as well, before we can get back to
a working state.

Using the Form in the Other View

This view handles both GET and POST requests. Let’s start with checking the form is
used in GET requests. We can have a new test for that:

Using the Form in the Other View | 207

lists/tests/test_views.py.
class ListViewTest(TestCase):

[...]

def test_displays_item_form(self):
list_ = List.objects.create()
response = self.client.get('/lists/%d/"' % (list_.id,))
self.assertIsInstance(response.context['form'], ItemForm)
self.assertContains(response, 'name="text"')

That gives:
KeyError: 'form'

Here’s a minimal implementation:

lists/views.py (ch111028).
def view_list(request, list_id):
[...]
form = ItemForm()
return render(request, 'list.html', {
"list': list_, "form": form, "error": error

b
A Helper Method for Several Short Tests

Next we want to use the form errors in the second view. We'll split our current single
test for the invalid case (test_validation_errors_end_up_on_lists_page) into sev-
eral separate ones:

lists/tests/test_views.py (ch111030).
class ListViewTest(TestCase):

[...]

def post_invalid_input(self):
list_ = List.objects.create()
return self.client.post(
"/lists/%d/' % (list_.id,),
data={"'text': ''}
)

def test_for_invalid_input_nothing_saved_to_db(self):
self.post_invalid_input()
self.assertEqual(Item.objects.count(), 0)

def test_for_invalid_input_renders_list_template(self):
response = self.post_invalid_input()
self.assertEqual(response.status_code, 200)
self.assertTemplateUsed(response, 'list.html')

def test_for_invalid_1input_passes_form_to_template(self):
response = self.post_invalid_1input()
self.assertIsInstance(response.context['form'], ItemForm)

208 | Chapter 11:ASimple Form

def test_for_invalid_input_shows_error_on_page(self):
response = self.post_invalid_input()
self.assertContains(response, escape(EMPTY_ITEM_ERROR))
By making a little helper function, post_invalid_input, we can make four separate
tests without duplicating lots of lines of code.

We've seen this several times now. It often feels more natural to write view tests as a
single, monolithic block of assertions—the view should do this and this and this then
return that with this. But breaking things out into multiple tests is definitely worthwhile;
as we saw in previous chapters, it helps you isolate the exact problem you may have,
when you later come and change your code and accidentally introduce a bug. Helper
methods are one of the tools that lower the psychological barrier.

For example, now we can see there’s just one failure, and it’s a clear one:

FAIL: test_for_1invalid_input_shows_error_on_page
(lists.tests.test_views.ListViewTest)

AssertionError: False is not true : Couldn't find 'You can't have an empty
list item' in response

Now let’s see if we can properly rewrite the view to use our form. Here’s a first cut:

lists/views.py.
def view_list(request, list_id):
list_ = List.objects.get(id=1ist_1id)
form = ItemForm()
if request.method == 'POST':
form = ItemForm(data=request.POST)
if form.is_valid():
Item.objects.create(text=request.POST['text'], list=1list_)
return redirect(list_)
return render(request, 'list.html', {'list': list_, "form": form})

That gets the unit tests passing:

Ran 23 tests in 0.086s

0K
How about the FTs?

$ python3 manage.py test functional_tests
Creating test database for alias 'default'...

Ran 3 tests in 12.154s

0K

Destroying test database for alias 'default'...
Woohoo! Can you feel that feeling of relief wash over you? We've just made a major
change to our small app—that input field, with its name and ID, is absolutely critical to
making everything work. We've touched seven or eight different files, doing a refactor

Using the Form in the Other View | 209

that’s quite involved...this is the kind of thing that, without tests, would seriously worry
me. In fact,I might well have decided that it wasn’t worth messing with code that works. ..
but, because we have a full tests suite, we can delve around in it, tidying things up, safe
in the knowledge that the tests are there to spot any mistakes we make. It just makes it
that much likelier that you're going to keep refactoring, keep tidying up, keep gardening,
keep tending your code, keep everything neatand tidy and clean and smooth and precise
and concise and functional and good.

]

S A O S S O

,/“\\WV/A\////\W\\\///“\ / f\\v\\v/\ \\/ /’f\\//‘/"m\\\

Definitely time for a commit:

$ git diff
$ git commit -am "use form in all views, back to working state"

Using the Form’s Own Save Method

There are a couple more things we can do to make our views even simpler. I've men-
tioned that forms are supposed to be able to save data to the database for us. Our case
won't quite work out of the box, because the item needs to know what list to save to, but
it’s not hard to fix that.

We start, as always, with a test. Just to illustrate what the problem is, let’s see what happens
if we just try to call form.save():

lists/tests/test_forms.py (ch111032).
def test_form_save_handles_saving_to_a_list(self):

form = ItemForm(data={'text': 'do me'})
new_item = form.save()

Django isn't happy, because an item needs to belong to a list:
django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id
Our solution is to tell the form’s save method what list it should save to:

lists/tests/test_forms.py.
from lists.models import Item, List

[...]

def test_form_save_handles_saving_to_a_list(self):
list_ = List.objects.create()

210 | Chapter 11:ASimple Form

form = ItemForm(data={'text': 'do me'})

new_item = form.save(for_list=1ist_)
self.assertEqual(new_item, Item.objects.first())
self.assertEqual(new_item.text, 'do me')
self.assertEqual(new_item.list, list)

We then make sure that the item is correctly saved to the database, with the right at-
tributes:

TypeError: save() got an unexpected keyword argument 'for_list'
And here’s how we can implement our custom save method:

lists/forms.py (ch111034).
def save(self, for_list):

self.instance.list = for_list
return super().save()

The .instance attribute on a form represents the database object that is being modified
or created. And I only learned that as I was writing this chapter! There are other ways
of getting this to work, including manually creating the object yourself, or using the
commit=False argument to save, but this is the neatest I think. We’ll explore a different
way of making a form “know” what list it’s for in the next chapter:

Ran 24 tests in 0.086s

OK
Finally we can refactor our views. new_l1ist first:

lists/views.py.
def new_list(request):

form = ItemForm(data=request.POST)
if form.is_valid():
list_ = List.objects.create()
form.save(for_list=1ist_)
return redirect(list_)
else:
return render(request, 'home.html', {"form": form})

Rerun the test to check everything still passes:

Ran 24 tests in 0.086s

OK
And now view_list:

lists/views.py.
def view_list(request, list_id):

list_ = List.objects.get(id=1ist_1id)
form = ItemForm()
if request.method == 'POST':

form = ItemForm(data=request.POST)

if form.is_valid():

form.save(for_list=1list_)

Using the Form’s Own Save Method | 211

return redirect(list_)
return render(request, 'list.html', {'list': list_, "form": form})

And we still have full passes:

Ran 24 tests in 0.111s

OK
and

Ran 3 tests in 14.367s

0K

Great! Our two views are now looking very much like “normal” Django views: they take
information from a user’s request, combine it with some custom logic or information
from the URL (list_id), pass it to a form for validation and possible saving, and then
redirect or render a template.

Forms and validation are really important in Django, and in web programming in gen-
eral, so let’s see if we can’t make a slightly more complicated one in the next chapter.

Tips
Thin views
If you find yourself looking at complex views, and having to write a lot of tests for
them, it’s time to start thinking about whether that logic could be moved elsewhere:
possibly to a form, like we’ve done here. Another possible place would be a custom
method on the model class. And—once the complexity of the app demands it—out
of Django-specific files and into your own classes and functions, that capture your
core business logic.

Each test should test one thing
The heuristic is to be suspicious if there’s more than one assertion in a test. Some-
times two assertions are closely related, so they belong together. But often your first
draft of a test ends up testing multiple behaviours, and it’s worth rewriting it as
several tests. Helper functions can keep them from getting too bloated.

212 | Chapter 11:ASimple Form

CHAPTER 12
More Advanced Forms

Now let’s look at some more advanced forms usage. We've helped our users to avoid
blank list items, now let’s help them avoid duplicate items.

This chapter goes into more intricate details of Django’s form validation, and you can
consider it optional if you already know all about customising Django forms. If you're
still learning Django, there’s good stuff in here. If you want to skip ahead, that's OK too.
Make sure you take a quick look at the aside on developer stupidity, and the recap on
testing views at the end.

Another FT for Duplicate Items

We add a second test method to ItemvValidationTest:

functional_tests/test_list_item_validation.py (ch121001).
def test_cannot_add_duplicate_items(self):

Edith goes to the home page and starts a new list
self.browser.get(self.server_url)
self.get_item_input_box().send_keys('Buy wellies\n')
self.check_for_row_in_list_table('1: Buy wellies')

She accidentally tries to enter a duplicate item
self.get_item_input_box().send_keys('Buy wellies\n')

She sees a helpful error message

self.check_for_row_in_list_table('1: Buy wellies')

error = self.browser.find_element_by_css_selector('.has-error')

self.assertEqual(error.text, "You've already got this in your list")
Why have two test methods rather than extending one, or having a new file and class?
It's a judgement call. These two feel closely related; they’re both about validation on the
same input field, so it feels right to keep them in the same file. On the other hand, they’re
logically separate enough that it’s practical to keep them in different methods:

213

$ python3 manage.py test functional_tests.test_list_item_validation

[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate

element: {"method":"css selector","selector":".has-error"}

Ran 2 tests in 9.613s

OK, so we know the first of the two tests passes now. Is there a way to run just the failing
one, I hear you ask? Why yes indeed:

$ python3 manage.py test functional_tests.\
test_list_item_validation.ItemValidationTest.test_cannot_add_duplicate_items

[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"css selector","selector":".has-error"}

Preventing Duplicates at the Model Layer

Here’s what we really wanted to do. It's a new test that checks that duplicate items in the
same list raise an error:

lists/tests/test_models.py (ch091028).
def test_duplicate_1items_are_1invalid(self):

list_ = List.objects.create()

Item.objects.create(list=1ist_, text='bla')

with self.assertRaises(ValidationError):
item = Item(list=1list_, text='bla')
item.full_clean()

And, while it occurs to us, we add another test to make sure we don’t overdo it on our
integrity constraints:

lists/tests/test_models.py (ch091029).
def test_CAN_save_same_1item_to_different_lists(self):

1istl = List.objects.create()
list2 = List.objects.create()
Item.objects.create(list=1ist1, text='bla')
item = Item(list=11ist2, text='bla')
item.full_clean() # should not raise
I always like to put a little comment for tests which are checking that a particular use

case should not raise an error; otherwise it can be hard to see what’s being tested.
AssertionError: ValidationError not raised
If we want to get it deliberately wrong, we can do this:

lists/models.py (ch091030).
class Item(models.Model):

text = models.TextField(default=""', unique=True)
list = models.ForeignKey(List, default=None)

That lets us check that our second test really does pick up on this problem:

Traceback (most recent call last):
File "/workspace/superlists/lists/tests/test_models.py", line 62, in

214 | Chapter 12: More Advanced Forms

test_CAN_save_same_1item_to_different_lists

item.full_clean() # should not raise

[...]
django.core.exceptions.ValidationError: {'text': ['Item with this Text already
exists.']}

An Aside on When to Test for Developer Stupidity

One of the judgement calls in testing is when you should write tests that sound like
“check we haven't done something stupid”. In general, you should be wary of these.

In this case, we've written a test to check that you can’t save duplicate items to the same
list. Now, the simplest way to get that test to pass, the way in which you’d write the least
lines of code, would be to make it impossible to save any duplicate items. That justifies
writing another test, despite the fact that it would be a “stupid” or “wrong” thing for us
to code.

But you can't be writing tests for every possible way we could have coded something
wrong. If you have a function that adds two numbers, you can write a couple of tests:

assert adder(1, 1) ==
assert adder(2, 1) == 3

But you have the right to assume that the implementation isn’t deliberately screwey or
perverse:

def adder(a, b):
unlikely code!
if a ==
return 666
else:
return a + b

One way of putting it is that you should trust yourself not to do something deliberate-
ly stupid, but not something accidentally stupid.

Just like ModelForms, models have a class Meta, and that’s where we can implement a
constraint which says that that an item must be unique for a particular list, or in other
words, that text and list must be unique together:
lists/models.py (ch091031).
class Item(models.Model):

text = models.TextField(default="")
list = models.ForeignKey(List, default=None)

class Meta:
unique_together = ('list', 'text')
You might want to take a quick peek at the Django docs on model Meta attributes at this
point.

Another FT for Duplicate Items | 215

https://docs.djangoproject.com/en/1.8/ref/models/options/

A Little Digression on Queryset Ordering and String Representations

When we run the tests they reveal an unexpected failure:

FAIL: test_saving_and_retrieving_items
(lists.tests.test_models.ListAndItemModelsTest)
Traceback (most recent call last):

File "/workspace/superlists/lists/tests/test_models.py", line 31, in
test_saving_and_retrieving_items

self.assertEqual(first_saved_item.text, 'The first (ever) list item')

AssertionError: 'Item the second' != 'The first (ever) list item'
- Item the second

[...]

Depending on your platform and its SQLite installation, you may not
see this error. You can follow along anyway; the code and tests are
interesting in their own right.

That’s a bit of a puzzler. A bit of print-based debugging:

lists/tests/test_models.py.
first_saved_item = saved_items[0]
print(first_saved_item.text)
second_saved_1item = saved_items[1]
print(second_saved_item. text)
self.assertEqual(first_saved_item.text, 'The first (ever) list item')

Will show us...

..... Item the second
The first (ever) list item

It looks like our uniqueness constraint has messed with the default ordering of queries
like Item.objects.all(). Although we already have a failing test, it's best to add a new
test that explicitly tests for ordering:

lists/tests/test_models.py (ch091032).
def test_list_ordering(self):

1istl = List.objects.create()
iteml = Item.objects.create(list=1ist1, text='11')
item2 = Item.objects.create(list=1list1, text='item 2')
item3 = Item.objects.create(list=1ist1, text='3")
self.assertEqual(

Item.objects.all(),

[item1l, item2, item3]

)
That gives us a new failure, but it's not a very readable one:

216 | Chapter 12: More Advanced Forms

AssertionError: [<Item: Item object>, <Item: Item object>, <Item: Item object>]
I= [<Item: Item object>, <Item: Item object>, <Item: Item object>]

We need a better string representation for our objects. Let’s add another unit test:

Ordinarily you would be wary of adding more failing tests when you
already have some—it makes reading test output that much more
complicated, and just generally makes you nervous. Will we ever get
back to a working state? In this case, they’re all quite simple tests, so
I’'m not worried.

lists/tests/test_models.py (ch121008).
def test_string_representation(self):

item = Item(text='some text')
self.assertEqual(str(item), 'some text')

That gives us:
AssertionError: 'Item object' != 'some text'
As well as the other two failures. Let’s start fixing them all now:

lists/models.py (ch091034).
class Item(models.Model):

[...]

def __str__(self):
return self.text

in Python 2.x versions of Django, the string representation method
used to be __unicode__. Like much string handling, this is simpli-
tied in Python 3. See the docs.

Now were down to two failures, and the ordering test has a more readable failure
message:

AssertionError: [<Item: 3>, <Item: 11>, <Item: item 2>] != [<Item: i1>, <Item:
item 2>, <Item: 3>]

We can fix that in the class Meta:

lists/models.py (ch091035).
class Meta:

ordering = ('id',)
unique_together = ('list', 'text')
Does that work?

AssertionError: [<Item: 11>, <Item: item 2>, <Item: 3>] != [<Item: 11>, <Item:
item 2>, <Item: 3>]

Another FT for Duplicate Items | 217

https://docs.djangoproject.com/en/1.8/topics/python3/#str-and-unicode-methods

Urp? Ithas worked; you can see the items are in the same order, but the tests are confused.
I keep running into this problem actually—Django querysets don’t compare well with
lists. We can fix it by converting the queryset to a list' in our test:

lists/tests/test_models.py (ch091036).
self.assertEqual(

list(Item.objects.all()),
[iteml, item2, item3]

)
That works; we get a fully passing test suite:

0K

Rewriting the Old Model Test

That long-winded model test did serendipitously help us find an unexpected bug, but
now it’s time to rewrite it. I wrote it in a very verbose style to introduce the Django
ORM, but in fact, now that we have the explicit test for ordering, we can get the same
coverage from a couple of much shorter tests. Delete test_saving_and_retriev
ing_1items and replace with this:

lists/tests/test_models.py (ch121010).
class ListAndItemModelsTest(TestCase):

def test_default_text(self):
item = Item()
self.assertEqual(item.text, '")

def test_item_is_related_to_list(self):
list_ = List.objects.create()
item = Item()
item.list = list_
item.save()
self.assertIn(item, list_.item_set.all())

[...]
That’s more than enough really—a check of the default values of attributes on a freshly
initialized model object is enough to sanity-check that we’ve probably set some fields
up in models.py. The “item is related to list” test is a real “belt and braces” test to make
sure that our foreign key relationship works.

While we're at it, we can split this file out into tests for Item and tests for List (there’s
only one of the latter, test_get_absolute_url:

1. Youcould also check out assertSequenceEqual fromunittest,and assertQuerysetEqual from Django’s
test tools, although I confess when I last looked at assertQuerysetEqual I was quite baffled...

218 | Chapter 12: More Advanced Forms

lists/tests/test_models.py (ch121011).
class ItemModelTest(TestCase):

def test_default_text(self):
[...]

class ListModelTest(TestCase):

def test_get_absolute_url(self):
[...]

That’s neater and tidier:

$ python3 manage.py test lists

[...]
Ran 29 tests in 0.092s

0K

Some Integrity Errors Do Show Up on Save

A final aside before we move on. Do you remember I mentioned in Chapter 10 that
some data integrity errors are picked up on save? It all depends on whether the integrity
constraint is actually being enforced by the database.

Try running makemigrations and you’ll see that Django wants to add the unique_to
gether constraint to the database itself, rather than just having it as an application-layer
constraint:

$ python3 manage.py makemigrations
Migrations for 'lists':
0005_auto_20140414_2038.py:
- Change Meta options on item
- Alter unique_together for item (1 constraint(s))

Now if we change our duplicates test to do a .save instead of a . full_clean...

lists/tests/test_models.py.
def test_duplicate_items_are_1invalid(self):

list_ = List.objects.create()
Item.objects.create(list=1ist_, text='bla')
with self.assertRaises(ValidationError):

item = Item(list=1ist_, text='bla')

item. full_clean()

item.save()

It gives:

ERROR: test_duplicate_items_are_1invalid (lists.tests.test_models.ItemModelTest)
[...]

return Database.Cursor.execute(self, query, params)
sqlite3.IntegrityError: UNIQUE constraint failed: lists_item.list_id,

Another FT for Duplicate Items | 219

lists_1item. text

[...]
django.db.utils.IntegrityError: UNIQUE constraint failed: lists_item.list_id,
lists_1item. text

You can see that the error bubbles up from SQLite, and it’s a different error to the one
we want, an IntegrityError instead of a ValidationError.

Let’s revert our changes to the test, and see them all passing again:

$ python3 manage.py test lists

[...]
Ran 29 tests in 0.092s
0K

And now it’s time to commit our model-layer changes:

$ git status # should show changes to tests + models and new migration

let's give our new migration a better name

$ mv lists/migrations/0005_auto* lists/migrations/0005_list_item_unique_together.py
$ git add lists

$ git diff --staged

$ git commit -am "Implement duplicate item validation at model layer”

Experimenting with Duplicate Item Validation at the
Views Layer

Let’s try running our FT, just to see where we are:

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"id_list_table"}

In case you didn't see it as it flew past, the site is 500ing.> A quick unit test at the view
level ought to clear this up:

lists/tests/test_views.py (ch121014).
class ListViewTest(TestCase):

[...]

def test_for_invalid_input_shows_error_on_page(self):

[...]

def test_duplicate_item_validation_errors_end_up_on_lists_page(self):
listl = List.objects.create()
iteml = Item.objects.create(list=1list1l, text='textey')
response = self.client.post(
"/lists/%d/" % (listl.id,),
data={'text': 'textey'}

2. Its showing a server error, code 500. Gotta get with the jargon!

220 | Chapter 12: More Advanced Forms

expected_error = escape("You've already got this in your list")
self.assertContains(response, expected_error)
self.assertTemplateUsed(response, 'list.html')
self.assertEqual(Item.objects.all().count(), 1)

Gives:

django.db.utils.IntegrityError: UNIQUE constraint failed: lists_item.list_id,
lists_1item. text

We want to avoid integrity errors! Ideally, we want the call to is_valid to somehow
notice the duplication error before we even try to save, but to do that, our form will
need to know what list it’s being used for, in advance.

Let’s put a skip on that test for now:

lists/tests/test_views.py (ch121015).
from unittest import skip

[...]

def test_duplicate_item_validation_errors_end_up_on_lists_page(self):

A More Complex Form to Handle Uniqueness Validation

The form to create a new list only needs to know one thing, the new item text. A form
which validates that list items are unique needs to know the list too. Just like we overrode
the save method on our ItemForm, this time we’ll override the constructor on our new
form class so that it knows what list it applies to.

We duplicate our tests for the previous form, tweaking them slightly:

lists/tests/test_forms.py (ch121016).
from lists.forms import (

DUPLICATE_ITEM_ERROR, EMPTY_ITEM_ERROR,
ExistingListItemForm, ItemForm

)

[...]

class ExistingListItemFormTest(TestCase):

def test_form_renders_item_text_input(self):
list_ = List.objects.create()
form = ExistingListItemForm(for_list=11ist_)
self.assertIn('placeholder="Enter a to-do item"', form.as_p())

def test_form_validation_for_blank_items(self):
list_ = List.objects.create()
form = ExistingListItemForm(for_list=11ist_, data={'text': ''})
self.assertFalse(form.is_valid())
self.assertEqual(form.errors['text'], [EMPTY_ITEM_ERROR])

A More Complex Form to Handle Uniqueness Validation | 221

def test_form_validation_for_duplicate_1items(self):

list_ = List.objects.create()

Item.objects.create(list=1list_, text='no twins!')

form = ExistinglListItemForm(for_list=1ist_, data={'text': 'no twins!'})

self.assertFalse(form.is_valid())

self.assertEqual(form.errors['text'], [DUPLICATE_ITEM_ERROR])
We can iterate through a few TDD cycles (I won't show them all, but I'm sure you'll do
them, right? Remember, the Goat sees all.) until we get a form with a custom constructor,

which just ignores its for_list argument:

lists/forms.py (ch091071).
DUPLICATE_ITEM_ERROR = "You've already got this in your list"

[...]
class ExistingListItemForm(forms.models.ModelForm):
def __init__(self, for_list, *args, **kwargs):
super().__init__(*args, **kwargs)

Gives:
ValueError: ModelForm has no model class specified.
Now let’s see if making it inherit from our existing form helps:

lists/forms.py (ch091072).
class ExistingListItemForm(ItemForm):

def __init__(self, for_list, *args, **kwargs):
super().__init__(*args, **kwargs)

That takes us down to just one failure:
FAIL: test_form_validation_for_duplicate_items
(lists.tests.test_forms.ExistinglListItemFormTest)
self.assertFalse(form.is_valid())
AssertionError: True is not false
The next step requires a little knowledge of Django’s internals, but you can read up on
it in the Django docs on model validation and form validation.

Django uses a method called validate_unique, both on forms and models, and we can
use both, in conjunction with the instance attribute:
lists/forms.py.

from django.core.exceptions import ValidationError

[...]
class ExistingListItemForm(ItemForm):
def __init_ (self, for_list, *args, **kwargs):

super().__init__(*args, **kwargs)
self.instance.list = for_list

def validate_unique(self):

222 | Chapter 12: More Advanced Forms

https://docs.djangoproject.com/en/1.8/ref/models/instances/#validating-objects
https://docs.djangoproject.com/en/1.8/ref/forms/validation/

try:
self.instance.validate_unique()
except ValidationError as e:
e.error_dict = {'text': [DUPLICATE_ITEM_ERROR]}
self._update_errors(e)
That’s a bit of Django voodoo right there, but we basically take the validation error,
adjust its error message, and then pass it back into the form. And we’re there! A quick
commit:

$ git diff
$ git commit -a

Using the Existing List Item Form in the List View

Now let’s see if we can put this form to work in our view.
We remove the skip, and while we're at it, we can use our new constant. Tidy.

lists/tests/test_views.py (ch121049).
from lists.forms import (

DUPLICATE_ITEM_ERROR, EMPTY_ITEM_ERROR,
ExistingListItemForm, ItemForm,

[...]

def test_duplicate_1item_validation_errors_end_up_on_lists_page(self):
[...]
expected_error = escape(DUPLICATE_ITEM_ERROR)

That brings back out integrity error:

django.db.utils.IntegrityError: UNIQUE constraint failed: lists_item.list_id,
lists_1item. text

Our fix for this is to switch to using the new form class. Before we implement it, let’s
find the tests where we check the form class, and adjust them:

lists/tests/test_views.py (ch121050).
class ListViewTest(TestCase):

[...]

def test_displays_item_form(self):
list_ = List.objects.create()
response = self.client.get('/lists/%d/" % (list_.id,))
self.assertIsInstance(response.context['form'], ExistingListItemForm)
self.assertContains(response, 'name="text"')

[...]
def test_for_invalid_input_passes_form_to_template(self):

response = self.post_invalid_input()
self.assertIsInstance(response.context['form'], ExistingListItemForm)

Using the Existing List Item Form in the List View | 223

That gives us:

AssertionError: <ItemForm bound=False, valid=False, fields=(text)> is not an
instance of <class 'lists.forms.ExistingListItemForm'>

So we can adjust the view:

lists/views.py (ch121051).
from lists.forms import ExistinglListItemForm, ItemForm

[...]
def view_list(request, list_1id):
list_ = List.objects.get(id=1ist_1id)
form = ExistinglListItemForm(for_list=11ist_)
if request.method == 'POST':
form = ExistingListItemForm(for_list=11ist_, data=request.POST)
if form.is_valid():
form.save()

[...]
And that almost tixes everything, except for an unexpected fail:

TypeError: save() missing 1 required positional argument: 'for_list'

Our custom save method from the parent ItemForm is no longer needed. Let’s make a
quick unit test for that:

lists/tests/test_forms.py (ch121053).
def test_form_save(self):

list_ = List.objects.create()

form = ExistinglListItemForm(for_list=1ist_, data={'text': 'hi'})
new_item = form.save()

self.assertEqual(new_1item, Item.objects.all()[0])

We can make our form call the grandparent save method:

lists/forms.py (ch121054).
def save(self):
return forms.models.ModelForm.save(self)

Personal opinion here: I could have used super, but I prefer not to
use super when it requires arguments, eg to get a grandparent meth-
od. I find Python 3’s super() with no args awesome to get the im-
mediate parent. Anything else is too error-prone, and I find it ugly
besides. YMMV.

And we're there! All the unit tests pass:

$ python3 manage.py test lists

[...]
Ran 34 tests in 0.082s

0K

And so does our FT for validation:

224 | Chapter 12: More Advanced Forms

$ python3 manage.py test functional_tests.test_list_item_validation

Creating

test database for alias 'default'...

Ran 2 tests in 12.048s

0K

Destroying test database for alias 'default'...

As a final check, we rerun all the FTs:

$ python3 manage.py test functional_tests

Creating

test database for alias 'default'...

Ran 4 tests in 19.048s

0K

Destroying test database for alias 'default'...

Hooray! Time for a final commit, and a wrap-up of what we’ve learned about testing
views over the last few chapters.

def

def

def

def

def

def

def

def

def

def

def

Recap: What to Test in Views

Partial listing showing all view tests and assertions.
class ListViewTest(TestCase):

test_uses_list_template(self):

response = self.client.get('/lists/%d/' % (list_.id,)) #0
self.assertTemplateUsed(response, 'list.html') #e
test_passes_correct_list_to_template(self):
self.assertEqual(response.context['list'], correct_list) #e
test_displays_item_form(self):
self.assertIsInstance(response.context['form'], ExistingListItemForm) #o
self.assertContains(response, 'name="text"')
test_displays_only_items_for_that_list(self):
self.assertContains(response, 'itemey 1') #9
self.assertContains(response, 'itemey 2') #@
self.assertNotContains(response, 'other list item 1") #ﬂ
test_can_save_a_POST_request_to_an_existing_list(self):
self.assertEqual(Item.objects.count(), 1) #0
self.assertEqual(new_item.text, 'A new item for an existing list') #Q
test_POST_redirects_to_list_view(self):

self.assertRedirects(response, '/lists/%d/' % (correct_list.id,)) #@
test_for_invalid_input_nothing_saved_to_db(self):
self.assertEqual(Item.objects.count(), 0) #m
test_for_invalid_input_renders_list_template(self):
self.assertEqual(response.status_code, 200)
self.assertTemplateUsed(response, 'list.html') #@
test_for_invalid_input_passes_form_to_template(self):
self.assertIsInstance(response.context['form'], ExistingListItemForm) #@
test_for_invalid_input_shows_error_on_page(self):
self.assertContains(response, escape(EMPTY_ITEM_ERROR)) #@
test_duplicate_1item_validation_errors_end_up_on_lists_page(self):
self.assertContains(response, expected_error)

Using the Existing List Item Form in the List View

225

self.assertTemplateUsed(response, 'list.html')
self.assertEqual(Item.objects.all().count(), 1)

Use the Django test client.
Check the template used. Then, check each item in the template context.

Check any objects are the right ones, or querysets have the correct items.

000

Check any forms are of the correct class.

© O Test any template logic: any for or 1f should get a minimal test.

© O For views that handle POST requests, make sure you test both the valid case and
® @ the invalid case.
(12]

® @ Sanity-check that your form is rendered, and its errors are displayed.

Why these points? Skip ahead to Appendix B, and I'll show how they are sufficient to
ensure that our views are still correct if we refactor them to start using class-based views.

Next we'll try and make our data validation more friendly by using a bit of client-side
code. Uh-oh, you know what that means...

226 | Chapter 12: More Advanced Forms

CHAPTER 13
Dipping Our Toes, Very Tentatively,
into JavaScript

Ifthe Good Lord had wanted us to enjoy ourselves, he wouldn’t have granted us his precious
gift of relentless misery.

— John Calvin (as portrayed in Calvin and the Chipmunks)

Our new validation logic is good, but wouldn’t it be nice if the error messages disap-
peared once the user started fixing the problem? For that we'd need a teeny-tiny bit of
JavaScript.

We are utterly spoiled by programming every day in such a joyful language as Python.
JavaScript is our punishment. So let’s dip our toes in, very gingerly.

I'm going to assume you know the basics of JavaScript syntax. If you
haven’t read JavaScript: The Good Parts, go and get yourself a copy
1 right away! It’s not a very long book.

Starting with an FT

Let’s add a new functional test to the ItemValidationTest class:

functional_tests/test_list_item_validation.py (ch141001).
def test_error_messages_are_cleared_on_input(self):

Edith starts a new list in a way that causes a validation error:
self.browser.get(self.server_url)
self.get_item_1input_box().send_keys('\n')

error = self.browser.find_element_by_css_selector('.has-error')
self.assertTrue(error.is_displayed()) #@

She starts typing in the input box to clear the error
self.get_item_1input_box().send_keys('a')

227

http://onemillionpoints.blogspot.co.uk/2008/08/calvin-and-chipmunks.html

She 1s pleased to see that the error message disappears
error = self.browser.find_element_by_css_selector('.has-error')
self.assertFalse(error.is_displayed()) #@®
0 O is_displayed() tells you whether an element is visible or not. We can't just rely
on checking whether the element is present in the DOM, because now we're
starting to hide elements.

That fails appropriately, but before we move on: three strikes and refactor! We've got
several places where we find the error element using CSS. Let’s move it to a helper
function:

functional_tests/test_list_item_validation.py (ch141002).

def get_error_element(self):
return self.browser.find_element_by_css_selector('.has-error')

I like to keep helper functions in the FT class that’s using them, and
only promote them to the base class when they’re actually needed
elsewhere. It stops the base class from getting too cluttered. YAGNL

And we then make five replacements in test_list_item_validation, like this one for
example:

functional_tests/test_list_item_validation.py (ch141003).
She is pleased to see that the error message disappears

error = self.get_error_element()
self.assertFalse(error.is_displayed())

We have an expected failure:

$ python3 manage.py test functional_tests.test_list_item_validation

[...]
self.assertFalse(error.is_displayed())
AssertionError: True is not false

And we can commit this as the first cut of our FT.

Setting Up a Basic JavaScript Test Runner

Choosing your testing tools in the Python and Django world is fairly straightforward.
The standard library unittest packageis perfectly adequate, and the Django test runner
also makes a good default choice. There are some alternatives out there—nose is popular,
Green is the new kid on the block, and I've personally found pytest to be very impressive.
But there is a clear default option, and it’s just fine.!

1. Admittedly once you start looking for Python BDD tools, things are a little more confusing.

228 | Chapter 13: Dipping Our Toes, Very Tentatively, into JavaScript

http://nose.readthedocs.org/
https://github.com/CleanCut/green
http://pytest.org/

Not so in the JavaScript world! We use YUT at work, but I thought I'd go out and see
whether there were any new tools out there. I was overwhelmed with options—jsUnit,
Qunit, Mocha, Chutzpah, Karma, Jasmine, and many more. And it doesn’t end there
either: as I had almost settled on one of them, Mocha,? I find out that I now need to
choose an assertion framework and a reporter, and maybe a mocking library, and it never
ends!

In the end I decided we should use QUnit because it’s simple, and it works well with
jQuery.

Make a directory called fests inside lists/static, and download the Qunit JavaScript and
CSS files into it, stripping out version numbers if necessary (I got version 1.12). We'll
also put a file called tests.html in there:

$ tree lists/static/tests/
lists/static/tests/

— qunit.css

— qunit.js

L— tests.html

The boilerplate for a QUnit HTML file looks like this, including a smoke test:

lists/static/tests/tests.html.
<!DOCTYPE html>

<html>
<head>

<meta charset="utf-8">

<title>Javascript tests</title>

<link rel="stylesheet" href="qunit.css">
</head>

<body>
<div id="qunit"></div>
<div id="qunit-fixture"s</div>
<script src="qunit.js"></script>
<script>

/*global S, test, equal */

test("smoke test", function () {
equal(1l, 1, "Maths works!");
b

</script>

</body>

</html>
Dissecting that, the important things to pick up are the fact that we pull in qunit.js using
the first <script> tag, and then use the second one to write the main body of tests.

2. Purely because it features the NyanCat test runner.

Setting Up a Basic JavaScript Test Runner | 229

http://visionmedia.github.io/mocha/#nyan-reporter
http://qunitjs.com/

Are you wondering about the /*global comment? I'm using a tool
called jslint, which is a syntax-checker for Javascript that’s integra-
ted into my editor. The comment tells it what global variables are
expected—it’s not important to the code, so don't worry about it, but
I would recommend taking a look at Javascript linters like jslint or
jshint when you get a moment. They can be very useful for avoid-
ing JavaScript “gotchas”

If you open up the file using your web browser (no need to run the dev server, just find
the file on disk) you should see something like Figure 13-1.

@ - o0~ Javascript tests - Chromium

V |7 « Javascript tests x \

< € | [file:///home/harry/Dropbox/book/source/chapter_10/superlists/lists/static/tests/tests.html v =

Javascript tests

Hide passed tests Check for Globals No try-catch

Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/28.0.1500.71 Chrome/28.0.1500.71 Safari/537.36

Tests completed in 51 milliseconds.
1 assertions of 1 passed, 0 failed.

1. smoke test (0, 1, 1)

Figure 13-1. Basic QUnit screen

Looking at the test itself, we’ll find many similarities with the Python tests we’ve been
writing so far:
test("smoke test", function () { // @

equal(l, 1, "Maths works!"); // @
b

230 | Chapter 13: Dipping Our Toes, Very Tentatively, into JavaScript

@ The test function defines a test case, a bit like def test_something(self) did
in Python. Its first argument is a name for the test, and the second is a function
for the body of the test.

® The equal function is an assertion; very much like assertEqual, it compares
two arguments. Unlike in Python, though, the message is displayed both for
failures and for passes, so it should be phrased as a positive rather than a negative.

Why not try changing those arguments to see a deliberate failure?

Using jQuery and the Fixtures Div

Let’s get a bit more comfortable with what our testing framework can do, and start using
a bit of jQuery

If you've never seen jQuery before, 'm going to try and explain it as
we go, just enough so that you won't be totally lost; but this isn’t a
jQuery tutorial. You may find it helpful to spend an hour or two
investigating jQuery at some point during this chapter.

Let’s add jQuery to our scripts, and a few elements to use in our tests:

lists/static/tests/tests.html.
<div id="qunit-fixture"s></div>

<form> @

<input name="text" />

<div class="has-error"sError text</div>
</form>

<script src="http://code.jquery.com/jquery.min.js"></script>
<script src="qunit.js"></script>
<script>

/*global S, test, equal */

test("smoke test", function () {
equal($('.has-error').is(':visible"), true); //OO
$(".has-error').hide(); //O
equal($('.has-error').is(':visible'), false); //@
H;

</script>
© The <form> and its contents are there to represent what will be on the real list
page.

Using jQuery and the FixturesDiv | 231

® jQuery magic starts here! $ is the jQuery Swiss Army knife. It's used to find bits
of the DOM. Its first argument is a CSS selector; here, we're telling it to find all
elements that have the class “error”. It returns an object that represents one or
more DOM elements. That, in turn, has various useful methods that allow us to
manipulate or find out about those elements.

© One of which is . is, which can tell us whether an element matches a particular

CSS property. Here we use :visible to check whether the element is displayed
or hidden.

O We then use jQuery’s .hide() method to hide the div. Behind the scenes, it
dynamically sets a style="display: none" on the element.

® And finally we check that it's worked, with a second equal assertion.

If you refresh the browser, you should see that all passes:
Expected results from QUnit in the browser.

2 assertions of 2 passed, 0 failed.
1. smoke test (0, 2, 2)

Time to see how fixtures work. Let’s just dupe up this test:

lists/static/tests/tests.html.
<script>

/*global S, test, equal */

test("smoke test", function () {
equal($('.has-error').is(':visible'), true);
$('.has-error').hide();
equal($('.has-error').is(':visible'), false);

b

test("smoke test 2", function () {
equal($('.has-error').is(':visible'), true);
$('.has-error').hide();
equal($('.has-error').is(':visible'), false);

s

</script>

Slightly unexpectedly, we find one of them fails—see Figure 13-2.

232 | (Chapter 13: Dipping Our Toes, Very Tentatively, into JavaScript

r

@ - o X Javascript tests - Chromium

/;’ | 7] ® Javascript tests x|

[4 & | [9 file:/{/home/harry/Dropbox/book/source/chapter_10/superlists/lists/static/tests/tests.html 2 =

Javascript tests

J Hide passed tests L Check for Globals L) No try-catch

Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/28.0.1500.71 Chrome/28.0.1500.71 Safari/537.36

Tests completed in 24 milliseconds.
3 assertions of 4 passed, 1 failed.

1. smoke test (0, 2, 2)

1. failed
Expected: true
Result: false
Diff: true false
Source: at Object.<anonymous>
(file:///home/harry/Dropbox/book/source/chapter_lo/superlists/lists/static/tests/tests.html:27:5)

2. okay

Figure 13-2. One of the two tests is failing

What’s happening here is that the first test hides the error div, so when the second test
runs, it starts out invisible.

QUnit tests do not run in a predictable order, so you can’t rely on the
first test running before the second one.

We need some way of tidying up between tests, a bit like setUp and tearDown, or like
the Django test runner would reset the database between each test. The qunit-
fixture div is what we’re looking for. Move the form in there:

lists/static/tests/tests.html.
<div id="qunit"></div>

<div id="qunit-fixture"s
<form>
<input name="text" />
<div class="has-error"sError text</div>
</form>
</div>

<script src="http://code.jquery.com/jquery.min.js"></script>

As you've probably guessed, jQuery resets the content of the fixtures div before each
test, so that gets us back to two neatly passing tests:

Using jQuery and the Fixtures Div | 233

4 assertions of 4 passed, 0 failed.
1. smoke test (0, 2, 2)
2. smoke test 2 (0, 2, 2)

Building a JavaScript Unit Test for Qur Desired
Functionality

Now that we're acquainted with our JavaScript testing tools, we can switch back to just
one test, and start to write the real thing:

lists/static/tests/tests.html.
<script>

/*global s, test, equal */

test("errors should be hidden on keypress", function () {
$('input').trigger('keypress'); // @
equal($('.has-error').is(':visible'), false);

s

</script>
© The jQuery .trigger method is mainly used for testing. It says “fire off a
JavScript DOM event on the element(s)”. Here we use the keypress event, which
is fired off by the browser behind the scenes whenever a user types something
into a particular input element.

jQuery is hiding a lot of complexity behind the scenes here. Check
out Quirksmode.org for a view on the hideous nest of differences
between the different browsers’ interpretation of events. The reason
that jQuery is so popular is that it just makes all this stuff go away.

And that gives us:

0 assertions of 1 passed, 1 failed.
1. errors should be hidden on keypress (1, 0, 1)
1. failed
Expected: false
Result: true

Let’s say we want to keep our code in a standalone JavaScript file called list.s.

lists/static/tests/tests.html.
<script src="qunit.js"></script>
<script src="../list.js"></script>
<script>

Here’s the minimal code to get that test to pass:

lists/static/list.js.
$('.has-error').hide();

234 | Chapter 13: Dipping Our Toes, Very Tentatively, into JavaScript

http://www.quirksmode.org/dom/events/index.html

It has an obvious problem. We'd better add another test:

lists/static/tests/tests.html.
test("errors should be hidden on keypress", function () {

$('input').trigger('keypress');
equal($('.has-error').is(':visible'), false);

s

test("errors not be hidden unless there is a keypress", function () {
equal($('.has-error').is(':visible'), true);

s
Now we get an expected failure:

1 assertions of 2 passed, 1 failed.
1. errors should be hidden on keypress (0, 1, 1)
2. errors not be hidden unless there is a keypress (1, 0, 1)
1. failed
Expected: true
Result: false
Diff: true false
[...]

And we can make a more realistic implementation:

lists/static/list.js.
$('input').on('keypress', function () { //@
$('.has-error').hide();
H;
© This line says: find all the input elements, and for each of them, attach an event
listener which reacts on keypress events. The event listener is the inline function,

which hides all elements that have the class .has-error.

That gets our unit tests to pass:
2 assertions of 2 passed, 0 failed.
Grand, so let’s pull in our script, and jQuery, on all our pages:

lists/templates/base.html (ch141014).
</div>
<script src="http://code.jquery.com/jquery.min.js"></script>
<script src="/static/list.js"></script>
</body>

</html>

It's good practice to put your script-loads at the end of your body
HTML, as it means the user doesn’t have to wait for all your Java-
Script to load before they can see something on the page. It also helps
to make sure most of the DOM has loaded before any scripts run.

Building a JavaScript Unit Test for Our Desired Functionality | 235

Aaaand we run our FT:

$ python3 manage.py test functional_tests.test_list_item_validation.\
ItemValidationTest.test_error_messages_are_cleared_on_input

[...]
Ran 1 test in 3.023s

0K

Hooray! That’s a commit!

Javascript Testing in the TDD Cycle

You may be wondering how these JavaScript tests fit in with our “double loop” TDD
cycle. The answer is that they play exactly the same role as our Python unit tests.

. Write an FT and see it fail.

. Figure out what kind of code you need next: Python or JavaScript?

1

2

3. Write a unit test in either language, and see it fail.

4. Write some code in either language, and make the test pass.
5

. Rinse and repeat.

Want a little more practice with JavaScript? See if you can get our
error messages to be hidden when the user clicks inside the input
element, as well as just when they type in it. You should be able to FT
it too.

Columbo Says: Onload Boilerplate and Namespacing

Oh, and onelast thing. Whenever you have some JavaScript that interacts with the DOM,
it’s always good to wrap it in some “onload” boilerplate code to make sure that the page
has fully loaded before it tries to do anything. Currently it works anyway, because we’ve
placed the <script> tag right at the bottom of the page, but we shouldn’t rely on that.

The jQuery onload boilerplate is quite minimal:

lists/static/list.js.
$(document).ready(function () {

$('input').on('keypress', function () {
$('.has-error').hide();
b;
b

236 | Chapter 13: Dipping Our Toes, Very Tentatively, into JavaScript

In addition, we’re using the magic $ function from jQuery, but sometimes other Java-
Script libraries try and use that too. It’s just an alias for the less contested name jQuery
though, so here’s the standard way of getting more fine-grained control over the
namespacing:

lists/static/list.js.

jQuery(document).ready(function ($) {

$('"input').on('keypress', function () {
$('.has-error').hide();
s

s

Read more in the jQuery .ready() docs.

We're almost ready to move on to Part III. The last step is to deploy our new code to
our servers.

A Few Things That Didn’t Make It

3.

The selector $(input) is way too greedy; it’s assigning a handler to every input
element on the page. Try the exercise to add a click handler and you’ll realise why
that’s a problem. Make it more discerning!

On a related note, were currently relying on lists.js binding listeners to whatever it
finds in the DOM when it’s loaded, which means any elements that are added dy-
namically will not have them. You'll find this is a problem if you do do the onclick
exercise, and you'll need to work around it. You could use an initialisation function
and call it in each test, or find out about the jQuery .on delegation syntax...?

At the moment, our test only checks that the JavaScript works on one page. It works
because we're including it in base.html, but if we'd only added it to home.html the
tests would still pass. It’s a judgement call, but you could choose to write an extra
test here.

The new shiny thing in the world of front-end development are MVC frameworks
like angular.js. Most tutorials for Angular use a test runner called Karma, and an
RSpec-like assertion library called Jasmine. If youre going to use angular, you'll
probably find life easier if you use those rather than Qunit.

Thanks to Vincenzo P. for pointing that one out!

AFew Things That Didn’t Make It | 237

http://api.jquery.com/ready/

JavaScript Testing Notes

One of the great advantages of Selenium is that it allows you to test that your Java-
Script really works, just as it tests your Python code.

There are many JavaScript test running libraries out there. QUnit is closely tied to
jQuery, which is the main reason I chose it.

QUnit mainly expects you to “run” your tests using an actual web browser. This has
the advantage that it’s easy to create some HTML fixtures that match the kind of
HTML your site actually contains, for tests to run against.

I don't really mean it when I say that JavaScript is awful. It can actually be quite fun.
But I'll say it again: make sure you've read JavaScript: The Good Parts.

238

Chapter 13: Dipping Our Toes, Very Tentatively, into JavaScript

CHAPTER 14
Deploying Our New Code

It’s time to deploy our brilliant new validation code to our live servers. This will be a
chance to see our automated deploy scripts in action for the second time.

At this point I want to say a huge thanks to Andrew Godwin and the
whole Django team. Up until Django 1.7, I used to have a whole long
section, entirely devoted to migrations. Migrations now “just work’,
so I was able to drop it altogether. Thanks for all the great work gang!

We start with the staging server:
$ cd deploy_tools
$ fab deploy:host=elspeth@superlists-staging.ottg.eu
Disconnecting from superlists-staging.ottg.eu... done.
Restart Gunicorn:
elspeth@server:$ sudo restart gunicorn-superlists-staging.ottg.eu

And run the tests against staging:

$ python3 manage.py test functional_tests --liveserver=superlists-staging.ottg.eu
OK

Live Deploy
Assuming all is well, we then run our deploy against live:

$ fab deploy:host=elspeth@superlists.ottg.eu

elspeth@server:$ sudo restart gunicorn-superlists.ottg.eu

239

What to Do If You See a Database Error

Because our migrations introduce a new integrity constraint, you may find that it fails
to apply because some existing data violates that constraint.

At this point you have two choices:

o Delete the database on the server and try again. After all, it’s only a toy project!

o Or, learn about data migrations. See Appendix D.

Wrap-Up: git tag the New Release

The last thing to do is to tag the release in our VCS—it’s important that we’re always
able to keep track of whats live:

$ git tag -f LIVE # needs the -f because we are replacing the old tag
$ export TAG="date +DEPLOYED-%F /%H%M"

$ git tag $TAG

$ git push -f origin LIVE $TAG

Some people don’t like to use push -f and update an existing tag, and
will instead some kind of version number to tag their releases. Use
whatever works for you.

And on that note, we can wrap up Part II, and move on to the more exciting topics that
comprise Part ITI. Can't wait!

240 | Chapter 14: Deploying Our New Code

PARTIII
More Advanced Topics

“Oh my gosh, what? Another section? Harry, I'm exhausted, it’s already been two hun-
dred pages, I don’t think I can handle a whole ‘nother section of the book. Particularly
not if it’s called “Advanced”...maybe I can get away with just skipping it?”

Oh no you can’t! This may be called the advanced section, but it’s full of really important
topics for TDD and web development. No way can you skip it. If anything, it’s even more
important than the first two sections.

We'll be talking about how to integrate third-party systems, and how to test them.
Modern web development is all about reusing existing components. We’ll cover mock-
ing and test isolation, which is really a core part of TDD, and a technique you’re going
to need for all but the simplest of codebases. We'll talk about server-side debugging, and
test fixtures, and how to set up a Continuous Integration environment. None of these
things are take-it-or-leave-it optional luxury extras for your project, they’re all vital!

Inevitably, the learning curve does get a little steeper in this section. You may find
yourself having to read things a couple of times before they sink in, or you may find
that things don’t work first go, and that you need to do a bit of debugging on your own.
But persist with it! The harder it is, the more rewarding it is. And I'm always happy to
help if you're stuck, just drop me an email, obeythetestinggoat@gmail.com.

Come on, I promise the best is yet to come!

mailto:obeythetestinggoat@gmail.com

CHAPTER 15

User Authentication, Integrating Third-
Party Plugins, and Mocking with JavaScript

Our beautiful lists site has been live for a few days, and our users are starting to come
back to us with feedback. “We love the site”, they say, “but we keep losing our lists.
Manually remembering URLs is hard. Itd be great if it could remember what lists we'd
started”

Remember Henry Ford and faster horses. Whenever you hear a user requirement, it’s
important to dig a little deeper and think—what is the real requirement here? And how
can I make it involve a cool new technology I've been wanting to try out?

Clearly the requirement here is that people want to have some kind of user account on
the site. So, without further ado, let’s dive into authentication.

Naturally we're not going to mess about with remembering passwords ourselves—be-
sides being so ’90s, secure storage of user passwords is a security nightmare we’d rather
leave to someone else. We'll use a federated authentication system instead.

(If you insist on storing your own passwords, Django’s default auth module is ready and
waiting for you. It’s nice and straightforward, and I'll leave it to you to discover on your
own.)

In this chapter, we're going to get pretty deep into a testing technique called “mocking”
Personally, I know it took me a few weeks to really get my head around mocking, so
don’t worry if it's confusing at first. In this chapter we do a lot of mocking in JavaScript.
In the next chapter we’ll do some mocking with Python, which you might find a little
easier to grasp. I would recommend reading both of them through together, and just
letting the whole concept wash over you; then come back and do them again, and see
if you understand all of the steps a little better on the second round.

243

Do let me know via obeythetestinggoat@gmail.com if you feel there’s
any particular sections where I don’t explain things well, or where I'm
going too fast.

Mozilla Persona (BrowserlD)

But which federated authentication system to use? Oauth? Openid? “Login with Face-
book”? Ugh. In my book those all have unacceptable creepy overtones; why should
Google or Facebook know what sites you're logging into and when? Thankfully there
are still some techno-hippy-idealists out there, and the lovely people at Mozilla have
cooked up a privacy-friendly auth mechanism they call “Persona’, or sometimes
“BrowserID”.

The theory goes that your web browser acts as a third party between the website that
wants to check your ID, and the website that you will use as a guarantor of your ID. The
latter may be Google or Facebook or whomever, but a clever protocol means that they
never need know which website you were logging into or when.

Ultimately, Persona may never take off as an authentication platform, but the main
lessons from the next couple of chapters should be relevant no matter what third-party
auth system you want to integrate:

o Don't test other people’s code or APIs.
o But, test that you've integrated them correctly into your own code.
o Check that everything works from the point of view of the user.

o Test that your system degrades gracefully if the third party is down.

Exploratory Coding, aka “Spiking”

Before I wrote this chapter all I'd seen of Persona was a talk at PyCon by Dan Callahan,
in which he promised it could be implemented in 30 lines of code, and magic’d his way
through a demo—in other words, I knew it not at all.

In Chapter 10 and Chapter 11 we saw that you can use a unit test as a way of exploring
a new API, but sometimes you just want to hack something together without any tests
at all, just to see if it works, to learn it or get a feel for it. That’s absolutely fine. When
learning a new tool or exploring a new possible solution, it’s often appropriate to leave
the rigorous TDD process to one side, and build a little prototype without tests, or
perhaps with very few tests. The goat doesn’t mind looking the other way for a bit.

This kind of prototyping activity is often called a “spike”, for reasons best known.

244 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

mailto:obeythetestinggoat@gmail.com
http://stackoverflow.com/questions/249969/why-are-tdd-spikes-called-spikes

The first thing I did was take a look at an existing Django-Persona integration called
Django-BrowserID, but unfortunately it didn't really support Python 3. 'm sure it will
by the time you read this, but I was quietly relieved since I was rather looking forward
to writing my own code for this!

It took me about three hours of hacking about, using a combination of code stolen from
Dan’s talk and the example code on the Persona site, but by the end I had something
which just about works. I'll take you on a tour, and then we’ll go through and “de-spike”
the implementation.

You should go ahead and add this code to your own site too, and then you can have a
play with it, try logging in with your own email address, and convince yourself that it
really does work.

Starting a Branch for the Spike

Before embarking on a spike, it’s a good idea to start a new branch, so you can still use
your VCS without worrying about your spike commits getting mixed up with your
production code:

$ git checkout -b persona-spike

Frontend and JavaScript Code

Let’s start with the frontend. I was able to cut and paste code from the Persona site and
Dan’s slides with minimal modification:

lists/templates/base.html (ch151001).
<script src="http://code.jquery.com/jquery.min.js"></script>
<script src="/static/list.js"></script>
<script src="https://login.persona.org/include.js"></script>
<script>
$(document).ready(function() {

var loginLink = document.getElementById('login');
if (loginLink) {
loginLink.onclick = function() { navigator.id.request(); };

}

var logoutLink = document.getElementById('logout');
if (logoutLink) {
logoutLink.onclick = function() { navigator.id.logout(); };

}
var currentUser = '{{ user.email }}' || null;
var csrf_token = '{{ csrf_token }}';

console.log(currentUser);

navigator.id.watch({
loggedInUser: currentUser,
onlogin: function(assertion) {
$.post('/accounts/login', {assertion: assertion, csrfmiddlewaretoken: csrf_token})
.done(function() { window.location.reload(); })

Exploratory Coding, aka “Spiking” | 245

https://github.com/mozilla/django-browserid
https://developer.mozilla.org/en-US/docs/Mozilla/Persona

.fail(function() { navigator.id.logout();});
1,
onlogout: function() {
$.post('/accounts/logout")
.always(function() { window.location.reload(); });
}
b

H;

</script>
The Persona JavaScript library gives us a special navigator.id object. We bind its
request method to our link called “login” (which I've put in any old where at the top
of the page), and similarly a “logout” link gets bound to a logout function:

lists/templates/base.html (ch151002).
<body>

<div class="container"s

<div class="navbar">
{% if user.email %}
<p>Logged in as {{ user.email}}</p>
<p>Sign out</p>
{% else %}
Sign in
{% endif %}
<p>User: {{user}}</p>
</div>

<div class="row">

[...]
The Browser-ID Protocol

Persona will now pop up its authentication dialog box if users click the log in link. What
happens next is the clever part of the Persona protocol: the user enters an email address,
and the browser takes care of validating that email address, by taking the user to the
email provider (Google, Yahoo, or whoever), and validating it with them.

Let’s say it's Google: Google asks the user to confirm their username and password, and
maybe even does some two-factor auth wizardry, and is then prepared to confirm to
your browser that you are who you say you are. Google then passes a certificate back to
the browser, which is cryptographically signed to prove it’s from Google, and which
contains the user’s email address.

At this point the browser can trust that you do own that email address, and it can
incidentally reuse that certificate for any other websites that use Persona.

Now it combines the certificate with the domain name of the website you want to log
into in to a blob called an “assertion”, and sends them on to our site for validation.

246 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

This is the point between the navigator.id.request and the navigator.id.watch
callback for onlogin—we send the assertion via POST to the login URL on our site,
which I've put at accounts/login.

On the server, we now have the job of verifying the assertion: is it really proof that the
user owns that email address? Our server can check, because Google has signed part of
the assertion with its public key. We can either write code to do the crypto for this step
ourselves, or we can use a public service from Mozilla to do it for us.

Yes, letting Mozilla do it for us totally defeats the whole privacy point,
but it’s the principle. We could do it ourselves if we wanted to. It’s left
as an exercise for the reader! There are more details on the Mozilla
site, including all the clever public key crypto that keeps Google from
knowing what site you want to log in to, but also stops replay at-
tacks and so on. Smart.

The Server Side: Custom Authentication
Next we prep an app for our accounts stuff:

$ python3 manage.py startapp accounts
Here’s the view that handles the POST to accounts/login:

accounts/views.py.
import sys
from django.contrib.auth import authenticate
from django.contrib.auth import login as auth_login
from django.shortcuts import redirect

def login(request):
print('login view', file=sys.stderr)
user = PersondAuthenticationBackend().authenticate(request.POST['assertion'])
user = authenticate(assertion=request.POST['assertion'])
if user is not None:
auth_login(request, user)
return redirect('/")
You can see that it’s clearly “spike” code from things like the commented-out line, evi-

dence of an early experiment that failed.

Here’s the authenticate function, which is implemented as a custom Django “authen-
tication backend”. (We could have done it inline in the view, but using a backend is the
Django recommended way. It would let us reuse the authentication system in the admin
site, for example.)

Exploratory Coding, aka “Spiking” | 247

https://developer.mozilla.org/en-US/docs/Mozilla/Persona/Protocol_Overview
https://developer.mozilla.org/en-US/docs/Mozilla/Persona/Protocol_Overview

accounts/authentication.py.
import requests
import sys
from accounts.models import ListUser

class PersonaAuthenticationBackend(object):

def authenticate(self, assertion):
Send the assertion to Mozilla's verifier service.
data = {'assertion': assertion, 'audience': 'localhost'}
print('sending to mozilla', data, file=sys.stderr)
resp = requests.post('https://verifier.login.persona.org/verify', data=data)
print('got', resp.content, file=sys.stderr)

Did the verifier respond?

if resp.ok:
Parse the response
verification_data = resp.json()

Check if the assertion was valid

if verification_data['status'] == 'okay':
email = verification_data['email']
try:

return self.get_user(email)
except ListUser.DoesNotExist:
return ListUser.objects.create(email=email)

def get_user(self, email):
return ListUser.objects.get(email=email)

This code is copy-pasted directly from the Mozilla site, as you can see from the ex-
planatory comments.

You'llneedtopip install requestsintoyour virtualenv.If you've never used it before,
Requests is a great alternative to the Python standard library tools for HTTP requests.

To finish off the job of customising authentication in Django, we just need a custom
user model:

accounts/models.py.
from django.contrib.auth.models import AbstractBaseUser, PermissionsMixin

from django.db import models

class ListUser(AbstractBaseUser, PermissionsMixin):
email = models.EmailField(primary_key=True)
USERNAME_FIELD = 'email'
#REQUIRED_FIELDS = ['email', 'height']

objects = ListUserManager()

def is_staff(self):
return self.emaill == 'harry.percival@example.com'

248 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

http://docs.python-requests.org/

def is_active(self):
return True
That’s what I call a minimal user model! One field, none of this firstname/lastname/
username nonsense, and, pointedly, no password! Somebody else’s problem! But, again,
you can see that this code isn’t ready for production, from the commented-out lines to
the hardcoded harry email address.

At this point I'd recommend a little browse through the Django auth
documentation.

Aside from that, you need a model manager for the user:

accounts/models.py (ch151006).

from django.contrib.auth.models import AbstractBaseUser, BaseUserManager, PermissionsMixin
class ListUserManager(BaseUserManager):

def create_user(self, email):
ListUser.objects.create(email=email)

def create_superuser(self, email, password):
self.create_user(email)

A logout view:

accounts/views.py (ch151007).
from django.contrib.auth import login as auth_login, logout as auth_logout

[...]

def logout(request):
auth_logout(request)
return redirect('/")

Some URLs for our two views:

superlists/urls.py (ch151008).
from accounts import urls as account_urls

urlpatterns = [
url(r'~$', list_views.home_page, name='home'),
url(r'~ists/", include(list_urls)),
url(r'~accounts/', include(account_urls)),
url(r'”admin/', include(admin.site.urls)),

]

and

accounts/urls.py.
from django.conf.urls import patterns, url

urlpatterns = [
url(r'~login$', 'accounts.views.login', name='login'),

Exploratory Coding, aka “Spiking” | 249

https://docs.djangoproject.com/en/1.8/topics/auth/customizing/
https://docs.djangoproject.com/en/1.8/topics/auth/customizing/

url(r'~logout$', 'accounts.views.logout', name='logout'),

]
Almost there. We switch on the auth backend and our new accounts app in settings.py:

superlists/settings.py.
INSTALLED_APPS = (

#'django.contrib.admin’,
'django.contrib.auth’,
'django.contrib.contenttypes’,
'django.contrib.sessions’',
'django.contrib.messages’',
'django.contrib.staticfiles’,
'"lists',

'accounts',

)

AUTH_USER_MODEL = 'accounts.ListUser'
AUTHENTICATION_BACKENDS = (
'accounts.authentication.PersonaAuthenticationBackend',

)

MIDDLEWARE_CLASSES = (
[...]

And a quick makemigrations to make the new user model real:

$ python3 manage.py makemigrations
Migrations for 'accounts':
0001_initial.py:
- Create model ListUser

And a migrate to build the database:

$ python3 manage.py migrate
[...]

Running migrations:
Applying accounts.0001_initial... OK

And we should be all done! Why not spin up a dev server with runserver and see how
it all looks (Figure 15-1)?

250 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

€ [@ localhost:s000/% * @| |[B~ pyconpl aQ J D d-

Sign in
User: AnonymousUser

Cliavk A mawuus Ta_NaAa

@ - 0 Mozilla Persona: A Better Way to Sign In - Mozilla Firefox

@ Mozilla Foundation (US) http oqgin.persona.org

Sign into localhost as.

harry.percival@gmail.com

30 anather emai address This & not me localhost

¥ Mozilla Persona. Simple sign-in from the non-profit behind Firefox. Learn more-» - -

® Find: [A
n A,@
S % S ®

Figure 15-1. It works! It works! Mwahahahaha.

That’s pretty much it! Along the way, I had to fight pretty hard, including debugging
Ajax requests by hand in the Firefox console (see Figure 15-2), catching infinite page-
refresh loops, stumbling over several missing attributes on my custom user model (be-
cause I didn’t read the docs properly), and even one point switching to the dev version
of Django to overcome a bug, which thankfully turned out to be irrelevant.

Exploratory Coding, aka “Spiking” | 251

To-Do lists - Mozilla Firefox (Private Browsing) @
File Edit View History Bookmarks Tools Help
1 To-Do lists “E‘
€ | @ localhost:s000/2 ~ €| B~ Google a I & g

Superlists Sign in | |

Network

File > i Headers i ms
localhost:8000 Request URL: http://localhost /TODO

Request method: PO

Status code: © 484 NOT FOUND

Version: HTTP/

bootstrap.min.css localhost:8000
base.css localhost:8000
jquery.min.js code.jquery.com
include.js login.persona.org

accounts.js localhost:8000 P e (L 122 L

list.js localhost:8000 j Content-Type "text/html”

Date "Tue, 15 Apr 2014 20:36:39 GMT"
Server "WSGIServer/0.2 CPython/3.3.2+"
X-Frame-Options "SAMEORIGIN"
Request headers (0.481 KB)

Host "localhost:8000"

User-Agent "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:27.0) Geck
grain.png static.login.persona.org Accept "/

communication_iframe login.persona.org
communication_iframe.js static.login.persona.org
dialog.js static.login.persona.org
session_context login.persona.org
dialog.css static.login.persona.org

)/0(0 000 O] 0 O OO0OO0O0 O

persona-logo-transparent.png static.login.persona.org Accept-Language "en-gb,en;q=0.5"
arrow_grey.png static.login.persona.org Accept-Encoding "gzip, deflate”
POST TODO localhost:8000 DNT "1"
Content-Type "application/x-www-form-urlencoded; charset=UT|
All HTML Css Js X Fonts Images Media Flash X-Requested-with "XMLHttpRequest”
O~ % S

Figure 15-2. Debugging Ajax requests in the Firefox network console

If it's not working when you try it manually, and you see “audience
mismatch” errors in the console, make sure you're visiting the site via
http://localhost:8000, and not 127.0.0.1.

Aside: Logging to stderr

While spiking, it’s pretty critical to be able to see exceptions that are being generated by
your code. Annoyingly, Django doesn’t send all exceptions to the terminal by default,
but you can make it do so with a variable called LOGGING in settings.py:

superlists/settings.py (ch151011).
LOGGING = {

'version': 1,
'disable_existing_loggers': False,
'handlers': {
'console': {
'level': 'DEBUG',
'class': 'logging.StreamHandler',

252 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

1

+s
'loggers': {
'django': {
'handlers': ['console'],
1
},

'root': {'level': 'INFO'},
}
Django uses the rather “enterprisey” logging package from the Python standard library,
which, although very fully featured, does suffer from a fairly steep learning curve. It’s
covered a little more in Chapter 17, and in the Django docs.

But we now have a working solution! Let’s commit it on our spike branch:

$ git status
$ git add accounts
$ git commit -am "spiked in custom auth backend with persona"

Time to de-spike!

De-spiking

De-spiking means rewriting your prototype code using TDD. We now have enough
information to “do it properly”. So what's the first step? An FT of course!

We'll stay on the spike branch for now, to see our FT pass against our spiked code. Then
we'll go back to master, and commit just the FT.

Here’s the basic outline:

functional_tests/test_login.py.
from .base import FunctionalTest

class LoginTest(FunctionalTest):

def test_login_with_persona(self):
Edith goes to the awesome superlists site
and notices a "Sign in" link for the first time.
self.browser.get(self.server_url)
self.browser.find_element_by_id('login').click()

A Persona login box appears
self.switch_to_new_window('Mozilla Persona') #@)

Edith logs in with her email address
Use mockmyid.com for test email
self.browser.find_element_by_1id(
"authentication_email' #@®
).send_keys('edith@mockmyid.com') #@

De-spiking | 253

https://docs.djangoproject.com/en/1.8/topics/logging/

self.browser.find_element_by_tag_name('button').click()

The Persona window closes
self.switch_to_new_window('To-Do")

She can see that she is logged in
self.wait_for_element_with_id('logout') #@

navbar = self.browser.find_element_by css_selector('.navbar')
self.assertIn('edith@mockmyid.com', navbar.text)

@ O The FT needs a couple of helper functions, both of which do something that’s
very common in Selenium testing: they wait for something to happen. Listings
for them follow.

® Ifound the ID of the Persona login box by opening the site manually, and using
the Firefox debug toolbar (Ctrl+Shift+I). See Figure 15-3.

© Rather than using a “real” email address and having to click through their
authentication screens, we use a “fake” provider. MockMyID is one; you can also
check out Persona Test User.

Evaluate Third-Party Systems’ Test Infrastructure

Testing should be part of how you evaluate third-party systems. When you integrate
with an external service, youre going to have to think through how youre going to work
with it in your functional tests.

Often you can just use the same service in your tests and in “real life”. But sometimes
youre going to want to run against a “test” version of the third-party service. In the case
of this integration with Persona, we could have used a “real” email address; when I first
wrote this chapter, I actually had an FT that clicked through to Yahoo.com, and logged
in with a throwaway account I'd created. The problem is that it made the FT totally
reliant on particular details of Yahoo's email login screens, which can change at any time.

Instead, MockMyID and PersonaTestUser are both linked to from the Persona docu-
mentation, and they work very smoothly, letting us test just the important parts of the
integration.

Perhaps more critically, think about payment systems. If you start integrating payments,
they’re going to be one of the most important parts of your site, and you’re going to want
to make sure they’re tested thoroughly...but you don’t want to be putting actual trans-
actions on real credit cards through, every time you run an FT! So most providers will
provide a “test” version of their payments API. These vary in quality (naming no names),
so make sure you investigate them thoroughly.

254 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

http://mockmyid.com
http://personatestuser.org

Mozilla Persona: A Better Way to Sign In - Mozilla Firefox (Private Browsing)

& Morzilla Foundation (US) | https://login.persona.org/sign_in

i lemail address E

By proceeding, you agree to Persona's T localhost

and

4<div id="authentication form" class="form_section
vcenter" style="width: 249px;"> 1a L
p <div Class="isMobile"></div> ~|1abel.hidden + input[type=
a<ul class="inputs"> margin-top: 8px;

D Mozilla Persona. 5imple sign-in from the non-profit behind Firefox. Learn more—

Fonts

dialog.css:1

ssword"]
email"] {
P <div class="isDesktop"></div>
a=li=
p <label class="hidden" for="authentication email"
»</label>
<input id="authentication email®
class="isDesktopOrStart” type="email"
placeholder="email address" maxlength="254"
value="" spellcheck="false" autocorrect="off"

box-shadow: 1lpx 1px Opx

rgba(255, 255, 255, 8.5), Opx 8px lpx
3px rgba(73, 173, 227, 0.4);

7|

]

C- %

the username and password must be in the dialog b.. = §lement { inline [=

Figure 15-3. Using the Debug toolbar to find locators

A Common Selenium Technique: Explicit Waits

Here’s the first of the two “wait” helper functions:

functional_tests/test_login.py (ch151014).

import time

[...]

def switch_to_new_window(self, text_in_title):

retries = 60
while retries > 0:
for handle in self.browser.window_handles:
self.browser.switch_to_window(handle)
if text_in_title in self.browser.title:
return
retries -= 1
time.sleep(0.5)
self.fail('could not find window')

De-spiking |

255

In this one we've “rolled our own” wait—we iterate through all the current browser
windows, looking for one with a particular title. If we can't find it, we do a short wait,
and try again, decrementing a retry counter.

Thisis such acommon pattern in Selenium tests that the team created an API for waiting
—it doesn’t quite handle all use cases though, so that’s why we had to roll our own the
first time around. When doing something simpler like waiting for an element with a
given ID to appear on the page, we can use the WebDriverWait class:

functional_tests/test_login.py (ch151015).
from selenium.webdriver.support.ui import WebDriverWait

[...]

def wait_for_element_with_id(self, element_1id):
WebDriverWait(self.browser, timeout=30).until(
lambda b: b.find_element_by_id(element_1id)

)
This is what Selenium calls an “explicit wait”. If you remember, we already defined an
“implicit wait” in FunctionalTest.setUp. We set that to just three seconds, which is
fine in most cases, but when we're waiting for an external service like Persona, we
sometimes need to bump that default timeout.

There are more examples in the Selenium docs, but I actually found reading the source
code more instructive—there are good docstrings!

implicitly_wailt is unreliable, especially once JavaScript is in-
volved. Prefer the “wait-for” pattern in your FT whenever you need
to check for asynchronous interactions on your pages. We'll see this
again in Chapter 20.

And if we run the FT, it works!

$ python3 manage.py test functional_tests.test_login
Creating test database for alias 'default'...

Not Found: /favicon.ico

login view

sending to mozilla {'assertion': [...]

[...]

got b'{"audience":"localhost","expires":[...]

[...]
Ran 1 test in 32.222s

OK
Destroying test database for alias 'default'...

256 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

http://docs.seleniumhq.org/docs/04_webdriver_advanced.jsp
http://code.google.com/p/selenium/source/browse/py/selenium/webdriver/support/wait.py
http://code.google.com/p/selenium/source/browse/py/selenium/webdriver/support/wait.py

You can even see some of the debug output I left in my spiked view implementations.
Now it’s time to revert all of our temporary changes, and reintroduce them one by one
in a test-driven way.

Reverting Our Spiked Code

$ git checkout master # switch back to master branch
$ rm -rf accounts # remove any trace of spiked code
$ git add functional_tests/test_login.py

$ git commit -m "FT for login with Persona"

Now we rerun the FT and let it drive our development:

$ python3 manage.py test functional_tests.test_login
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"id","selector":"login"}

[...]

The first thing it wants us to do is add alogin link. Incidentally, I prefer prefixing HTML

IDs with id_; it’s a convention to make it easy to tell the difference between classes and
IDs in HTML and CSS. So let’s tweak the FT first:

functional_tests/test_login.py (ch151017).
self.browser.find_element_by_id('id_login').click()

[...]

self.wait_for_element_with_id('id_logout')

Next a “do-nothing” login link. Bootstrap has some built-in classes for navigation bars,
so we'll use them:

lists/templates/base.html.
<div class="container">

<nav class="navbar navbar-default" role="navigation">

Superlists

Sign in
</nav>

<div class="row">
[...]
After 30 seconds, that gives:

AssertionError: could not find window

License to move on! Next thing: more JavaScript.

De-spiking | 257

JavaScript Unit Tests Involving External Components: Our
First Mocks!

To get our FT further, we're going to need to get the Persona window to pop up. For
that, we’ll need to de-spike our client-side JavaScript code that uses the Persona libraries.
We'll test-drive that using JavaScript unit tests and mocking.

Housekeeping: A Site-Wide Static Files Folder

A bit of housekeeping first: create a site-wide static files directory inside superlists/

superlists, and move all the Bootsrap CSS, QUnit code, and base.css into it, so it looks
like this:

$ tree superlists -L 3 -I __pycache_

superlists

|_

__init__.py

}— settings.py

— static

}— base.css

— bootstrap

| | css

| F fonts

| s

L— tests
— qunit.css
L— qunit.js

— urls.py
L— wsgi.py

6 directories, 7 files

Always do a commit before and after a bit of housekeeping like this.

That means adjusting our existing JavaScript unit tests:

lists/static/tests/tests.html (ch151020).
<link rel="stylesheet" href="../../../superlists/static/tests/qunit.css">

[...]

<script src="http://code.jquery.com/jquery.min.js"></script>
<script src="../../../superlists/static/tests/qunit.js"></script>
<script src="../list.js"></script>

And we check they still work, by opening them up in a browser:

258 |

Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

2 assertions of 2 passed, 0 failed.
Here’s how we tell our settings file about the new static folder:

superlists/settings.py.
[...]
STATIC_ROOT = os.path.abspath(os.path.join(BASE_DIR, '../static'))
STATICFILES_DIRS = (
os.path.join(BASE_DIR, 'superlists', 'static'),
)

I recommend reintroducing the LOGGING setting from earlier at this
point. There’s no need for an explicit test for it; our current test suite
will let us know in the unlikely event that it breaks anything. As we’ll
find out in Chapter 17, it'll be useful for debugging later.

And we can quickly run the layout + styling FT to check the CSS all still works:

$ python3 manage.py test functional_tests.test_layout_and_styling

[...]

0K
Next, create an app called accounts to hold all the code related to login. That will include
our Persona JavaScript stuff:

$ python3 manage.py startapp accounts

$ mkdir -p accounts/static/tests
That’s the housekeeping done. Now’s a good time for a commit. Then, let’s take another
look at our spiked-in javascript:

var loginLink = document.getElementById('login');

if (loginLink) {

loginLink.onclick = function() { navigator.id.request(); };

}
Mocking: Who, Why, What?

We want our login linK’s on-click to be bound to a function provided by the Persona
library, navigator.id.request.

Now we don’t want to call the actual third-party function in our unit tests, because we
don’t want our unit tests popping up Persona windows all over the shop. So instead, we
are going to do what’s called “mocking it out™ creating a “fake” or “mock” implemen-
tation of the third-party API for our tests to run against.

What we’re going to do is replace the real navigator object with a fake one that we've
built ourselves, one that will be able to tell us what happens to it.

JavaScript Unit Tests Involving External Components: Our First Mocks! | 259

I had hoped that our first Mock example was going to be in Python,
but it looks like it's going to be JavaScript instead. Needs must. You
may find it's worth rereading the rest of the chapter a couple of times
after you get to the end of it, to let it all sink in.

Namespacing

In the context of base.html, navigator is just an object in the global scope, as provided
by the include.js <script>tag that we get from Mozilla. Testing global variables is a pain
though, so we can turn it into a local variable by passing it into an “initialize™ function.
The code we'll end up with in base.html will look like this:

lists/templates/base.html.
<script src="/static/accounts/accounts.js"></script>

<script>
$(document).ready(function() {

Superlists.Accounts.initialize(navigator)

s

</[script>
I've specified that our initialize function will be namespaced inside some nested
objects, Superlists.Accounts. JavaScript suffers from a programming model that’s tied
into a global scope, and this sort of namespacing/naming convention helps to keep
things under control. Lots of JavaScript libraries might want to call a function initial
ize, but very few will call it Superlists.Accounts.initialize!?

This call to initialize is simple enough that I'm happy it doesn’t need any unit tests
of its own.

A Simple Mock to Unit Tests Our initialize Function

The initialize function itself we will test. Copy the lists tests across to get the boiler-
plate HTML, and then adjust the following:

accounts/static/tests/tests.html.
<div id="qunit-fixture"s
<a 1d="1d_login">Sign in
</div>

1. UK-English speakers may bristle at that incorrect spelling of the word “initialise”. I know, it grates with me
too. But it’s an increasingly accepted convention to use American spelling in code. It makes it easier to search,
for example, and just to work together more generally, if we all agree on how words are spelt. We have to
accept that we're in the minority here, and this is one battle we’ve probably lost.

2. The new shiny in the JavaScript world for avoiding namespacing problems is called require.js. It was one thing
too many to squeeze into this book, but you should check it out.

260 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

<script src="http://code.jquery.com/jquery.min.js"></script>

<script src="../../../superlists/static/tests/qunit.js"></script>
<script src="../accounts.js"s</script>
<script>

/*global s, test, equal, sinon, Superlists */

test("initialize binds sign in button to navigator.id.request", function () {

var requestWasCalled = false; //@
var mockRequestFunction = function () { requestWasCalled = true; }; //@
var mockNavigator = { //@

id: {

request: mockRequestFunction

}

I

Superlists.Accounts.initialize(mockNavigator); //@
$('#1d_login').trigger('click"); //@

equal(requestWasCalled, true); //@
b;

</script>

One of the best ways to understand this test, or indeed any test, is to work backwards.
The first thing we see is the assertion:

(6]

We are asserting that a variable called requestiWasCalled is true. We're checking
that, one way or another, the request function, as in navigator.id.request,
was called.

Called when? When a click event happens to the id_login element.

Before we trigger that click event, we call our Superlists.Accounts.initial
ize function, just like we will on the real page. The only difference is, instead of
passing it the real global navigator object from Persona, we pass in a fake one
called mockNavigator.?

That’s defined as a generic JavaScript object, with an attribute called id which
in turn has an attribute called request, which were assigning to a variable called
mockRequestFunction.

mockRequestFunction we define as a very simple function, which if called will
simply set the value of the requesthWasCalled variable to true.

And finally (firstly?) we make sure that requestWasCalled starts out as false.

3. I've called this object a “mock’, but it's probably more correctly called a “spy”. We don’t have to concern

ourselves with the differences in this book, but for more on the general class of tools called “Test Doubles”,
including the difference between stubs, mocks, fakes, and spies, see Mocks, Fakes and Stubs by Emily Bache.

JavaScript Unit Tests Involving External Components: Our First Mocks! | 261

https://leanpub.com/mocks-fakes-stubs

The upshot of all this is: the only way this test will pass is if our initialize function
binds the click event on id_login to the method .1id.request of the object we pass
it. If we get the tests passing when we use the mock object, we are reassured that our
initialize function will also do the right thing when we give it a real object on our
real page.

Does that make sense? Lets play around with the test and see if we can get the hang
of it.

When testing events on DOM elements, you need an actual element
to trigger events against, and to register listeners on. If you forget, it’s
a particularly fiendish test bug, because . trigger will just silently no-
op, and you’ll be left scratching your head about why it’s not work-
ing. So don’t forget to add the inside the qunit-
fixture div!

Our first error is this:

1. Died on test #1
@file:///workspace/superlists/accounts/static/tests/tests.html:35:
Superlists is not defined

That’s the equivalent of an ImportError in Python. Let’s start work on accounts/static/
accounts.js:

accounts/static/accounts.js.
window.Superlists = null;

Just as in Python we might do Superlists = None, here we do window.Superlists =
null. Using window. makes sure we get the global object:

1. Died on test #1
@file:///workspace/superlists/accounts/static/tests/tests.html:35:
Superlists is null

OK, next baby step or two:

accounts/static/accounts.js.
window.Superlists = {

Accounts: {}
b
gives:*

4. In the real world, when setting up a namespace like this, you'd want to follow a sort of “add-or-create” pattern,
so that, if there’s already a window.Superlists in the scope, we extend it rather than replacing it. win
dow.Superlists = window.Superlists || {} is one formulation, and jQuery’s $.extend is another
possibilty. But, there’s already a lot of content in this chapter, and I thought this was probably one too many
things to talk about!

262 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

Superlists.Accounts.initialize is not a function
So let’s make it a function:

accounts/static/accounts.js.
window.Superlists = {
Accounts: {
initialize: function () {}
}
¥
And now we get a real test failure instead of just errors:

1. initialize binds sign in button to navigator.id.request (1, 0, 1)

1. failed
Expected: true
Result: false

Next—let’s separate defining our initialize function from the part where we export
it into the Superlists namespace. We'll also do a console. log, which is the JavaScript
equivalent of a debug-print, to take a look at what the initialize function is being called
with:
accounts/static/accounts.js (ch151028).
var initialize = function (navigator) {
console.log(navigator);

b

window.Superlists = {
Accounts: {
initialize: initialize
}
¥
In Firefox and I believe Chrome also, you can use the shortcut Ctrl-Shift-I to bring up
the JavaScript console, and see the [object Object] that was logged (see Figure 15-4). If
you click on it, you can see it has the properties we defined in our test: an id, and inside

that, a function called request.

JavaScript Unit Tests Involving External Components: Our First Mocks! | 263

r Bl

x — O X% Javascript tests - Mozilla Firefox

]FHI 4 ‘inst... Hﬁo'Reilly...]l Test-Dri... Il[]Tn-Dn listsH[ii} file...htmlHECumpo... H[i] Javascri...]lfi}xJa... 8| P ogp v

@ @ file:///home/harry/Dropbox/book/source/chapter_14/superlists/a + @ B~ jqueryextend Q 4 @ fﬁ,-

Javascript tests \

[Hide passed tests (| Check for Globals [No try-catch

Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:24.0) Gecko/20100101 Firefox/24.0

Tests completed in 48 milliseconds.
0 assertions of 1 passed, 1 failed.

Rerun

true

Console

Net |~ CsS|~| (@ X5 |~ Security ~ ®Logging ~
01:11:05.458 object Object

¥ id: [object Object]
¥ request: [object Function]

s: nu N
N
» > ype: [object Object] <
#® Find: | Appendix Il 4 Previous » Next - Highlightall & Matchcase
O = sS®

Figure 15-4. Debugging in the JavaScript console

So let’s now just pile in and get the test to pass:

accounts/static/accounts.js (ch151029).
var initialize = function (navigator) {

navigator.id.request();
IH
That gets the tests to pass, but it’s not quite the implementation we want. We're calling
navigator.id.request always, instead of only on click. We'll need to adjust our tests.

1 assertions of 1 passed, 0 failed.
1. initialize binds sign in button to navigator.id.request (0, 1, 1)

Before we do, let’s just have a play around to see if we really understand whats going
on. What happens if we do this?

accounts/static/accounts.js (ch151029-1).
var initialize = function (navigator) {

navigator.id.request();
navigator.id.doSomethingElse();
b
We get:

264 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

1. Died on test #1
@file:///workspace/superlists/accounts/static/tests/tests.html:35:
navigator.id.doSomethingElse is not a function

You see, the mock navigator object that we pass in is entirely under our control. It has
only the attributes and methods we give it. You can play around with it now if you like:

accounts/static/tests/tests.html.
var mockNavigator = {

id: {
request: mockRequestFunction,
doSomethingElse: function () { console.log("called me!");}

Y
That will give you a pass, and if you open up the debug window, you'll see:

[01:22:27.456] "called me!"

Does that help to see what’s going on? Let’s revert those last two changes, and tweak our
unit test so that it checks the request function is only called after we fire off the click
event. We also add some error messages to help see which of the two equal assertions
is failing:

accounts/static/tests/tests.html (ch151032).
var mockNavigator = {

id: {
request: mockRequestFunction

}
};
Superlists.Accounts.initialize(mockNavigator);
equal(requestWasCalled, false, 'check request not called before click');
$('#1d_login').trigger('click');
equal(requestWasCalled, true, 'check request called after click');

Assertion messages (the third argument to equal), in QUnit, are ac-
tually “success” messages. Rather than only being displayed if the test
fails, they are also displayed when the test passes. That’s why they have
the positive phrasing.

Now we get a neater failure:

1 assertions of 2 passed, 1 failed.
1. initialize binds sign in button to navigator.id.request (1, 1, 2)
1. check request not called before click
Expected: false
Result: true

So let’s make it so that the call to navigator.id.request only happens if our id_log
in is clicked:

JavaScript Unit Tests Involving External Components: Our First Mocks! | 265

accounts/static/accounts.js (ch151033).
/*global S */

var initialize = function (navigator) {
$('#1d_login').on('click', function () {
navigator.id.request();
b;
b
[...]
That passes. A good start! Let’s try pulling it into our template:

lists/templates/base.html.

<script src="http://code.jquery.com/jquery.min.js"></script>
<script src="https://login.persona.org/include.js"></script>
<script src="/static/accounts.js"></script>
<script src="/static/list.js"></script>
<script>

/*global S, Superlists, navigator */

$(document).ready(function () {

Superlists.Accounts.initialize(navigator);

b;
</script>
</body>

We also need to add the accounts app to settings.py, otherwise it won't be serving the
static file at accounts/static/accounts.js:

superlists/settings.py.
+++ b/superlists/settings.py
@@ -37,4 +37,5 @@ INSTALLED_APPS = (
"lists',
+ 'accounts’',
)
A quick check on the FT...doesn’t get any further unfortunately. To see why, we can

open up the site manually, and check the JavaScript debug console:

[01:36:54.572] Error: navigator.id.watch must be called before
navigator.id.request @ https://login.persona.org/include.js:8

More Advanced Mocking

We now need to call Mozilla’s navigator.id.watch correctly. Taking another look at
our spike, it should be something like this:

var currentUser = '{{ user.email }}' || null;
var csrf_token = '{{ csrf_token }}';
console.log(currentUser);

navigator.id.watch({
loggedInUser: currentUser, //‘}
onlogin: function(assertion) {
$.post('/accounts/login', {assertion: assertion, csrfmiddlewaretoken: csrf_token}) //@
.done(function() { window.location.reload(); })
.fail(function() { navigator.id.logout();});

266 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

1
onlogout: function() {
$.post('/accounts/logout")
.always(function() { window.location.reload(); });
}
b
Decoding that, the watch function needs to know a couple of things from the global

scope:

© The current user’s email, to be passed in as the loggedInUser parameter to
watch.

® The current CSRF token, to pass in the Ajax POST request to the login view.?

We've also got two hardcoded URLs in there, which would be better to get from Django,
something like this:

var urls = {
login: "{% url 'login' %}",
logout: "{% url 'logout' %}",
i¥
So that would be a third parameter to pass in from the global scope. We've already got
an initialize function, so let’s imagine using it like this:

Superlists.Accounts.initialize(navigator, user, token, urls);

Using a sinon.js mock to check we call the API correctly

“Rolling your own” mocks is possible as we've seen, and JavaScript actually makes it
relatively easy, but using a mocking library can save us a lot of heavy lifting. The most
popular one in the JavaScript world is called sinon.js. Let’s download it (from http://
sinonjs.org) and put it in our site-wide static tests folder:

$ tree superlists/static/tests/
superlists/static/tests/

— qunit.css

— qunit.js

L— sinon.js

Next we include it in our accounts tests:

accounts/static/tests/tests.html.
<script src="http://code.jquery.com/jquery.min.js"></script>

<script src="../../../superlists/static/tests/qunit.js"></script>
<script src="../../../superlists/static/tests/sinon.js"></script>
<script src="../accounts.js"></script>

5. Incidentally, notice we use {{ csrf_token }} which gives you the raw string token, rather than {%
csrf_token%} which would give us a full HTML tag, <input type="hidden" name="etc etc.

JavaScript Unit Tests Involving External Components: Our First Mocks! | 267

http://sinonjs.org
http://sinonjs.org

And now we can write a test that uses Sinon’s mock object:®

accounts/static/tests/tests.html (ch151038).
test("initilalize calls navigator.id.watch", function () {

var user = 'current user';
var token = 'csrf token';
var urls = {login: 'login url', logout: 'logout url'};
var mockNavigator = {

id: {

watch: sinon.mock() //@

}

b

Superlists.Accounts.initialize(mockNavigator, user, token, urls);

equal(
mockNavigator.id.watch.calledOnce, //@
true,
'check watch function called'
);
H;
@ We create a mock navigator object as before, but now instead of hand-crafting
a function to mock out the function were interested in, we use a si
non.mock() object.

® This object then records what happens to it inside special properties like calle
dOnce, which we can make assertions against.

There’s more info in the Sinon docs—the front page actually has quite a good overview.
Here’s our expected test failure:

2 assertions of 3 passed, 1 failed.

1. initialize binds sign in button to navigator.id.request (0, 2, 2)
2. initialize calls navigator.id.watch (1, 0, 1)
1. check watch function called
Expected: true
Result: false

We add in the call to watch...

accounts/static/accounts.js.
var initialize = function (navigator) {

$('#1d_login').on('click', function () {
navigator.id.request();

s

6. Sinon also has more specialised objects for “spies” and “stubs”. Mocks can do everything that spies and stubs
can do though, so I figured, one less piece of terminology would keep things simple.

268 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

http://sinonjs.org/

navigator.id.watch();
};
But that breaks the other test!

1 assertions of 2 passed, 1 failed.

1. initialize binds sign in button to navigator.id.request (1, 0, 1)

1. Died on test #1
@file:///workspace/superlists/accounts/static/tests/tests.html:36:
missing argument 1 when calling function navigator.id.watch

2. initialize calls navigator.id.watch (0, 1, 1)

That was a puzzler—that “missing argument 1 when calling function navigator.id.watch”
took me a while to figure out. Turns out that, in Firefox, .watch is a function on every
object. We'll need to mock it out in the previous test too:

accounts/static/tests/tests.html.
test("initialize binds sign in button to navigator.id.request", function () {
var requestWasCalled = false;
var mockRequestFunction = function () { requestWasCalled = true; };
var mockNavigator = {
id: {
request: mockRequestFunction,
watch: function () {}
}
b
[...]
And we're back to passing tests:

3 assertions of 3 passed, 0 failed.

1. initialize binds sign in button to navigator.id.request (0, 2, 2)
2. initialize calls navigator.id.watch (0, 1, 1)

Checking Call Arguments

We're not calling the watch function correctly yet—it needs to know the current user,
and we have to set up a couple of callbacks for login and logout. Let’s start with the user:

accounts/static/tests/tests.html (ch151042).
test("watch sees current user", function () {

var user = 'current user';
var token = 'csrf token';
var urls = {login: 'login url', logout: 'logout url'};
var mockNavigator = {

id: {

watch: sinon.mock()

}

b

Superlists.Accounts.initialize(mockNavigator, user, token, urls);

JavaScript Unit Tests Involving External Components: Our First Mocks! | 269

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/watch

var watchCallArgs = mockNavigator.id.watch.firstCall.args[0];
equal(watchCallArgs.loggedInUser, user, 'check user');

s
We have a very similar setup (which is a code smell incidentally—on the next test, we’re
going to want to do some de-duplication of test code). Then we use the .first
Call.args[0] property on the mock to check on the parameter we passed to the watch
function (args being a list of positional arguments). That gives us:

3. watch sees current user (1, 0, 1)

1. Died on test #1
@file:///workspace/superlists/accounts/static/tests/tests.html:72:
watchCallArgs is undefined

because we're not currently passing any arguments to watch. Step by step, we can do:
accounts/static/accounts.js (ch151043).
navigator.id.watch({});
and get a clearer error message:

3. watch sees current user (1, 0, 1)
1. check user
Expected: "current user"
Result: undefined

and fix it thusly:

accounts/static/accounts.js (ch151044).
var initialize = function (navigator, user, token, urls) {

[...]

navigator.id.watch({
loggedInUser: user

s
Good.

4 assertions of 4 passed, 0 failed.

QUnit setup and teardown, Testing Ajax

Next we need to check the onlogin callback, which is called when Persona has some
user authentication information, and we need to send it up to our server for validation.
That involves an Ajax call ($. post), and they’re normally quite hard to test, but sinon.js
has a helper called fake XMLHttpRequest.

This patches out the native JavaScript XMLHttpRequest class, so it’s good practice to
make sure we restore it afterwards. This gives us a good excuse to learn about QUnit’s
setup and teardown methods—they are used in a function called module, which acts a
bit like a unittest.TestCase class, and groups all the tests that follow it together.

270 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

http://sinonjs.org/docs/#server

Aside on Ajax

If you've never used Ajax before, here is a very brief overview. You may find it useful to
read up on it elsewhere before proceeding though.

Ajax stands for “Asynchronous JavaScript and XML’ although the XML part is a bit of
a misnomer these days, since everyone usually sends text or JSON rather than XML. It’s
a way of letting your client-side JavaScript code send and receive information via the
HTTP protocol (GET and POST requests), but do so “asynchronously’, i.e., without
blocking and without needing to reload the page.

Here we’re going to use Ajax requests to send a POST request to our login view, sending
it the assertion information from the Persona UL We'll use the jQuery Ajax convenience
functions.

Let’s add this “module” after the first test, before the test for "initialize calls navi
gator.id.watch":

accounts/static/tests/tests.html (ch151045).
var user, token, urls, mockNavigator, requests, xhr; //@

module("navigator.id.watch tests", {
setup: function () {
user = 'current user'; //@
token = 'csrf token';
urls = { login: 'login url', logout: 'logout url' };
mockNavigator = {
id: {
watch: sinon.mock()
}
b
xhr = sinon.useFakeXMLHttpRequest(); //©
requests = [1; //@
xhr.onCreate = function (request) { requests.push(request); }; //@
1,
teardown: function () {
mockNavigator.id.watch.reset(); //@
xhr.restore(); //@
}
b

test("initilalize calls navigator.id.watch", function () {

[...]
© We pull out the variables user, token, urls, etc. up to a higher scope, so that
they’ll be available to all of the tests in the file.

® We initialise said variables inside the setup function, which, just like a uni
ttest setUp function, will run before each test. That includes our mockNaviga
tor.

JavaScript Unit Tests Involving External Components: Our First Mocks! | 271

http://api.jquery.com/jQuery.post/
http://api.jquery.com/jQuery.post/

©® We also invoke Sinon’s useFakeXMLHttpRequest, which patches out the
browser’s Ajax capabilities.

O O There’s one more bit of boilerplate: we tell Sinon to take any Ajax requests and
put them into the requests array, so that we can inspect them in our tests.

O Finally we have the cleanup—we “reset” the mock for the watch function in
between each test (otherwise calls from one test would show up in others).

@ And we put the JavaScript XMLHttpRequest back to the way we found it.

That lets us rewrite our two tests to be much shorter:

accounts/static/tests/tests.html (ch151046).
test("initilalize calls navigator.id.watch", function () {

Superlists.Accounts.initialize(mockNavigator, user, token, urls);
equal(mockNavigator.id.watch.calledOnce, true, 'check watch function called');

s

test("watch sees current user", function () {
Superlists.Accounts.initialize(mockNavigator, user, token, urls);
var watchCallArgs = mockNavigator.id.watch.firstCall.args[0];
equal(watchCallArgs.loggedInUser, user, 'check user');

10N
And they still pass, but their name is neatly prefixed with our module name:

4 assertions of 4 passed, 0 failed.

1. initialize binds sign in button to navigator.id.request (0, 2, 2)
2. navigator.id.watch tests: initialize calls navigator.id.watch (0, 1, 1)
3. navigator.id.watch tests: watch sees current user (0, 1, 1)

And here’s how we test the onlogin callback:

accounts/static/tests/tests.html (ch151047).
test("onlogin does ajax post to login url", function () {

Superlists.Accounts.initialize(mockNavigator, user, token, urls);

var onloginCallback = mockNavigator.id.watch.firstCall.args[0].onlogin; //@
onloginCallback(); //@

equal(requests.length, 1, 'check ajax request'); //©
equal(requests[0].method, 'POST');

equal(requests[0].url, urls.login, 'check url');

s

test("onlogin sends assertion with csrf token", function () {
Superlists.Accounts.initialize(mockNavigator, user, token, urls);
var onloginCallback = mockNavigator.id.watch.firstCall.args[0].onlogin;

var assertion = 'browser-id assertion';
onloginCallback(assertion);
equal(

requests[0].requestBody,
$.param({ assertion: assertion, csrfmiddlewaretoken: token }), //@

272 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

'check POST data'
);
s
©® The mock we set on the mock navigator’s watch function lets us extract the
callback function we set as “onlogin”

® We can then actually call that function in order to test it.

© Sinon’s fakeXMLHttpRequest server will catch any Ajax requests we make, and
put them into the requests array. We can then check on things like whether it
was a POST and what URL it was sent to.

O The actual POST parameters are held in .requestBody, but they are URL-
encoded (using the &key=val syntax). jQuerys $.param function does URL-
encoding, so we use that to do our comparison.

And the two tests fail as expected:

4. navigator.id.watch tests: onlogin does ajax post to login url (1, 0, 1)

1. Died on test #1
@file:///workspace/superlists/accounts/static/tests/tests.html:78:
onloginCallback is not a function

5. navigator.id.watch tests: onlogin sends assertion with csrf token (1, 0, 1)

1. Died on test #1
@file:///workspace/superlists/accounts/static/tests/tests.html:90:
onloginCallback is not a function

Another unit-test/code cycle. Here’s the failure messages I went through:

1. check ajax request
Expected: 1

3. check url
Expected: "login url"

7 assertions of 8 passed, 1 failed.

1. check POST data

Expected:
"assertion=browser-id+assertion&csrfmiddlewaretoken=csrf+token"
Result: null

1. check POST data

Expected:
"assertion=browser-id+assertion&csrfmiddlewaretoken=csrf+token"
Result: "assertion=browser-id+assertion"

JavaScript Unit Tests Involving External Components: Our First Mocks! | 273

8 assertions of 8 passed, 0 failed.
And I ended up with this code:

accounts/static/accounts.js.
navigator.id.watch({

loggedInUser: user,
onlogin: function (assertion) {
S.post(
urls.login,
{ assertion: assertion, csrfmiddlewaretoken: token }
);
}
H;

Logout

At the time of writing, the “onlogout” part of the watch APT’s status was uncertain. It
works, but it’s not necessary for our purposes. We'll just make it a do-nothing function,
as a placeholder. Here’s a minimal test for that:

accounts/static/tests/tests.html (ch151053).
test("onlogout is just a placeholder", function () {

Superlists.Accounts.initialize(mockNavigator, user, token, urls);
var onlogoutCallback = mockNavigator.id.watch.firstCall.args[0].onlogout;
equal(typeof onlogoutCallback, "function", "onlogout should be a function");

s
And we get quite a simple logout function:

accounts/static/accounts.js (ch151054).
1,
onlogout: function () {}

s

More Nested Callbacks! Testing Asynchronous Code

This is what JavaScript’s all about folks! Thankfully, sinon.js really does help. We still
need to test that our login post methods also set some callbacks for things to do after
the POST request comes back:

.done(function() { window.location.reload(); })
.fail(function() { navigator.id.logout();});

I'm going to skip testing the window.location.reload, because it’s a bit unnecessarily
complicated,” and I think we can allow that this will be tested by our Selenium test. We
will do a test for the on-fail callback though, just to demonstrate that it is possible:

7. You can’t mock out window. location.reload, so instead you have to define an (untested) function called
Superlists.Accounts.refreshPage, and then put a mock on that to check that it gets set as the
Ajax .done callback

274 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

accounts/static/tests/tests.html (ch151055).

test("onlogin post failure should do navigator.id.logout ", function () {

b
We put a mock on the navigator.id.logout function which we’re interested

mockNavigator.id.logout = sinon.mock(); //@
Superlists.Accounts.initialize(mockNavigator, user, token, urls);

var onloginCallback = mockNavigator.id.watch.firstCall.args[0].onlogin;
var server = sinon.fakeServer.create(); //@®

server.respondWith([403, {}, "permission denied"]); //©

onloginCallback();
equal(mockNavigator.id.logout.called, false, 'should not logout yet');

server.respond(); //@
equal(mockNavigator.id.logout.called, true, 'should call logout');

We use Sinon’s fakeServer, which is an abstraction on top of the fakeXMLHtt
pRequest to simulate Ajax server responses.

We set up our fake server to respond with a 403 “permission denied” response,
to simulate what will happen for unauthorized users.

We then explicitly tell the fake server to send that response. Only then should
we see the logout call.

That gets us to this—a slight change to our spiked code:

accounts/static/accounts.js (ch151056).
onlogin: function (assertion) {
$.post(
urls.login,
{ assertion: assertion, csrfmiddlewaretoken: token }
).fail(function () { navigator.id.logout(); });
1,
onlogout: function () {}

Finally we add our window.location.reload, just to check it doesn’t break any unit

tests:

accounts/static/accounts.js (ch151057).
navigator.id.watch({

loggedInUser: user,
onlogin: function (assertion) {
$S.post(
urls.login,
{ assertion: assertion, csrfmiddlewaretoken: token }

)
.done(function () { window.location.reload(); })
.fail(function () { navigator.id.logout(); });
1,
onlogout: function () {}

s

JavaScript Unit Tests Involving External Components: Our First Mocks! | 275

Everything’s still OK:
11 assertions of 11 passed, 0 failed.

If those chained .done and . fail calls are bugging you—they bug me a little—you can
rewrite that as, eg:

var deferred = $.post(

urls.login,

{ assertion: assertion, csrfmiddlewaretoken: token }
);
deferred.done(function () { window.location.reload(); })
deferred.fail(function () { navigator.id.logout(); 1});

But async code is always a bit mind-bending. I find it just about readable as it is: “do a
post to urls.login with the assertion and csrf token, when it’s done, do a window reload,
or if it fails, do a navigator.id.logout”. You can read up on JavaScript deferreds, aka
“promises”, here.

We're approaching the moment of truth: will our FTs get any further? First, we adjust
our initialize call:

lists/templates/base.html.
<script>

/*global S, Superlists, navigator */
$(document).ready(function () {
var user = "{{ user.email }}" || null;
var token = "{{ csrf_token }}";
var urls = {
login: "TODO",
logout: "TODO",
b
Superlists.Accounts.initialize(navigator, user, token, urls);
b;

</script>
And we run the FT...

$ python3 manage.py test functional_tests.test_login
Creating test database for alias 'default'...

Not Found: /favicon.ico

Not Found: /TODO

E

ERROR: test_login_with_persona (functional_tests.test_login.LoginTest)
Traceback (most recent call last):
File "/workspace/superlists/functional_tests/test_login.py", line 47, in
test_login_with_persona
self.wait_for_element_with_id('id_logout"')
File "/workspace/superlists/functional_tests/test_login.py", line 23, in
wait_for_element_with_id
lambda b: b.find_element_by_1id(element_1id)
[...]

276 | Chapter 15: User Authentication, Integrating Third-Party Plugins, and Mocking with JavaScript

http://otaqui.com/blog/1637/introducing-javascript-promises-aka-futures-in-google-chrome-canary/

selenium.common.exceptions.TimeoutException: Message:

Ran 1 test in 28.779s

FAILED (errors=1)
Destroying test database for alias 'default'...

Hooray! I mean, I know it failed, but we saw it popping up the Persona dialog and getting
through it and everything! Next chapter: the server side.

On Spiking and Mocking with JavaScript
Spiking
Exploratory coding to find out about a new API, or to explore the feasibility of a

new solution. Spiking can be done without tests. It's a good idea to do your spike
on a new branch, and go back to master when de-spiking.

Mocking
We use mocking in unit tests when we have an external dependency that we don't
want to actually use in our tests. A mock is used to simulate the third-party APL
Whilst it is possible to “roll your own” mocks in JavaScript, a mocking framework
like Sinon provides a lot of helpful shortcuts which will make it easier to write (and
more importantly, read) your tests.

Unit testing Ajax
Sinon is a great help here. Manually mocking Ajax methods is a real pain.

JavaScript Unit Tests Involving External Components: Our First Mocks! | 277

CHAPTER 16

Server-Side Authentication and
Mocking in Python

Let’s crack on with the server side of our new auth system. In this chapter we’ll do some
more mocking, this time with Python. We’ll also find out about how to customise Djan-
go's authentication system.

A Look at Qur Spiked Login View

At the end of the last chapter, we had a working client side that was trying to send
authentication assertions to our server’s login view. Let’s start by building that view, and
then move inwards to build the backend authentication functions.

Here’s the spiked version of our login view:

def persona_login(request):
print('login view', file=sys.stderr)
#user = PersonaAuthenticationBackend().authenticate(request.POST['assertion'])
user = authenticate(assertion=request.POST['assertion']) #g)
if user is not None:
login(request, user) #@
return redirect('/")
O authenticate is our customised authentication function, which we’ll de-spike

later. Its job is to take the assertion from the client side and validate it.

® login is Django’s built-in login function. It stores a session object on the server,
tied to the user’s cookies, so that we can recognise them as being an authenticated
user on future requests.

Our authenticate function is going to make calls out, over the Internet, to Mozilla’s
servers. We don’t want that to happen in our unit test, so we’ll want to mock out
authenticate.

279

Mocking in Python

The popular mock package was added to the standard library as part of Python 3.3.' It
provides a magical object called a Mock, which is a bit like the Sinon mock objects we
saw in the last chapter, only much cooler. Check this out:

>>>
>>>
>>>
<Moc
>>>
<Moc
>>>
<Moc
>>>
<Moc
>>>
Fals
>>>
True
>>>
>>>

1

from unittest.mock import Mock

m = Mock()

m.any_attribute

k name='mock.any_attribute' 1d='140716305179152'>
m.foo

k name='mock.foo' 1d='140716297764112"'>
m.any_method()

k name='mock.any_method()' i1d='140716331211856"'>
m.foo()

k name='mock.foo()' 1d='140716331251600">
m.called

e

m.foo.called

m.bar.return_value = 1
m.bar()

A mock object would be a pretty neat thing to use to mock out the authenticate
function, wouldn’t it? Here’s how you can do that.

Testing Our View by Mocking Out authenticate

(I trust you to set up a tests folder with a dunderinit. Don't forget to delete the default

tests.py,

from
from

clas

as well.)

accounts/tests/test_views.py.
django.test import TestCase

unittest.mock import patch

s LoginViewTest(TestCase):

('accounts.views.authenticate') #@
def test_calls_authenticate_with_assertion_from_post(
self, mock_authenticate #@
):
mock_authenticate.return_value = None #@
self.client.post('/accounts/login', {'assertion': 'assert this'})
mock_authenticate.assert_called_once_with(assertion="assert this') #@

1. If you're using Python 3.2, upgrade! Or if you're stuck with it, pip3 install mock, and use from mock
instead of from unittest.mock.

280 | Chapter 16: Server-Side Authentication and Mocking in Python

@ The decorator called patch is a bit like the Sinon mock function we saw in the
last chapter. It lets you specify an object you want to “mock out” In this case
were mocking out the authenticate function, which we expect to be using in
accounts/views.py.

® The decorator adds the mock object as an additional argument to the function
it’s applied to.

© We can then configure the mock so that it has certain behaviours. Having au
thenticate return None is the simplest, so we set the special .return_value
attribute. Otherwise it would return another mock, and that would probably
confuse our view.

O Mocks can make assertions! In this case, they can check whether they were called,
and what with.

So what does that give us?

$ python3 manage.py test accounts

[...]

AttributeError: <module 'accounts.views' from

' /workspace/superlists/accounts/views.py'> does not have the attribute
'authenticate’

We tried to patch something that doesn’t exist yet. We need to import authenticate
into our views.py:*

accounts/views.py.
from django.contrib.auth import authenticate

Now we get:
AssertionError: Expected 'authenticate' to be called once. Called 0 times.

That’s our expected failure; to implement, we’ll have to wire up a URL for our login
view:

superlists/urls.py.
[...]
from lists import urls as list_urls
from accounts import urls as account_urls

urlpatterns = [
url(r'~$', list_views.home_page, name='home'),
url(r'~lists/', include(list_urls)),
url(r'~accounts/', include(account_urls)),

2. Even though were going to define our own authenticate function, we still import from django.con
trib.auth. Django will dynamically replace it with our function once we've configured it in settings.py. This
has the benefit that, if we later switch to a third-party library for our authenticate function, our views.py
doesn’t need to change.

Mockingin Python | 281

url(r'”admin/', include(admin.site.urls)),

1
accounts/urls.py.
from django.conf.urls import url
from accounts import views
urlpatterns = [
url(r'~login$', views.persona_login, name='persona_login'),
1
Will a minimal view do anything?
accounts/views.py.

from django.contrib.auth import authenticate

def persona_login():
pass

Yep:
TypeError: persona_login() takes 0 positional arguments but 1 was given

And so:

accounts/views.py (ch161008).
def persona_login(request):
pass

Then:
ValueError: The view accounts.views.persona_login didn't return an HttpResponse
object. It returned None instead.

accounts/views.py (ch161009).
from django.contrib.auth import authenticate

from django.http import HttpResponse

def persona_login(request):
return HttpResponse()

And were back to:
AssertionError: Expected 'authenticate' to be called once. Called 0 times.
We try:

accounts/views.py.
def persona_login(request):
authenticate()
return HttpResponse()

And sure enough, we get:

AssertionError: Expected call: authenticate(assertion='assert this')
Actual call: authenticate()

And then we can fix that too:

282 | Chapter 16: Server-Side Authentication and Mocking in Python

accounts/views.py.
def persona_login(request):
authenticate(assertion=request.POST['assertion'])
return HttpResponse()

OK so far. One Python function mocked and tested.

Checking the View Actually Logs the User In

But our authenticate view also needs to actually log the user in by calling the Django
auth.login function, if authenticate returns a user. Then it needs to return something
other than an empty response—since this is an Ajax view, it doesn’t need to return
HTML, just an “OK” string will do:

accounts/tests/test_views.py (ch161011).
from django.contrib.auth import get_user_model

from django.test import TestCase
from unittest.mock import patch
User = get_user_model() #@

class LoginViewTest(TestCase):
('accounts.views.authenticate')
def test_calls_authenticate_with_assertion_from_post(

[...]

('accounts.views.authenticate')
def test_returns_OK_when_user_found(
self, mock_authenticate
):
user = User.objects.create(email="'a@b.com")
user.backend = '' # required for auth_login to work
mock_authenticate.return_value = user
response = self.client.post('/accounts/login', {'assertion': 'a'})
self.assertEqual(response.content.decode(), 'OK'")

I should explain this use of get_user_model from django.contrib.auth. Its job
is to find the project’s user model, and it works whether you're using the standard
user model or a custom one (like we will be).

That test covers the desired response. Now test that the user actually gets logged in
correctly. We can do that by inspecting the Django test client, to see if the session cookie
has been set correctly.

Check out the Django docs on authentication at this point.

Mockingin Python | 283

https://docs.djangoproject.com/en/1.8/topics/auth/default/#how-to-log-a-user-in

accounts/tests/test_views.py (ch161012).
from django.contrib.auth import get_user_model, SESSION_KEY

[...]

('accounts.views.authenticate')

def test_gets_logged_1in_session_1if_authenticate_returns_a_user(
self, mock_authenticate

):
user = User.objects.create(email="'a@b.com")
user.backend = '' # required for auth_login to work
mock_authenticate.return_value = user
self.client.post('/accounts/login', {'assertion': 'a'})
self.assertEqual(self.client.session[SESSION_KEY], str(user.pk)) #@

('accounts.views.authenticate')
def test_does_not_get_logged_1in_if_authenticate_returns_None(
self, mock_authenticate

mock_authenticate.return_value = None
self.client.post('/accounts/login', {'assertion': 'a'})
self.assertNotIn(SESSION_KEY, self.client.session) #@

©® The Django test client keeps track of the session for its user. For the case where
the user gets authenticated successfully, we check that their user ID (the primary
key, or pk) is associated with their session.

® In the case where the user should not be authenticated, the SESSION_KEY should
not appear in their session.

Django Sessions: How a User’s Cookies Tell the Server She Is
Authenticated

Being an attempt to explain sessions, cookies, and authentication in Django.

Because HTTP is stateless, servers need a way of recognising different clients with every
single request. IP addresses can be shared, so the usual solution is to give each client a
unique session ID, which it will store in a cookie, and submit with every request. The
server will store that ID somewhere (by default, in the database), and then it can rec-
ognise each request that comes in as being from a particular client.

If you log in to the site using the dev server, you can actually take a look at your session
ID by hand if you like. It’s stored under the key sessionid by default. See Figure 16-1.

284 | (Chapter 16: Server-Side Authentication and Mocking in Python

To-Do lists - Mozilla Firefox ®
File Edit View History Bookmarks Tools Help

| i To-Do lists \[@‘
{ [@ localhost:3000/# v &| |B~ Google qQ & @ Buv
Superlists Logged in as harry@mockmyid.com Log out

Start a new
To-Do list

Network

File Domain Type (T} eaders Cookies Params e Timings
/ localhost:8000 html B
bootstrap.min.css localhost:8000

Response cookies
base.css localhost:8000

v esrftoken "UZIRIU3DHQRhzjgWzM2NN3kBBLXCgxQq"
expires: "2015-02-25T11:17:25.0002"
include js login.persona.org j path: /"

jquery.min.js code.jquery.com

accounts.js localhost:8000 j Request cookies

list.js localhost:8000 is esrftoken "UZIRIU3DHQRhzjgWzM2NN3kBSLXCaxQq"
communication_iframe login.persona.org html "8uop; 078ygtélsyoy”

® 0 0000000 <

session_context login.persona.org json
Js XHR Fonts Images Media Flash
©- % S ®

Figure 16-1. Examining the session cookie in the Debug toolbar

These session cookies are set for all visitors to a Django site, whether they’re logged in
or not.

When we want to recognise a client as being a logged-in and authenticated user, again,
rather asking the client to send their username and password with every single request,
the server can actually just mark that client’s session as being an authenticated session,
and associate it with a user ID in its database.

A session is a dictionary-like data structure, and the user ID is stored under the key
given by django.contrib.auth.SESSION_KEY. You can check this out in a manage.py
console if you like:

$ python3 manage.py shell
[...]

In [1]: from django.contrib.sessions.models import Session

substitute your session id from your browser cookie here

In [2]: session = Session.objects.get(
session_key="8uOpygdy9blo6969g3n40078ygt618y0y"

)

In [3]: print(session.get_decoded())
{'_auth_user_id': 'harry@mockmyid.com', '_auth_user_backend':
'accounts.authentication.PersonaAuthenticationBackend'}

You can also store any other information you like on a user’s session, as a way of tem-
porarily keeping track of some state. This works for non-logged-in users too. Just use

Mockingin Python | 285

mailto:harry@mockmyid.com

request.session inside any view, and it works as a dict. There’s more information in
the Django docs on sessions.

That gives us two failures:

$ python3 manage.py test accounts

[...]
self.assertEqual(self.client.session[SESSION_KEY], str(user.pk))

KeyError: '_auth_user_id'
[...]
AssertionError: '' != 'OK'
+ OK

The Django function that takes care of logging in a user, by marking their session, is
available at django.contrib.auth.login. So we go through another couple of TDD
cycles, until:

accounts/views.py.
from django.contrib.auth import authenticate, login

from django.http import HttpResponse

def persona_login(request):
user = authenticate(assertion=request.POST['assertion'])
if user:
login(request, user)
return HttpResponse('0K")

0K

We now have a working login view.

Testing Login with Mocks

An alternative way of testing that the Django login function was called correctly would
be to mock it out too:

accounts/tests/test_views.py.
from django.http import HttpRequest

from accounts.views import persona_login

[...]

('accounts.views.login')
('accounts.views.authenticate')
def test_calls_auth_login_if_authenticate_returns_a_user(
self, mock_authenticate, mock_login
):
request = HttpRequest()
request.POST['assertion'] = 'asserted'

286 | Chapter 16: Server-Side Authentication and Mocking in Python

https://docs.djangoproject.com/en/1.8/topics/http/sessions/

mock_user = mock_authenticate.return_value

persona_login(request)

mock_login.assert_called_once_with(request, mock_user)
The upside of this version of the test is that it doesn’t need to rely on the magic of the
Django test client, and it doesn’t need to know anything about how Django sessions
work—all you need to know is the name of the function you're supposed to call.

Its downside is that it is very much testing implementation, rather than testing behaviour
—it’s tightly coupled to the particular name of the Django login function and its API.

De-spiking Our Custom Authentication Backend: Mocking
Out an Internet Request

Our custom authentication backend is next. Here’s how it looked in the spike:
class PersonaAuthenticationBackend(object):

def authenticate(self, assertion):
Send the assertion to Mozilla's verifier service.
data = {'assertion': assertion, 'audience': 'localhost'}
print('sending to mozilla', data, file=sys.stderr)
resp = requests.post('https://verifier.login.persona.org/verify', data=data)
print('got', resp.content, file=sys.stderr)

Did the verifier respond?

if resp.ok:
Parse the response
verification_data = resp.json()

Check if the assertion was valid

if verification_data['status'] == 'okay':
email = verification_data['email']
try:

return self.get_user(email)
except ListUser.DoesNotExist:
return ListUser.objects.create(email=email)

def get_user(self, email):
return ListUser.objects.get(email=email)

Decoding this:

o We take an assertion and send it off to Mozilla using requests.post.

o We check its response code (resp.ok), and then check for a status=okay in the
response JSON.

o We then extract an email address, and either find an existing user with that address,
or create a new one.

De-spiking Our Custom Authentication Backend: Mocking Out an Internet Request | 287

1if =1 More Test

A rule of thumb for these sorts of tests: any if means an extra test, and any try/
except means an extra test, so this should be about four tests. Let’s start with one:

accounts/tests/test_authentication.py.
from unittest.mock import patch

from django.test import TestCase

from accounts.authentication import (
PERSONA_VERIFY_URL, DOMAIN, PersonaAuthenticationBackend
)

class AuthenticateTest(TestCase):

('accounts.authentication.requests.post')
def test_sends_assertion_to_mozilla_with_domain(self, mock_post):
backend = PersonaAuthenticationBackend()
backend.authenticate('an assertion')
mock_post.assert_called_once_with(
PERSONA_VERIFY_URL,
data={'assertion': 'an assertion', 'audience': DOMAIN}

)
In authenticate.py we'll just have a few placeholders:

accounts/authentication.py.
import requests

PERSONA_VERIFY_URL = 'https://verifier.login.persona.org/verify'
DOMAIN = 'localhost'

class PersonaAuthenticationBackend(object):

def authenticate(self, assertion):
pass

At this point we’ll need to:

(virtualenv)$ pip install requests

Don't forget to add requests to requirements.txt too, or the next
deploy won't work...

Then let’s see how the tests get on!

$ python3 manage.py test accounts

[...]

AssertionError: Expected 'post' to be called once. Called 0 times.

288 | Chapter 16: Server-Side Authentication and Mocking in Python

And we can get that to passing in three steps (make sure the Goat sees you doing each
one individually!):

accounts/authentication.py.
def authenticate(self, assertion):

requests.post(
PERSONA_VERIFY_URL,
data={'assertion': assertion, 'audience': DOMAIN}

Grand:

$ python3 manage.py test accounts
[...]

Ran 5 tests in 0.023s

0K
Next let’s check that authenticate should return None if it sees an error from the request:

accounts/tests/test_authentication.py (ch161020).
('accounts.authentication.requests.post')

def test_returns_none_if_response_errors(self, mock_post):
mock_post.return_value.ok = False
backend = PersonaAuthenticationBackend()

user = backend.authenticate('an assertion')
self.assertIsNone(user)

And that passes straight away—we currently return None in all cases!

Patching at the Class Level

Next we want to check that the response JSON has status=okay. Adding this test would
involve a bit of duplication—let’s apply the “three strikes” rule:

accounts/tests/test_authentication.py (ch161021).
('accounts.authentication.requests.post') #@

class AuthenticateTest(TestCase):

def setUp(self):
self.backend = PersonaAuthenticationBackend() #@

def test_sends_assertion_to_mozilla_with_domain(self, mock_post):
self.backend.authenticate('an assertion')
mock_post.assert_called_once_with(
PERSONA_VERIFY_URL,
data={'assertion': 'an assertion', 'audience': DOMAIN}

def test_returns_none_if_response_errors(self, mock_post):

De-spiking Our Custom Authentication Backend: Mocking Out an Internet Request | 289

mock_post.return_value.ok = False #@
user = self.backend.authenticate('an assertion')
self.assertIsNone(user)

def test_returns_none_if_status_not_okay(self, mock_post):
mock_post.return_value.json.return_value = {'status': 'not okay!'} #@
user = self.backend.authenticate('an assertion')
self.assertIsNone(user)

© You can apply a patch at the class level as well, and that has the effect that every
test method in the class will have the patch applied, and the mock injected.

® We can now use the setUp function to prepare any useful variables which we’re
going to use in all of our tests.

© O Now each test is only adjusting the setup variables it needs, rather than setting
up a load of duplicated boilerplate—it’s more readable.

And that’s all very well, but everything still passes!
oK

Time to test for the positive case where authenticate should return a user object. We
expect this to fail:

accounts/tests/test_authentication.py (ch161022-1).
from django.contrib.auth import get_user_model

User = get_user_model()

[...]

def test_finds_existing_user_with_email(self, mock_post):
mock_post.return_value.json.return_value = {'status': 'okay', 'email': 'a@b.com'}
actual_user = User.objects.create(email="a@b.com")
found_user = self.backend.authenticate('an assertion')
self.assertEqual(found_user, actual_user)

Indeed, a fail:

AssertionError: None != <User: >

Let’s code. We'll start with a “cheating” implementation, where we just get the first user
we find in the database:

accounts/authentication.py (ch161023).
import requests

from django.contrib.auth import get_user_model
User = get_user_model()

[...]

def authenticate(self, assertion):
requests.post(
PERSONA_VERIFY_URL,
data={'assertion': assertion, 'audience': DOMAIN}

)

return User.objects.first()

290 | Chapter 16: Server-Side Authentication and Mocking in Python

That gets our new test passing, but still, none of the other tests are failing:

$ python3 manage.py test accounts
[...]

Ran 8 tests in 0.030s

0K

They'’re passing because objects.first() returns None if there are no users in the
database. Let’s make our other cases more realistic, by making sure there’s always at least
one user in the database for all our tests:

accounts/tests/test_authentication.py (ch161022-2).
def setUp(self):
self.backend = PersonaAuthenticationBackend()
user = User(email='other@user.com")
user.username = 'otheruser' #@
user.save()

© By default, Django’s users have a username attribute, which has to be unique, so
this value is just a placeholder to allow us to create multiple users. Later on, we’ll
get rid of usernames in favour of using emails as the primary key.

That gives us three failures:

FAIL: test_finds_existing_user_with_email
AssertionError: <User: otheruser> != <User: >
[...]

FAIL: test_returns_none_1if_response_errors
AssertionError: <User: otheruser> is not None
[...]

FAIL: test_returns_none_if_status_not_okay
AssertionError: <User: otheruser> is not None

Let’s start building our guards for cases where authentication should fail—if the response
errors, or if the status is not okay. Suppose we start with this:

accounts/authentication.py (ch161024-1).
def authenticate(self, assertion):

response = requests.post(
PERSONA_VERIFY_URL,
data={"'assertion': assertion, 'audience': DOMAIN}

)
if response.json()['status'] == 'okay':
return User.objects.first()

That actually fixes two of the tests, slightly surprisingly:

AssertionError: <User: otheruser> != <User: >

FAILED (failures=1)

De-spiking Our Custom Authentication Backend: Mocking Out an Internet Request | 291

Let’s get the final test passing by retrieving the right user, and then we’ll have a look at
that surprise pass:
accounts/authentication.py (ch161024-2).

if response.json()['status'] == 'okay':
return User.objects.get(email=response.json()['email'])

0K

Beware of Mocks in Boolean Comparisons
So how come our test_returns_none_if_response_errors isn't failing?

Because we've mocked out requests. post, the response is a Mock object, which as you
remember, returns all attributes and properties as more Mocks.> So, when we do:
accounts/authentication.py.
if response.json()['status'] == 'okay':

response is actually a mock, response. json() is a mock, and response. json()['sta
tus'] is a mock too! We end up comparing a mock with the string “okay”, which eval-
uates to False, and so we return None by default. Let’s make our test more explicit, by
saying that the response JSON will be an empty dict:

accounts/tests/test_authentication.py (ch161025).
def test_returns_none_if_response_errors(self, mock_post):

mock_post.return_value.ok = False
mock_post.return_value. json.return_value = {}
user = self.backend.authenticate('an assertion')
self.assertIsNone(user)

That gives:

if response.json()['status'] == 'okay':
KeyError: 'status'

And we can fix it like this:

accounts/authentication.py (ch161026).
if response.ok and response.json()['status'] == 'okay':
return User.objects.get(email=response.json()['email'])

0K

Great! Our authenticate function is now working the way we want it to.

3. Actually, this is only happening because we’re using the patch decorator, which returns a MagicMock, an even
mockier version of mock that can also behave like a dictionary. More info in the docs.

292 | Chapter 16: Server-Side Authentication and Mocking in Python

https://docs.python.org/3/library/unittest.mock-magicmethods.html

Creating a User if Necessary

Next we should check that, if our authenticate function has a valid assertion from
Persona, but we don’t have a user record for that person in our database, we should
create one. Here’s the test for that:

accounts/tests/test_authentication.py (ch161027).
def test_creates_new_user_1if_necessary_for_valid_assertion(self, mock_post):
mock_post.return_value.json.return_value = {'status': 'okay', 'email': 'a@b.com'}
found_user = self.backend.authenticate('an assertion')
new_user = User.objects.get(email="a@b.com")
self.assertEqual(found_user, new_user)

That fails in our application code when we try find an existing user with that email:

return User.objects.get(email=response.json()['email'])
django.contrib.auth.models.DoesNotExist: User matching query does not exist.

So we add a try/except, returning an “empty” user at first:

accounts/authentication.py (ch161028).
if response.ok and response.json()['status'] == 'okay':

try:

return User.objects.get(email=response.json()['email'])
except User.DoesNotExist:

return User.objects.create()

And that fails, but this time it fails when the fest tries to find the new user by email:

new_user = User.objects.get(email='a@b.com")
django.contrib.auth.models.DoesNotExist: User matching query does not exist.

And so we fix it by assigning the correct email addresss:

accounts/authentication.py (ch161029).

if response.ok and response.json()['status'] == 'okay':
emaill = response.json()['email']
try:

return User.objects.get(email=email)
except User.DoesNotExist:
return User.objects.create(email=email)

That gets us to passing tests:

$ python3 manage.py test accounts

[...]
Ran 9 tests in 0.019s
0K

The get_user Method

The next thing we have to build is a get_user method for our authentication backend.
This method’s job is to retrieve a user based on their email address, or to return None if
it can’t find one. (That last wasn't well documented at the time of writing, but that is the
interface we have to comply with. See the source for details.)

De-spiking Our Custom Authentication Backend: Mocking Out an Internet Request | 293

http://bit.ly/SuECDa

Here’s a couple of tests for those two requirements:

accounts/tests/test_authentication.py (ch161030).
class GetUserTest(TestCase):

def test_gets_user_by email(self):
backend = PersonaAuthenticationBackend()
other_user = User(email='other@user.com')
other_user.username = 'otheruser'
other_user.save()
desired_user = User.objects.create(email="'a@b.com")
found_user = backend.get_user('a@b.com')
self.assertEqual(found_user, desired_user)

def test_returns_none_1if_no_user_with_that_email(self):
backend = PersonaAuthenticationBackend()
self.assertIsNone(
backend.get_user('a@b.com")

)
Here’s our first failure:

AttributeError: 'PersonaAuthenticationBackend' object has no attribute
'get_user'

Let’s create a placeholder one then:

accounts/authentication.py (ch161031).
class PersonaAuthenticationBackend(object):

def authenticate(self, assertion):

[...]

def get_user(self):
pass

Now we get:
TypeError: get_user() takes 1 positional argument but 2 were given
So:

accounts/authentication.py (ch161032).
def get_user(self, email):

pass
Next:
self.assertEqual(found_user, desired_user)
AssertionError: None != <User: >

And (step by step, just to see if our test fails the way we think it will):

accounts/authentication.py (ch161033).
def get_user(self, email):
return User.objects.first()

294 | Chapter 16: Server-Side Authentication and Mocking in Python

That gets us past the first assertion, and onto

self.assertEqual(found_user, desired_user)
AssertionError: <User: otheruser> != <User: >

And so we call get with the email as an argument:

accounts/authentication.py (ch161034).
def get_user(self, email):
return User.objects.get(email=email)

That gets us to passing tests:
Now our test for the None case fails:

ERROR: test_returns_none_if_no_user_with_that_email

[...]

django.contrib.auth.models.DoesNotExist: User matching query does not exist.
Which prompts us to finish the method like this:

accounts/authentication.py (ch161035).
def get_user(self, email):
try:
return User.objects.get(email=email)
except User.DoesNotExist:
return None #§)
© You could just use pass here, and the function would return None by default.
However, because we specifically need the function to return None, explicit is

better than implicit here.

That gets us to passing tests:
OK
And we have a working authentication backend!

$ python3 manage.py test accounts

[...]
Ran 11 tests in 0.020s
oK

Now we can define our custom user model.

A Minimal Custom User Model

Django’s built-in user model makes all sorts of assumptions about what information
you want to track about users, from explicitly recording first name and last name, to
forcing you to use a username. I'm a great believer in not storing information about
users unless you absolutely must, so a user model that records an email address and
nothing else sounds good to me!

A Minimal Custom User Model | 295

accounts/tests/test_models.py.
from django.test import TestCase

from django.contrib.auth import get_user_model
User = get_user_model()
class UserModelTest(TestCase):

def test_user_1is_valid_with_email_only(self):
user = User(email="a@b.com')
user.full_clean() # should not raise

That gives us an expected failure:

django.core.exceptions.ValidationError: {'username': ['This field cannot be
blank.'], 'password': ['This field cannot be blank.']}

Password? Username? Bah! How about this?

accounts/models.py.
from django.db import models

class User(models.Model):
email = models.EmailField()
And we wire it up inside settings.py using a variable called AUTH_USER_MODEL. While
we’re at it, we'll add our new authentication backend too:

superlists/settings.py (ch161039).
AUTH_USER_MODEL = 'accounts.User'

AUTHENTICATION_BACKENDS = (
'accounts.authentication.PersonaAuthenticationBackend',

)

The next error is a database error:
django.db.utils.OperationalError: no such table: accounts_user

That prompts us, as usual, to do a migration... When we try, Django complains that
our custom user model is missing a couple of bits of metadata:

$ python3 manage.py makemigrations
Traceback (most recent call last):
[...]
if not isinstance(cls.REQUIRED_FIELDS, (list, tuple)):
AttributeError: type object 'User' has no attribute 'REQUIRED_FIELDS'

Sigh. Come on, Django, it's only got one field, you should be able to figure out the
answers to these questions for yourself. Here you go:

accounts/models.py.
class User(models.Model):

email = models.EmailField()
REQUIRED_FIELDS = ()

296 | Chapter 16: Server-Side Authentication and Mocking in Python

Next silly question?*

$ python3 manage.py makemigrations
[...]
AttributeError: type object 'User' has no attribute 'USERNAME_FIELD'

So:

accounts/models.py.
class User(models.Model):

email = models.EmailField()
REQUIRED_FIELDS = ()
USERNAME_FIELD = 'email'

$ python3 manage.py makemigrations
System check identified some issues:

WARNINGS:
accounts.User: (auth.W004) 'User.email' is named as the 'USERNAME_FIELD', but
it is not unique.
HINT: Ensure that your authentication backend(s) can handle non-unique

usernames.
Migrations for 'accounts':

0001_initial.py:

- Create model User

Let’s hold that thought, and see if we can get the tests passing again.

A Slight Disappointment
Meanwhile, we have a couple of weird unexpected failures:

$ python3 manage.py test accounts

Eéééi: test_gets_logged_in_session_1if_authenticate_returns_a_user

Eéééi: test_returns_OK_when_user_found
[‘..aser.save(update_fields=['last_login'])

5;i;iError: The following fields do not exist in this model or are m2m fields:
last_login

It looks like Django is going to insist on us having a last_login field on our user model
too. Oh well. My pristine, single-field user model is despoiled. I still love it though.

4. You might ask, if I think Django is so silly, why don’t I submit a pull request to fix it? Should be quite a simple
fix. Well, I promise I will, as soon as I've finished writing the book. For now, snarky comments will have to
suffice.

A Minimal Custom User Model | 297

accounts/models.py.
from django.db import models

from django.utils import timezone

class User(models.Model):
email = models.EmailField()
last_login = models.DateTimeField(default=timezone.now)
REQUIRED_FIELDS = ()
USERNAME_FIELD = 'email'

We get another database error, so let’s clear down the migration and re-create it:

$ rm accounts/migrations/0001_initial.py
$ python3 manage.py makemigrations
System check identified some issues:
[...]
Migrations for 'accounts':
0001_initial.py:
- Create model User

That gets the tests passing:

$ python3 manage.py test accounts
[...]

Ran 12 tests in 0.041s

OK

Tests as Documentation

Let’s go all the way and make the email field into the primary key®, and thus implicitly
remove the auto-generated id column.

Although that warning is probably enough of a justification to go ahead and make the
change, it would be better to have a specific test:

accounts/tests/test_models.py (ch161043).
def test_email_is_primary_key(self):

user = User()
self.assertFalse(hasattr(user, 'id"))

It'1l help us remember if we ever come back and look at the code again in future.

self.assertFalse(hasattr(user